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Abstract— Tracking planar objects has a wide range of
applications in robotics. Conventional template tracking algo-
rithms, however, often fail to observe fast object motion or
drift significantly after a period of time, due to drastic object
appearance change. To address such challenges, we propose a
novel constrained confidence matching algorithm for motion
estimation and a robust Kalman filter for template updating.
Integrated with an accurate occlusion detector, our approach
achieves accurate motion estimation in presence of partial
occlusion, by excluding occluded pixels from computation of
motion parameters. Furthermore, the proposed Kalman filter
employs a novel control-input model to handle the object
appearance change, which brings our tracker high robustness
against sudden illumination change and heavy motion blur.
For evaluation, we compare the proposed tracker with several
state-of-the-art planar object trackers on two public bench-
mark datasets. Experimental results show that our algorithm
achieves robust tracking results against various environmental
variations, and outperforms baseline algorithms remarkably on
both datasets.

I. INTRODUCTION

Tracking of planar objects, e.g. 2D markers, is often an
important step in camera localization and scene registration,
and has many applications in robotics [1], [2] and augmented
reality [3], [4]. In this work, we address the problem in an
accurate and robust manner, with arbitrary motion and no
prior knowledge other than its position in the first video
frame.

In the past few decades, a large mount of investigations
were devoted to visual tracking problem. Popular approa-
ches to planar object tracking can be roughly classified as
keypoint-based approaches (e.g., [5], [6], [7]) or template-
based ones (e.g., [8], [9], [10], [11], [12]). Template-based
approaches directly use the appearance of the pixels with-
out extracting features, and optimize a similarity measure
between the template and the captured image, based on
the Newton method or its variants, to determine the pose
of the plane. Although the template tracking problem has
been investigated for decades, it remains challenging due to
various perturbations such as illumination change, motion
blur and occlusion.

Conventional template-based trackers that hold fixed tem-
plates usually fail to observe the object motion in presence
of drastic appearance changes that violate the brightness
constancy assumption (BCA) [8]. A common way to improve
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Fig. 1. Example results of the proposed CCM algorithm in presence
of drastic appearance changes including partial occlusion (the first
row), motion blur (the second row) and lighting change (the last
row). We only show zoomed-in regions around the target for better
illustration. Green boxes indicate tracking results of the algorithms,
and no box indicates missing of target. The frame index is shown
on top of each image, and the first frame shows the initialization.
Same styles are used in Figures 2 to 5.

the robustness is to update the template dynamically using
some heuristic strategies [13], [14], [15] or online-learning
methods [16], [17]. Another popular way is to replace the
classical sum of squared differences (SSD) measure with
new similarity measures which are more robust to brightness
changes. Some samples include the sum of conditional vari-
ance (SCV) [18], [15], the local normalized cross correlation
(NCC) [19], the mutual information (MI) [20], and the
gradient orientations (GO) [12]. However, most of these
approaches address the challenge from illumination change,
and still suffer from other environmental perturbations, es-
pecially for partial occlusion and motion blur. Therefore, it
demands more research attentions on how to develop more
robust algorithms in presence of various perturbations.

In this paper, we propose a constrained confidence match-
ing (CCM) algorithm to improve the robustness against
various environmental perturbations including partial occlu-
sion, illumination change and motion blur. Firstly, unlike
conventional template-based trackers that treat each pixel
in the template identically when computing the motion
parameters, we assign pixels with different matching con-
fidences according to the measurement noises. With the
assistance from an accurate occlusion detector we proposed,
our tracker gains high robustness against partial occlusion
by excluding occluded pixels from computation of motion
parameters. Furthermore, in order to improve the robustness
against sudden illumination change and heavy motion blur,



we propose a robust Kalman filter that employs a novel
control-input model to handle the appearance change of the
object.

