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Abstract. Recently, graph matching algorithms utilizing the path fol-
lowing strategy have exhibited state-of-the-art performances. However,
the paths computed in these algorithms often contain singular points,
which usually hurt the matching performance. To deal with this issue,
in this paper we propose a novel path following strategy, named branch-
ing path following (BPF), which consequently improves graph matching
performance. In particular, we first propose a singular point detector by
solving an KKT system, and then design a branch switching method
to seek for better paths at singular points. Using BPF, a new graph
matching algorithm named BPF-G is developed by applying BPF to a
recently proposed path following algorithm named GNCCP (Liu & Qiao
2014). For evaluation, we compare BPF-G with several recently proposed
graph matching algorithms on a synthetic dataset and four public bench-
mark datasets. Experimental results show that our approach achieves
remarkable improvement in matching accuracy and outperforms other
algorithms.

Keywords: Graph Matching, Path Following, Numerical Continuation,
Singular Point, Branch Switching

1 Introduction

Graph matching is a fundamental problem in computer science and closely re-
lates to many computer vision problems including feature registration [1–3],
shape matching [4–6], object recognition [7, 8], visual tracking [9], activity anal-
ysis [10], etc. Despite decades of research effort devoted to graph matching, it
remains a challenging problem due to the non-convexity in the objective func-
tion and the constraints over the solutions. A typical way is to utilize relaxation
to harness the solution searching. Popular algorithms include, but not limited
to, three categories: spectral relaxation [11–13], continuous optimization [14–18]
and probabilistic modeling [19, 20].

Among recently proposed graph matching algorithms, the ones utilizing the
path-following strategy have exhibited state-of-the-art performances [15–18].
These path following algorithms reformulate graph matching as a convex-concave
relaxation procedure (CCRP) problem, which is solved by interpolating between
two simpler approximate formulations, and they use the path following strategy
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to recast iteratively the bistochastic matrix solution in the discrete domain. The
path following algorithms can be viewed as special cases of the numerical con-
tinuation method (NCM) [21], which computes approximate solutions of param-
eterized nonlinear equation systems. These algorithms succeed at regular points
but may fail at singular points (details in Sec. 4). It therefore demands research
attention on how to address this issue to improve matching performance.

Motivated by above discussion, we propose a novel path following strategy,
branching path following (BPF), to improve path following graph matching al-
gorithms. In particular, BPF extends the traditional path following strategy
by branching new paths at singular points. It first discovers singular points on
the original path by determining the Jacobian of the associated KKT system,
and then branches a new path at each singular point using the pseudo-arclength
continuation method [22, 23]. After searching along all branching paths, BPF
chooses the best one in terms of the objective function as the final solution.
Since the original path is always searched, BPF is guaranteed to achieve better
or the same optimization solution, and thus the matching performance. Using
the BPF strategy, we develop a new graph matching algorithm, named BPF-G,
by applying BPF to the GNCCP (graduated nonconvexity and concavity proce-
dure) algorithm [17]. Note that GNCCP is chosen since it is one of the latest
path following algorithms, while BPF is by no means limited to working with
GNCCP.

For a thorough evaluation, we test the proposed BPF-G algorithm on four
popular benchmarks and a synthetic dataset. Experimental results show that,
the proposed algorithm significantly improves the path following procedure and
outperforms state-of-the-art graph matching algorithms in comparison.

In summary, our main contribution lies in the new path following strategy
for graph matching, and the contribution is three-fold: (1) we discuss the pitfalls
of path following algorithms at singular points, and propose an efficient singular
point discovery method; (2) we design a novel branching path following strategy
to bypass these pitfalls and thus improve matching performance; and (3) we
develop a new graph matching algorithm by applying the proposed BPF strategy
to the GNCCP algorithm, and demonstrate the effectiveness of the algorithm in
a thorough evaluation.

In the rest of the paper, Sec. 2 summarizes related work; then Sec. 3 reviews
path following algorithms and Sec. 4 discusses the numerical continuation inter-
pretation; after that, Sec. 5 introduces the proposed branching path following
strategy, followed by experimental validation in Sec. 6 and conclusion in Sec. 7.

2 Related work

Graph matching has been investigated for decades and many algorithms have
been invented, as summarized in [24, 25]. In general, graph matching has a com-
binatorial nature that makes the global optimum solution hardly available. As a
result, approximate solutions are commonly applied to graph matching. In this
section we review studies that relate the most to ours, and leave general graph
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matching research to the surveys mentioned above. Some sampled latest studies
include [26] that uses discrete methods in the linear approximation framework,
and [27] that adapts discrete tabu search for graph matching.

A popular way to approximate graph matching is based on spectral relax-
ation with notable work by Leordeanu and Hebert [11], who model graph match-
ing with spectral relaxation and propose an eigen-analysis solution. Later, the
work is extended by Cour et al. [12] by first encoding affine constraints into the
spectral decomposition and then applying bistochastic normalization. Cho et
al. [13] reformulate graph matching as a vertex selection problem and introduce
an affinity-preserving random walk algorithm. From a different perspective, Zass
and Shashua [19] present a probabilistic framework for (hyper-)graph matching.
The two lines somewhat merge in Egozi et al. [20], where a probabilistic view of
the spectral relaxation scheme is presented.

