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ABSTRACT 
 

Variations in trabecular bone texture are known to be 

correlated with bone diseases, such as osteoporosis. In this 

paper we propose a multi-feature multi-ROI (MFMR) 

approach for analyzing trabecular patterns inside the oral 

cavity using cone beam computed tomography (CBCT) 

volumes. For each dental CBCT volume, a set of features 

including fractal dimension, multi-fractal spectrum and 

gradient based features are extracted from eight regions-of-

interest (ROI) to address the low image quality of trabecular 

patterns. Then, we use generalized multi-kernel learning 

(GMKL) to effectively fuse these features for distinguishing 

trabecular patterns from different groups. To validate the 

proposed method, we apply it to distinguish trabecular 

patterns from different gender-age groups. On a dataset 

containing dental CBCT volumes from 96 subjects, divided 

into gender-age subgroups, our approach achieves 96.1% 

average classification rate, which greatly outperforms 

approaches without the feature fusion.  
 

Index Terms— Trabecular structure, multi-fractal 

spectrum, generalized multi-kernel learning. 
 

1. INTRODUCTION 
 

Variations in trabecular bone textures are known to be 

correlated closely to bone density change and therefore can 

be potentially used to aid the analysis of bone diseases such 

as osteoporosis. In the past few decades, analysis of 

trabecular bone structure has been presented in a variety of 

biomedical contexts. The importance of trabecular 

perforations in the development of osteoporosis has been 

introduced in [4]. Eriksen  [2] explains the relation between 

the profound disintegration of the trabecular bone network 

and certain bone diseases [1]. This relation is also proved by 

another multicenter trial on trabecular bone which is to 

assess the effect of involutional osteoporosis on it [3]. 

Moreover, studies have shown that the change of the 

trabecular bone texture in iliac can foresee osteoporosis 

based on its surface texture, volume and thickness; and such 

pattern change can also distinguish bones structures of 

young people from those of seniors [4]. 

Trabecular bone textures inside the oral cavity have been 

studied for osteoporosis analysis [11]. Previous studies, 

however, focus on validating the correlation between the 

trabecular pattern change and bone density loss. No effective 

dental image-based osteoporosis prescreening method has 

been reported so far. 

In this paper we propose using 3D cone beam computed 

tomography (CBCT) for analyzing trabecular textures inside 

the oral cavity. In particular, for a given 3D dental CBCT, 

we first crop regions of interest (ROIs) containing trabecular 

structures and then apply texture analysis on these ROIs. An 

illustration of such trabecular bone ROIs is shown in Fig. 1. 

Compared with 2D radiographs, CBCT volumes provide 

rich 3D information containing important structure 

information of trabecular patterns. However, since the 

trabecular struts are usually much thinner than CBCT voxels, 

Fig. 1: A 3D CBCT volume (top left), extracted 

trabecular ROIs (top right), hybrid features extracted from 

these ROIs (middle), and GMKL-based gender-age 

classification (bottom). 
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it is hard to trace the structure directly. In addition, the 

possible distortion of CT values in CBCT reconstruction 

may bring some noise. 

To address the above issues, we propose a robust texture 

analysis approach. First, instead of using simple texture 

descriptions from a single ROI, we propose a multi-feature 

multi-ROI (MFMR) representation. In particular, we use a 

set of features including fractal dimension, multi-fractal 

spectrum (MFS) and gradient based features extracted from 

eight different ROIs in the oral cavity. Then, we fuse these 

features in the generalized multi-kernel learning (GMKL) 

framework, which builds an effective classifier to distinguish 

trabecular patterns from different groups. Figure 1 

summarizes the proposed approach. 

The evaluation is conducted on a dataset containing 

CBCT volumes from 96 subjects in four gender-age 

subgroups. The experimental results demonstrate clearly the 

effectiveness of the feature fusing strategy and the MKL 

classifier in distinguishing trabecular patterns from different 

subgroups. 

In the rest of the paper, Sec. 2 describes the proposed 

methodological framework; Sec. 3 gives the experimental 

results; and Sec. 4 concludes the paper. 
 