To thoroughly evaluate the proposed CCM algorithm,
we test it on two public datasets: the University of Cal-
ifornia, Santa Barbara (UCSB) benchmark [21] and the
tracking manipulation tasks (TMT) benchmark [22]. Exper-
imental results show that, our tracker achieves robustness
against various perturbation factors and outperforms sig-
nificantly state-of-the-art trackers (including keypoint-based
tracker [5], template-based tracker [23], [10], [24], [15],
[12] and probabilistic tracker [16], [17]) in comparison.
Fig. 1 illustrates some representative examples of the pro-
posed CCM algorithm in presence of drastic environmen-
tal variations, including partial occlusion, motion blur and
lighting change, which usually harm the tracking accuracy
of conventional template tracking algorithms. The source
code of the proposed approach will be made public at
http://www.dabi.temple.edu/˜hbling/code/ccm/index.html.

II. RELATED WORK

Visual object tracking has been investigated for several
decades as summarized in [25], [26]. Classical early work
dates back to the LK algorithm [8] for 2D template tracking
and the ICP algorithm [27] for 3D object tracking. In the
following we sample some related ones that inspire our study
on template-based planar object tracking.

Template tracking consists of moving, and possibly de-
forming, a template to minimize the difference between the
template and the current captured image. The sum of squared
differences (SSD) is commonly utilized as the similarity mea-
sure. Gradient descent is the most usual approach to template
alignment, of which a variety of derivation algorithms such
as difference decomposition [28] and linear regression [29]
have also been proposed. Hager and Belhumeur [23] propose
an inverse compositional (IC) algorithm to improve the effi-
ciency of computing Hessian in each iteration by switching
the role of the image and the template. This algorithm
is further heavily discussed by Backer and Matthews [9].
Malis proposes an efficient second-order minimization (ESM)
algorithm [10] that employs control laws based on the
second-order Taylor series to achieve high convergence rates
and avoid convergence problems of conventional Newton
minimization method.

The above trackers use fixed templates, and thus usually
fail to observe the object motion in presence of drastic ap-
pearance changes. One typical way to enhance the robustness
of such object trackers is to use a pre-trained view-based
eigenbasis representation [30], [31]. It is imperative for these
approaches to collect a large set of training images covering
the range of possible appearance variations to construct the
eigenbasis as the representation. In the case of less prior
knowledge of the target, a more proper way is to update
the template dynamically. A naive strategy is to directly
replace the template every frame with the tracking result.
In [13], the authors propose to retain the first template
as well as maintaining a current estimate of the template.

The template is first updated as in the naive algorithm
and then aligned with the first template to give the final
update. For estimating the intensity of the template in a
more accurate manner, Kalman filtering is adopted to track
the template intensity under a Gaussian system [32]. This
work is followed by Nguyen et al. [14], [24] who combine
occlusion detection with Kalman filtering to reject occlusion
from template updating. Lacking of the ability to model
environmental inputs, this approach tends to reject them as
outliers from template updating, and thus suffers from drastic
environmental variations including motion blur and lighting
change. In [33], [17], an incremental PCA model is adopted
for online-learning of the appearance model of the object.

In addition to adapting the template for appearance
changes, another popular way is to apply robust similarity
measures to replace SSD. Mutual information (MI) [20] and
cross cumulative residual entropy (CCRE) [34] originally
applied in medical image registration are successfully intro-
duced into visual tracking to improve the robustness against
illumination changes. Richa et al. propose a new similarity
measure, named sum of conditional variance (SCV) [18],
aiming to cope with non-linear illumination changes. This
approach maintains a joint intensity distribution of the tem-
plate, and updates it in every new frame using the most
recent observation. This work is further extended in [15]on
decreasing its sensitivity to local illumination changes. More
recently, the gradient orientations (GO) feature [12] is intro-
duced into template tracking to handle complex illumination
changes. By using GO features, the authors generalize the
original ESM algorithm to a GO-ESM algorithm for multi-
dimensional features. However, most of these algorithms
address only the challenge from illumination change, but still
suffer from occlusion and motion blur.