Being inherently a discrete optimization problem, graph matching is often re-
laxed to continuous domain and many important algorithms have been designed
on top of the relaxation. For example, Gold and Rangarajan [14] propose the
graduated assignment algorithm to iteratively solve a series of linear approxi-
mations of the cost function using Taylor expansion. Leordeanu and Hebert [28]
develop an integer projection algorithm to optimize the objective function in
the integer domain. The studies that related most to ours are the so-called path
following one. In particular, Zaslavskiy et al. [15] reformulate graph matching
as a convex-concave relaxation procedure (CCRP) problem and then solve it by
interpolating between simpler relaxed formulations. More specifically, the path
following algorithm proposed by them iteratively searches a solution by tracing
a path of local minima of a series of functions that linearly interpolate between
the two relaxations. Later, Zhou and Torre [16] apply the similar strategy, and
factorize an affinity matrix into a Kronecker product of smaller matrices, each of
them encodes the structure of the graphs and the affinities between vertices and
between edges. Liu and Qiao [17] propose the graduated nonconvexity and con-
cavity procedure (GNCCP) to equivalently realize CCRP on partial permutation
matrix, and GNCCP provides a much simpler way for CCRP without explicitly
involving the convex or concave relaxation. Wang and Ling [29] propose a novel
search strategy with adaptive path estimation to improve the computational
efficiency of the path following algorithms.

Our work falls in the group using path following algorithms, but focuses
on improving the path following strategy itself, which is not fully explored in
previous studies. For this, we propose a novel branching path following (BPF)
strategy, which is shown to effectively boost the graph matching performance as
demonstrated in thorough evaluation (Sec. 6).

3 Path following for graph matching

3.1 Problem formulation

An undirected graph of n vertices can be represented by G = (V,E), where
V = {v1, . . . , vn} and E ⊆ V× V denote the vertex and edge sets, respectively.
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A graph is often conveniently represented by a symmetric adjacency matrix
A ∈ Rn×n, such that Aij > 0 if and only if there is an edge between vi and vj .

For graph matching, given two graphs G(i) = (V(i),E(i)) of size ni, i = 1, 2,
the problem is to find a vertex correspondence X ∈ {0, 1}n1×n2 between G(1)

and G(2) in favor of the following global consistency:

E1(X) =
∑
i1,i2

ci1i2Xi1i2 +
∑

i1,i2,j1,j2

di1j1i2j2Xi1i2Xj1j2 , (1)

where ci1i2 measures the consistency between the i1-th vertex in G(1) and the
i2-th vertex in G(2), and di1j1i2j2 the the consistency between edge (i1, j1) in G(1)

and edge (i2, j2) in G(2). The correspondence matrix X denotes matching result,
i.e., Xi1i2 = 1 if and only if vi1 ∈ V(1) corresponds to vi2 ∈ V(2). In practice, the
matching is often restricted to be one-to-one, which requires X1n2 ≤ 1n1 and
X>1n1 ≤ 1n2 , where 1n denotes a vector of n ones.

Let A(i) be the adjacency matrix for G(i), i = 1, 2, a more commonly used
formulation for graph matching is defined as

E2(X) = tr(C>X) + α‖A(1) −XA(2)X>‖
2

F , (2)

where C = (ci1i2) ∈ Rn1×n2 is the vertex consistency matrix, α ≥ 0 the weight
balancing between the vertex and edge comparisons, and ‖ · ‖F the Frobenius
norm.

A more general formulation of Eq. (1) is formulated in a pairwise compati-
bility form

E3(x) = x>Kx, (3)

where x
.
= vec(X) ∈ {0, 1}n1n2 is the vectorized version of matrix X and K ∈

Rn1n2×n1n2 is the corresponding affinity matrix defined as:

Kind(i1,i2)ind(j1,j2) =


ci1i2 if i1 = j1 and i2 = j2,

di1j1i2j2 if A
(1)
i1j1

A
(2)
i2j2

> 0,

0 otherwise.

(4)

while ind(·, ·) is a bijection mapping a vertex correspondence to an integer index.
In this paper, we mainly discuss and test graph matching algorithms for Eq.

(3) since it encodes not only the difference of edge weight but also many complex
graph compatibility functions.

3.2 The path following algorithm

In [15], Zaslavskiy et al. introduce the convex-concave relaxation procedure (CCRP)
into the graph matching problem by reformulating it as interpolation between
two relaxed and simpler formulations. The first relaxation is obtained by expand-
ing the convex quadratic function E2(X) from the set of permutation matrices
P to the set of doubly stochastic matrices D. The second relaxation is a concave
function

min
X∈D

E4(X) = −tr(∆X)− 2vec(X)>
(
(L(1))> ⊗ (L(2))>

)
vec(X), (5)
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where ∆ is a matrix with element ∆ij =
(
D

(1)
ii −D

(2)
jj

)2
; D(i) and L(i) represent

respectively the diagonal degree matrix and the Laplacian matrix of an adjacency
matrix A(i), i = 1, 2; and ⊗ denotes the Kronecker product. A key property is
that the optimum solution of E4(X) over P is the solution of the original graph
matching problem.