2. METHODOLOGY 
 

2.1. Problem Formulation 

We aim to investigate the feasibility of using dental 

CBCT for the study of bone density loss. While it has been 

shown that intensity values in 2D radiographs and CT 

volumes are correlated directly to bone density [4][11], such 

correlation is less obvious for CBCT due to the distortion in 

CBCT reconstruction mentioned before. Our conjecture is 

that, although the measurement in CBCT may not be reliable 

for bone density estimation, the texture patterns are still 

useful for bone density loss study.  

We have developed a framework for classifying 

trabecular patterns using machine learning tools. In 

particular, we first extract various types of features from 

multiple ROIs, and then fuse the features using MKL.  

Note that, while it would be ideal to conduct the study on 

CBCT datasets with known bone mass density (BMD) status, 

i.e., measured by the gold standard, it is practically very 

hard to collect such datasets due to the high cost involved. 

Alternatively, we are taking advantage of the fact that BMD 

is closely correlated with gender and age [4]. 

In [4], it shows that the reduction in trabecular bone 

volume observed in normal subjects with increasing age is 

mainly due to a reduction in plate density. On the other hand, 

the further reduction in trabecular bone volume observed in 

patients with osteoporotic vertebral fracture is also mainly 

due to a further reduction in plate density. This study [4] 

indicates that gender-age-related bone loss in thickness is in 

a similar way that osteoporosis takes effect on trabecular 

bone structure. Consequently, approaches to distinguish 

trabecular patterns from different gender-age subgroups 

have great potentials to be extended for osteoporosis 

prescreening by trabecular pattern analysis. 

Motivated by this study, we use a dataset involving 

subjects having normal BMD status from different gender-

age subgroups. Our problem is then formulated as using 

trabecular texture analysis to distinguish different gender-

age subgroups. 
 

2.2. Multiple Dental ROIs 

Benefiting from the fact that trabecular patterns are 

distributed in various places in the oral cavity, we integrate 

information from multiple ROIs for robustness.  

For a dental CBCT volume denoted as S, we use eight 

ROIs including areas apical to the maxillary left and right 

premolars, mandibular left and right lateral incisors and first 

molars, left and right condyles. For each ROI, a cube of size 

19×19×19 containing trabecular structure is cropped. We 

denote the eight trabecular cubes as V={Vi, i=1,…,8}.  
 

2.3. Feature Descriptors 

We extract different types of 3D texture descriptors from 

each trabecular cube. Let S={S
(k)

: k=1,...,96} be our sample 

set containing 96 volumes, each sample S
(k)

 has 8 ROIs 

{Vi
(k)

:i=1,...,8} defined above. Four types of features, 

denoted as ψc, c=1,...,4, are extracted from each ROI. 

Collecting all these features together, our proposed 3D 

texture features for a single sample S
(k)

 are denoted as  

ψ(S
(k)

)={ψc(Vi
(k)

):  i=1,...,8; c=1,...,4}. 

The four different features are described below.  
 

Multi-fractal spectrum (MFS). The first type of feature (ψ1) 

is the multi-fractal spectrum (MFS) which has been recently 

used successfully for general texture classification [6][9]. 

Motivated by the work in [6], we extend MFS from the 2D 

case to 3D for describing texture patterns. 

Given a ROI cube V, MFS of V is a sequence of fractal 

dimensions (FD), which are calculated on a partition of the 

support of V. Specifically, the set voxels in V is first 

partitioned as a disjoint point set {Λ1, Λ2, …, Λ8} according 

to voxel intensities. Then FD for each set is estimated using 

the box counting algorithm [16]. Specifically, let the space 

R
3
 be covered by a mesh of three-dimensional cubes with 

side length r (i.e., r-mesh) and a counting function c(Λ, r) is 

defined as the number of r-mesh hyper cubes that intersect Λ. 

Then the box-counting fractal dimension d(Λ) is defined as 
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Finally, the MFS for ROI V is defined as 
 

ψ1(V)=(d(Λ1), d(Λ2), …, d(Λ8)). 
 