Alternative to the above mentioned approaches based on
energy minimization, learning-based approaches appear to
be robust to environmental perturbations. Sampled recent
studies include [16] that decomposes the long-term tracking
task into tracking, learning, and detection; [35] that adopts
random forests to learn the relation between the motion
parameters and the changes on the image intensities; and [17]
that formulates the template-based visual tracking problem
as a particle filtering problem on the matrix Lie group. A
common shortage of this category of approaches lies in that
they usually fail to acquire accurate motion estimation in
presence of extreme pose changes.

The proposed CCM algorithm is inspired by the above
algorithms in the enhancing of similarity measure and the
updating of template to assist tracking, but differs in the way
of capturing environmental inputs and rejecting occlusion
from matching and updating. CCM aims to provide robust
and accurate tracking for planar objects against various envi-
ronmental variations, and the excellent experimental results
clearly validate its advantage.

III. TEMPLATE-BASED POSE TRACKING

Suppose we are given a video sequence of images It(x)
where x = (x,y)> are the pixel coordinates and t = 0,1,2, . . .



is the time moment. Pose tracking aims to acquire the pose
Φt of the object of interest in each frame t, or to report
the object missing when it is invisible. The relative motion
between the object and the camera induces changes in the
position of the object in the image. We assume that these
transformations can be modeled by a geometric warping
ϕ(x;pt) :Rd→Rd , where pt denotes the parameter vector of
the transformation specified for Φt . For 2-D transformation,
ϕ is usually defined as an affine transformation. Considering
eight degrees of freedom (8DOF) pose tracking of planar
objects in this paper, we define ϕ as a perspective transfor-
mation.

In template-based tracking, a region that contains the
object of interest is extracted and becomes the template T ,
where T (x) denotes the intensity of pixel x in the template.
The initial template T is usually given in advance or is
picked from the first frame. The goal of template tracking is
to find the best match to the template in every subsequent
frame. Using SSD as the dissimilarity measure, the template
tracking problem can be formulated as finding optima pt to
minimize the dissimilarity function

min
pt

E1(pt ; It) = ∑
x∈∧T

[It(ϕ(x;pt))−T (x)]2, (1)

where ∧T is the support of T .
Some conventional approaches simply fix the template T

across all video frames, while recent approaches tend to
adapt it dynamically for appearance changes.

IV. CONSTRAINED CONFIDENCE MATCHING AGAINST
OCCLUSION

A. Constrained confidence matching

Conventional template-based algorithms usually treat each
pixel in the template identically when computing the motion
parameters, and are thus sensitive to some extrinsic noises,
especially for occlusion.

To address this issue, we propose a confidence matching
strategy that assign pixels with different matching confi-
dences in computing the motion parameters. Intuitively, we
assign low confidences to the pixels interfered by noises.
Taking matching confidences into account, the matching
dissimilarity defined in Eq. (1) is extended as

min
pt

E2(pt ; It) = ∑
x∈∧T

C(x)[It(ϕ(x;pt))−T (x)]2.

s.t. b < pt −pt−1 <−b.
(2)

where C denotes the confidence map in which each entry
C(x) records the matching confidence of pixel x, b < 0
denotes the tolerance of geometric changes, and < is the
element-wise ≥. The constraints we added is to forbid any
leap of motions between consecutive frames.

The confidence map C is initialized uniformly for each
pixel x, and is further updated per frame according to the
difference between the previous observation and the template

C(x) = 1−
(It−1(ϕ(x;pt−1))−T (x))2

ε2 , (3)

where ε denotes the maximum difference

ε = max
x∈∧T
|It−1(ϕ(x;pt−1))−T (x)|. (4)

The tolerance of geometric changes b is learned adaptively
according to the motion parameters of the previous k frames

b =
ρ

k

k

∑
i=1
|pt−i−pt−i−1|, (5)

while ρ is an amplification coefficient to the average motions
of the previous k frames, | · | denotes the absolute value of a
vector. We set ρ = 5 and k = 20 throughout our experiments.

B. Optimization

There are a large number of literatures dedicated to
original matching problem (1), some samples include [9],
[10], [17]. Here we adopt the ESM algorithm [10] and extend
it to solve the constrained confidence matching problem (2).

Let us first consider the unconstrained confidence match-
ing problem, e.q., dropping the constraints in problem (2).
Denote J(p; I) the Jacobian of E2 evaluated at parameter p
with image I, we have

J(p; I) = ∑
x

[
C(x)∇I

∂ϕ

∂p

]
, (6)

where ∇I = ( ∂ I
∂x ,

∂ I
∂y ) is the gradient of image I evaluated

at ϕ(x;p), and the term ∂ϕ

∂p is the Jacobian of the warp.
For an incoming frame It , the motion parameter is initially
estimated as pt ← pt−1. According to the pseudo-inverse of
the mean of the Jacobians (PMJ) method proposed in [10],
the displacement ∆p is approximated by

∆p≈−2[(J>J)−1J>]E (pt ; It), (7)

where J = J(p0; I0) + J(pt ; It), and then the parameter is
updated by

pt ← pt +∆p. (8)

The updating is iterated until convergence or maximum
iterations reached.

From our observation in experiments, the motion parame-
ter pt acquired above usually satisfies the constraints defined
in problem (2). Nevertheless, we propose a simple yet effec-
tive approach to recompute the warping once the acquired pt
violates the constraints. Denote Ωt = {q|b < q−pt−1 <−b}
the valid solution space. We sample uniformly Ns = 2500
candidate solutions qi (1≤ i≤ Ns) from Ωt , and choose the
one with minimum dissimilarity

pt ← argmin
qi

E2(qi, It), 1≤ i≤ Ns. (9)

C. Occlusion detection

The occlusion detection strategy adopted in the AKF
algorithm [14] is very simple that employs only the diffe-
rence of intensities for decision of occlusion. This method
tends to reject the whole template as outlier in the case of
dramatic environmental changes. In [36], the authors propose
to discover occlusions through morphological operations on



an occlusion map. However, the approach still does not dis-
tinguish occlusions from some other environmental changes,
for example motion blurs.

To improve the robustness against occlusion, we propose
a novel method of occlusion detection under two empirical
guide lines. First, the appearance changes derived from
occlusions are diverse enough to be distinguished from
other perturbation factors, such as illumination changes and
motion blurs, which usually bring similar disturbances to all
pixels. Second, The occluded parts are usually connected and
compact regions.

On the basis of the above guide lines, we construct current
difference image D as D(x) = |It(ϕ(x;pt))−T (x)|, and then
search occlusions using two criterions as follows.

Diversity criterion. We first compute the mean µ(D)
and the standard deviation σ(D) of the difference image
D. Obviously, low σ(D) indicates less diversity in the
difference image. We determine that there is no occlusion
if σ(D)/µ(D) < θ0, where θ0 is a pre-defined tolerance
of the diversity. Otherwise, we go to the further judgement
according to the spatial criterion. We set θ0 = 0.8 throughout
our experiments.

Spatial criterion. After binarization on the difference
image D, we apply morphological operations to remove the
small areas and fill the small hole between the regions. We
calculate two attributes (a1(R),a2(R)) for each connected
region R, where a1(R) denotes the area of region R, and
a2(R) the area of the minimum convex polygon containing
region R. We conclude there is an occlusion if a1(R)/|D|>
θ1 and a1(R)/a2(R) > θ2, where θ1 and θ2 are two pre-
defined thresholds. The first inequation is to filter out too
small regions, and the second to filter out too sparse regions.
We set θ1 = 0.1 and θ2 = 0.5 throughout our experiments.