Fractal Dimension (FD). The second type of feature (ψ2) is 

the fractal dimension of the whole patch, which captures the 

global density pattern of trabecular texture. For a ROI V, we 

first threshold on its intensity to get point set Λ, then 

calculate ψ2(Λ) according to the box counting algorithm 

described above. 
 



Gradient Magnitude (GM). The third type of feature (ψ3) 

is Gradient Magnitude (GM) which captures the strength of 

edge responses at voxels.  
 

3D Histogram of Oriented Gradient (3D HOG). The 

fourth type of feature  (ψ4) is the histogram of 3D oriented 

gradient (3D HOG). This is extended from the 2D HOG that 

has been shown to be very robust in capturing discriminative 

information in many pattern recognition applications [15]. In 

particular, for a cube V, we define  
 

ψ4(V)=(h1, h2, …, h20), 
 

where hi counts the number of voxels whose gradient 

orientation fall in the i
th

 gradient orientation bin.  
 

2.4. Generalized Multi Kernel Learning 
 

We formulate our problem as gender-age classification. 

Let us denote our training set as {S
(k)

, y
(k)

}, where S
(k)

 is a 

CBCT volume and y
(k)

 its label (i.e., the gender-age group Si 

belongs to). For each sample S
(k)

, we denote its texture 

vector as 
 

x
(k)

= ψ(S
(k)

)={ x
(k)

i,c= ψc(Vi
(k)

):  i=1,...,8; c=1,...,4}. 
 

The training set is now converted to {x
(k)

, y
(k)

}. We use the 

generalized multi-kernel learning (GMKL) to fuse the multi-

ROI multi-feature information. By treating each ROI-feature 

component (i.e. x
(k)

i,c) with a kernel, GMKL provides a 

natural and effective means to fuse multi-ROI multi-feature 

information. 

The classic multi-kernel learning (MKL) assumes the 

linear combination of kernels in the form of  
 

( , ) ( , )i j k k i jk
K x x d K x x=∑ , 

 

where Kk denotes basis kernels. GMKL breaks the linearity 

limitation by allowing non-linear kernel combinations such 

as 
 

( , ) ( , )
i j l i jl

K x x K x x= ∏ . 
 

In our study, we use the fusing strategy  
 

( , )d i j

t
m mi jm

d x A x
K x x e

−
=

∑ , 
 

combined with a sparsity promoting regularizer on the 

kernel combination coefficient vector d. To learn the GMKL 

model, given the training dataset{x
(k)

, y
(k)

}, we use the MKL 

formulation in [12]  
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        subject to d≥0,  
 

where w, d and b are model parameters to be learned, l(.) the 

standard lost function, and r(.) the regularizer. We use the l1 

regularization r(d) =σ
t
d, where σ is the variation to 

encourage sparsity.  

 For the above optimization problem, the standard 

procedure [17] is used to reformulate the primal as a nested 

two step optimization. We use the same final algorithmic 

framework given by [12]. 
 

 

3. EXPERIMENTS 
 

3.1. Experimental Data 
 

In order to evaluate the proposed method, we used a 

dataset containing 96 3D-CBCT volumes from four gender-

age subgroups: female younger (FY) than 40 years, female 

older (FO) than 40 years, male younger (MY) than 40 years, 

male older (MO) than 40 years. Samples(patients) are all of 

normal BMD. Table 1 gives a summary of the dataset. Each 

CBCT scan was obtained by using an i-Cat machine 

(Imaging Science International, Inc., Hatfield, PA, USA) 

with a 400x400 matrix taken at 0.3 mm slice thickness, and 

in average each volume has 327 slices.  
 

Number of samples Female Male 

Less than 40 years old 13 8 

More than 40 years old 48 27 

Table 1: Trabecular CBCT dataset used in this study 

For each volume, a dentist manually cropped the eight 

ROIs requested in the proposed approach. Some examples 

of trabecular cubes are shown in Figure 1. 
 

3.2. Experimental Configuration 

We use a comparison experiment to investigate the 

proposed GMKL-based multi-feature multi-ROI fusion. 