To exclude occluded parts from template matching and
updating, we directly set the confidence to zero for all
occluded pixels.

V. TEMPLATE UPDATING WITH KALMAN FILTERING

There have been a few methods [32], [14], [24] utilizing
Kalman filters to adapt template for changes. Our approach
is inspired by these methods, but differs in the control-input
model we employed to capture environmental changes and
hence improve the robustness.

A. Kalman filtering

Denote yt and zt the vectorized state estimation and
observation, respectively, of the template intensity at time
t. We define the models for state prediction and observation
taking the control-input model into account

yt = Atyt−1 +Btut +wt ,

zt = Htyt +vt ,
(10)

where At is the state transition matrix which is applied to
the previous state yt−1, Bt is the control-input model which
is applied to the control vector ut , Ht is the observation
matrix which maps the true state space into the observed
space, wt and vt are the state noise and the observation noise

respectively. As common in Kalman filtering, wt and vt are
assumed to be Gaussian with zero means and covariances Qt
and Lt respectively.

In what follows, the notation ŷt|t ′ represents the estimate
of y at time t given observations up to time t ′ ≤ t, and
Pt|t ′ the corresponding error covariance. The tracking process
consists of the following three distinct phases.

Prediction. We first compute the priori state estimation
and covariance:

ŷt|t−1 = At ŷt−1|t−1 +Bt−1ut−1,

Pt|t−1 = AtPt−1|t−1A>t +Qt .
(11)

Measuring. To obtain observation of the filters, the pre-
vious template ŷt−1|t−1 is matched with the current frame,
of which the matching algorithm is discussed detailedly in
Sec. IV. The optimal matching result It(ϕ(x;pt)) is used as
the observation zt . The measurement residual and covariance
are therefore computed:

rt = zt −Ht ŷt|t−1,

St = HtPt|t−1H>t +Lt ,
(12)

Updating. We subsequently update the posteriori state
estimation and covariance:

ŷt|t = ŷt|t−1 +Ktrt ,

Pt|t = (I−KtHt)Pt|t−1,
(13)

where the optimal Kalman gain Kt = Pt|t−1H>t S−1
t , and I

denotes the identity matrix.
It is important for practical implementation of the Kalman

Filter to get a good estimate of the model matrices and the
noise covariance matrices. However, we lack prior knowl-
edge to utilize off-line learning methods to acquire these
matrices. Therefore, we estimate these matrices using on-
line learning under some reasonable assumptions:

1) Despite of extrinsic perturbations, the object itself
keeps unchanged and can be directly observed. It im-
plies simple models for state transition and observation
such that At = I and Ht = I.

2) One promising and practical approach to learn the
noise covariance matrices Qt and Lt is the auto-
covariance least squares (ALS) technique that uses
the time-lagged auto-covariances of routine operating
data to estimate the covariances [37]. To reduce both
the computational complexity and the dependence on
training data, we reduce the noise covariance matrices
Qt and Lt to diagonal matrices under the assumption
that the noises of the pixels are independent from each
other.

3) The control-input model is introduced to model en-
vironmental changes, which is discussed detailedly in
Sec. V-B.

B. The control-input model

The control-input model is essential for our method to
fight against drastic environmental perturbations. In general,
it is hard to know the exact control-input model in advance



in the template tracking task. In this section, we propose an
effective method of construction of the control-input model.

The control-input model is approximated according to the
probability of the intensity co-occurrence between the pixels.
In particular, the control matrix Bt is built as

Bt(i, j) =
1
k

t

∑
m=t−k+1

cm(i, j), (14)

where Bt(i, j) denotes the element at the i-th row and th j-th
column of the control matrix Bt , k controls the size of the
window used for computation. The co-occurrence function
is defined as

cm(i, j) =
{

1 if ym(i) = ym( j),
0 otherwise. (15)

where ym(i) and ym( j) denote the intensities of the i-th and
j-th pixels respectively at time m. The motivation behind this
approximation is that pixels with similar intensities tend to
hold similar reactions to the input. After the control matrix Bt
is built, it is necessary to be normalized as a row stochastic
matrix.

The initial control matrix B0 is built according to the initial
template y0. For computational simplicity, once Bt is com-
puted, we fix Bt = Bt+1 = ...= Bt+k−1 until Bt+k is updated
next time. We set k = 20 throughout our experiments.

The environmental input is changing over time, and is hard
to be known in advance. After the posteriori estimate ŷt|t
is acquired, we approximate the input ut to minimize the
squared error between the previous template and the current
estimate

u∗t = argmin
ut
||ŷt|t − ŷt−1|t−1−Btut ||22. (16)

This optimization is obviously a linear optimization, and can
be easily solved. The approximated input ut , as well as the
control matrix Bt , is further used to predict the priori state
estimation at time t +1.

VI. EXPERIMENTS

A. Baselines and Benchmarks

In this section, we report experimental results of the
proposed CCM algorithm in comparison with eight state-of-
the-art baselines, including Struck [5], IC [23], ESM [10],
AKF [24], SCV [15], GO-ESM [12], TLD [16] and
GPF [17].

Among these algorithms, IC and ESM adopt the classical
SSD similarity measure and hold a fixed template without
any updating, AKF employs a Kalman filter to adapt the
template for changes, SCV and GO-ESM introduce robust
similarity measures to replace SSD. Different from the above
algorithms based on deterministic optimization, TLD and
GPF fall into the probabilistic framework. In particular,
Struck is a keypoint-based algorithm which formulates trans-
formation estimation based on keypoint correspondence.

For a thorough evaluation, we report experimental results
on two popular benchmarks, UCSB [21] and TMT [22].

• UCSB: The dataset comprises 96 video streams display-
ing six differently textured planar targets with a total of
6,889 frames, featuring geometric distortions (panning,
zoom, tilting, rotation), nine levels of motion blur, as
well as different lighting conditions, with all frames
affected by natural amounts of noise.

• TMT: The dataset consists of image sequences of
manipulation task recorded by a human user and a
robot arm. It contains 109 image sequences with totally
70,592 frames. The recorded videos were grouped under
two broad categories: Oriented Motion Tasks and Com-
posite Motion Tasks. Each oriented motion task refers
to one or more highly structured geometric transforma-
tions, including zoom, tilting, rotation, translation and
occlusion.

All videos come with (semi-)manually annotated ground-
truth across all frames. The standard overlap criteria of
PASCAL VOC [38] is applied to evaluation in following
experiments. Denote RG

t and RT
t the ground-truth region and

the tracked region of the object at frame t, respectively. The
tracking accuracy at frame t is computed as

pt =
|RG

t ∩RT
t |

|RG
t ∪RT

t |
, (17)

where | · | denotes the area of a region. The tracking accuracy
of a video and hence a dataset is further obtained by average.

B. Experimental results and analysis

In this section, we report tracking performance of the
proposed CCM algorithm in comparison with the baseline
algorithms. The average tracking accuracy corresponding to
each video category is summarized in Tables I (UCSB) and
II (TMT).

It is observed that the proposed CCM algorithm outper-
forms all the baselines remarkably on both datasets. In fact,
CCM achieves the best or nearly best tracking performances
in almost all video categories, and it exhibits high robustness
against not only extreme pose changes but also heavy envi-
ronmental perturbations. Some baselines provide comparable
results to the proposed CCM algorithm on specific categories
of videos:
• IC, ESM and AKF exhibit high tracking accuracy in

presence of significant pose change, but are very sensi-
tive to illumination change, occlusion and motion blur;

• SCV gains high robustness to illumination by intro-
ducing new similarity measure, but it still suffers from
occlusion and motion blur;

• The gradient orientation feature brings GO-ESM high
robustness to illumination change and partial occlusion,
but makes it extremely sensitive to motion blur;