From the four gender-age groups, six pairs of subgroups are 

generated which require six classification tasks. For each 

task, we evaluate the proposed approaches with several 

baselines described below. 

We evaluate the proposed approach in two aspects. First, 

we study the effectiveness of using GMKL for feature fusion. 

For this purpose, we include the standard support vector 

machine (SVM) as a baseline. Specifically, all features from 

all ROIs are concatenated into a long feature vector as input. 

Then, the SVM is trained on the input with a single kernel. 

By contrast, the proposed algorithm fuses all features by 

fusing 32 kernels using GMKL. 

Second, we compare the proposed approach with 

baselines that use only a single ROI with a single type of 

feature. There are 32 such baselines correspond to the 

combination of eight ROIs and four feature types. All the 

baselines use SVM with a single kernel. For example, each 

S
(k)

 we can extract {x
(k)

i,c: i=1,...,8;c=1,...,4}, which is totally 

8 ROIs with 4 features each. So for comparison between two 

gender-age subgroups, instead of training a single classifier, 

we use SVM to train 32(=8x4) separate classifiers. We 

record the accuracies of all these classifiers. In this paper, 

due to the pages limit, we only report the average and the 

highest accuracies of all these classifiers. 

In summary, we have four accuracies reported in our 

evaluation for each comparison between two gender-age 

subgroups. The accuracy of a single kernel SVM, the 

average accuracy of all 32 separate SVM classifiers, the 

highest accuracy among all 32 separate SVM, and the 



accuracy of our proposed GMKL multi-ROI multi-feature 

fusion framework. 

In the classification stage, we conducted a leave-one-out 

cross validation on the dataset with the selected features. In 

the training stage, we left one of the samples out and used 

the others for training a model. In the testing phase, we 

applied the learnt model to that leaved-out sample and 

recorded 1 for correct and 0 for incorrect. Then we repeated 

this procedure for every single sample. After the cross 

validation loop, by counting how many 1's among all 

samples, the average classification rates were reported. 
 

3.3. Results 

Table 2 shows the classification accuracies of different 

approaches described above, including the classic SVM 

classifier that takes all features as input, the SVM classifier 

for individual ROI-feature combinations (average and 

maximum performances), and the proposed GMKL-based 

solution. 
 

Training Strategy Accuracy on each gender-age subgroup (%) 

Gender-Age Group FO&FY FO&MO FO&MY FY&MO FY&MY MO&MY 

SVM-average 78.81 63.53 85.54 67.94 60.71 76.43 

SVM-max 86.89 65.33 89.29 80.00 71.43 80.00 

SVM single-k 78.69 64.00 85.71 67.50 61.90 77.14 

GMKL (proposed) 96.72 98.00 98.21 91.25 95.24 97.14 

Table 2: Performance of different comparison experiments. 

Illustrated in Table 2, experimental results are very 

promising considering that only 24 samples on the average 

are used for each gender-age subgroup. Our proposed 

feature fusing MKL classifier reaches an accuracy of 95% 

on most of the dataset subgroups. For a single-tooth single-

feature SVM, even the highest accuracy still fall behind our 

proposed GMKL framework. We expect that more training 

samples will further boost the performance. 

For the specific feature fusing strategy used in this 

framework, the results show that the traditional feature 

fusing method on SVM performs worse than our proposed 

GMKL fusing method. This indicates that for each single 

kind of feature descriptor, it will lose certain discriminative 

information which may be used for prescreening purposes. 

Only in the way which we consider the presence of both 

feature information and the correlations can minimize such 

loss. GMKL fusing strategy is the best choice. 
 

4. CONCLUSION 
 

We presented a study of trabecular texture analysis on 

dental CBCT by fusing multi-feature multi-ROI information 

in the multiple kernel learning framework. On a six gender-

age group classification problem using a dental CBCT 

dataset containing 96 volumes, our method achieves a 

promising average accuracy of 96.1%, and significantly 

outperforms baseline methods.  

Our results show that the combination of machine 

learning techniques and texture analysis can be used for 

trabecular pattern analysis. The results encourage future 

exploration using dental CBCT for aiding diagnosis of bone 

mass density related diseases.  
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