• TLD is able to roughly capture the object in most sce-
narios, but it fails to get an accurate motion estimation;

• GPF illustrates high robustness against both illumination
change and motion blur, at the cost of relatively low
tracking accuracy in presence of drastic pose change;

• As a keypoint-based approach, Struck is robust to partial
occlusion by design, but is sensitive to extreme pose



TABLE I
AVERAGE TRACKING ACCURACY (±STANDARD DEVIATION) ON THE UCSB DATASET, WHERE BOLD FONT INDICATES THE BEST ACCURACY.

Motion task Struck [5] IC [23] ESM [10] AKF [24] SCV [15] TLD [16] GPF [17] GO-ESM [12] CCM
panning (6) 0.84±0.25 0.29±0.25 0.68±0.31 0.26±0.37 0.71±0.34 0.79±0.13 0.90±0.06 0.35±0.28 0.92±0.12
tilting (6) 0.73±0.41 0.82±0.30 0.90±0.19 0.90±0.19 0.90±0.18 0.62±0.38 0.73±0.32 0.90±0.18 0.91±0.18

rotation (6) 0.65±0.33 0.74±0.21 0.80±0.14 0.80±0.14 0.80±0.14 0.65±0.18 0.79±0.15 0.79±0.15 0.80±0.14
zoom (6) 0.73±0.34 0.73±0.29 0.92±0.07 0.82±0.19 0.92±0.07 0.77±0.21 0.87±0.11 0.88±0.11 0.92±0.07

lighting (12) 0.80±0.33 0.68±0.39 0.83±0.21 0.91±0.13 0.98±0.02 0.58±0.42 0.90±0.12 0.98±0.02 0.98±0.02
blur (54) 0.40±0.41 0.29±0.37 0.43±0.40 0.23±0.36 0.47±0.43 0.65±0.33 0.81±0.14 0.36±0.31 0.85±0.14

unconstrained (6) 0.36±0.34 0.07±0.22 0.16±0.27 0.27±0.22 0.07±0.24 0.33±0.34 0.42±0.38 0.12±0.21 0.32±0.34
Total (96) 0.53±0.41 0.41±0.34 0.56±0.31 0.44±0.29 0.60±0.31 0.64±0.32 0.80±0.16 0.51±0.38 0.84±0.15

TABLE II
AVERAGE TRACKING ACCURACY ON THE TMT DATASET.

object variation Struck [5] IC [23] ESM [10] AKF [24] SCV [15] TLD [16] GPF [17] GO-ESM [12] CCM
bookI tilting(12) 0.76±0.37 0.94±0.13 0.98±0.03 0.75±0.26 0.99±0.02 0.67±0.24 0.86±0.08 0.98±0.03 0.99±0.02
bookII zoom (13) 0.86±0.24 0.99±0.01 0.99±0.01 0.96±0.05 0.99±0.01 0.74±0.14 0.89±0.06 0.99±0.01 0.99±0.01
bookIII occlusion (11) 0.83±0.23 0.43±0.46 0.55±0.43 0.49±0.41 0.55±0.46 0.69±0.21 0.51±0.48 0.84±0.21 0.85±0.19
cereal rotation (13) 0.70±0.44 0.63±0.44 0.82±0.28 0.66±0.39 0.87±0.20 0.64±0.22 0.82±0.25 0.40±0.32 0.90±0.14
juice rotation (13) 0.58±0.43 0.59±0.44 0.78±0.31 0.59±0.36 0.79±0.31 0.59±0.25 0.80±0.28 0.44±0.38 0.83±0.24
mugI translation (13) 0.89±0.13 0.85±0.19 0.93±0.10 0.76±0.28 0.95±0.07 0.71± 0.14 0.85±0.16 0.93±0.09 0.95±0.07
mugII tilting (13) 0.70±0.34 0.45±0.47 0.63±0.39 0.47±0.44 0.68±0.36 0.67±0.20 0.71±0.30 0.71±0.30 0.71±0.34
mugIII rotation (13) 0.75±0.30 0.61±0.37 0.76±0.29 0.56±0.39 0.89±0.14 0.67±0.21 0.79±0.26 0.83±0.21 0.90±0.14

Composite unconstrained (8) 0.48±0.46 0.63±0.35 0.79±0.23 0.63±0.34 0.92±0.06 0.57±0.22 0.63±0.25 0.86±0.16 0.90±0.08
Total - (109) 0.73±0.32 0.68±0.32 0.80±0.23 0.65±0.32 0.85±0.18 0.66±0.20 0.77±0.21 0.77±0.23 0.89±0.15
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Fig. 2. Examples of tilting a picture with repeat patterns.
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Fig. 3. Examples of drastic and dynamic lighting change of the sunset
picture with weak texture.
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Fig. 4. Example results under occlusion.

TABLE III
AVERAGE COMPUTATIONAL TIME (SECOND) PER FRAME OF THE

ALGORITHMS.

Alg. Struck IC ESM AKF SCV TLD GPF GO-ESM CCM
[5] [23] [10] [24] [15] [16] [17] [12]

UCSB 0.10 0.21 0.34 0.36 0.18 0.13 0.13 2.12 0.38
TMT 0.07 0.14 0.13 0.19 0.16 0.16 0.12 2.54 0.14

change, illumination change and motion blur.

We also report computational time of the algorithms in
Table III. Struck is the most efficient one among these
algorithms, and GO-ESM is the most time-consuming one.
Despite additional procedures of occlusion detection and
template updating are integrated, the proposed CCM algo-
rithm achieves comparable computational efficiency with the
original ESM algorithm.
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Fig. 5. Examples of motion blur of a picture.

Figures 2 to 5 illustrate several representative examples of
various types of intrinsic and extrinsic variations provided
by the proposed CCM algorithm in comparison with other
algorithms:

• Tilting. Example of tilting of a picture with repeat
patterns is shown in Fig. 2. It reveals that ESM and
its derivations (AKF, SCV, GO-ESM and CCM)1 are
very robust to tilting while Struck, TLD and GPF fail
to catch the object in presence of extreme tilting.

• Lighting. Fig. 3 shows examples of drastic and dynamic
lighting change of the sunset picture with very weak
texture. SCV, GO-ESM, GPF and the proposed CCM
exhibit high robustness against lighting change where

1These algorithms adopt the ESM algorithm for energy minimization.



other algorithms fail to capture the target.
• Occlusion. Fig. 4 presents tracking results in presence

of partial occlusion. As typical template-based algo-
rithms without tacking occlusion into account, IC, ESM,
SCV and GPF naturally suffer from partial occlusion.
Although a special mechanism for occlusion is adopted,
AKF is still unable to provide accurate tracking results.
With the assistance of an online-learned detector, TLD
roughly captures the object but with a remarkable drift.
The proposed CCM, as well as GO-ESM and Struck,
provides more accurate tracking results under partial
occlusion.

• Motion blur. In Fig. 5, Stuck is very sensitive to motion
blur because less reliable keypoints are detected in this
case. Without proper updating of the template, IC, ESM,
AKF, SCV and GO-ESM also lose the target due to
drastic appearance change. In contrast, TLD, GPF and
the proposed CCM provide more accurate results across
all frames.

VII. CONCLUSION

In this paper, we proposed a novel constrained confidence
matching algorithm for planar object tracking aiming to
improve the tracking performance. We employ a control-
input model in the Kalman filter to capture the environmental
changes, and develop an accurate occlusion detector to reject
occlusion from motion estimating and template updating.
Experimental results reveal that, the proposed approach gains
accurate and robust tracking performance against various
environmental variations, and outperforms recent state-of-
the-art algorithms.
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