The path following strategy proposed in [15] can be interpreted as an iterative
procedure that smoothly projects an initial solution of E2 in the continuous space
D to the discrete space P by tracking a path of local minima of a series of
functionals Eλ over D

Eλ = (1− λ)E2 + λE4, (6)

for 0 ≤ λ ≤ 1. Each local minimum of Eλ+dλ is gained by the Frank-Wolfe
algorithm [30] given the local minimum of Eλ as the start point. Increasing λ
from 0 to 1, this approach searches toward a local minimum of E4 from the
unique local minimum of E2, and takes it as the final solution. For more details
about the path following algorithm please see the literature [15].

Recently, Liu and Qiao [17] proposed the graduated nonconvexity and con-
cavity procedure (GNCCP) to equivalently realize CCRP on partial permutation
matrix without explicitly involving the convex or concave relaxation. As the
latest work following the path following strategy, GNCCP provides a general
optimization framework for the combinatorial optimization problems defined on
the set of partial permutation matrices. In Section 5.3, we improve GNCCP by
integrating the proposed branching path following strategy.

4 Numerical continuation method interpretation

In this section, we interpret the path following algorithms in a numerical contin-
uation view, and then discuss their pitfalls due singular points. The discussion
will guide the subsequent extension on these algorithms.

4.1 KKT system

According to the path following strategy described above and by converting D
into constraints, we need to solve a series of optimization problems with equality
and inequality constraints parameterized by λ:

x∗ = arg max
x
Eλ(x),

s.t.

{
Bx = 12n,
x ≥ 0n2 .

(7)

where Bx = 12n encodes the one-to-one matching constraints (B ∈ R2n×n2

).
Using Lagrange multipliers αi and KKT multipliers µi, the above constrained

problem can be converted to the following unconstrained one

x∗ = arg max
x

(
Eλ(x) +

2n∑
i=1

αihi(x)−
n2∑
i=1

µigi(x)
)
, (8)
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where

{
hi(x) = B(i, :)x− 1,
gi(x) = −xi.

(9)

This results in the following system of Karush-Kuhn-Tucker (KKT) equations [31]:
∇Eλ(x) +B>α+ µ = 0n2 ,

hi(x) = 0, 1 ≤ i ≤ 2n,
µigi(x) = 0, 1 ≤ i ≤ n2,

µi ≥ 0, 1 ≤ i ≤ n2.

(10)

In the next subsection we formulate the KKT system as a constrained non-
linear system F (λ,x, α, µ) = 0, s.t. µ ≥ 0.

4.2 Numerical continuation method

The existing path following algorithms (PATH [15], FGM [16], GNCCP [17]) can
be viewed as special cases of the numerical continuation method (NCM) [21].
In general, NCM computes approximate solutions of parameterized nonlinear
equation systems, and it estimates curves given in the following implicit form:

F (λ, u) = 0m, where F is a mapping: Rm+1 → Rm. (11)

This method works as well in the presence of constraints on any or all of the
variables [32, 33]. In particular, for graph matching, we have u = [x>, α>, µ>]>

and m = 2n2 + 2n.
Most solutions of nonlinear equation systems are iterative methods. For a

particular parameter value λ0, a mapping is repeatedly applied to an initial guess
u0. In fact, the existing PATH, FGM and GNCCP algorithms correspond to a
particular implementation of the so-called generic predictor corrector (GPC)
approach [21]. The solution at a specific λ is used as the initial guess for the
solution at λ+∆λ. With ∆λ sufficiently small the iteration applied to the initial
guess converges [21].

4.3 Pitfalls at singular points

A solution component Γ (λ0, u0) of the nonlinear system F is a set of points
(λ, u) such that F (λ, u) = 0 and these points are connected to the initial solution
(λ0, u0) by a path of solutions. A regular point of F is a point (λ, u) at which the
Jacobian of F is of full rank, while a singular point of F is a point (λ, u) at which
the Jacobian of F is rank deficient. As discussed in [23], near a regular point the
solution component is an isolated curve passing through the regular point. By
contrast, for a singular point, there may be multiple curves passing through it.
The local structure of a point in Γ is determined by high-order derivatives of F .

An advantage of the GPC approach is that it uses the solution for the original
problem as a black box where all that required is an initial solution. However,
this approach may fail at singular points, where the branch of solutions turns
around [23]. In general, solution components Γ of a nonlinear system are branch-
ing curves where the branching points are singular [34]. Therefore, for problems
with singular points, more sophisticated handling is desired.
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5 Branching path following

In this section, we propose the branching path following (BPF) strategy that
branches new curves at singular points toward potentially better matching re-
sults. BPF contains two main steps: singular point discovery and branch switch-
ing, as described in the following subsections. In the last subsection, we apply
BPF to GNCCP to develop a new graph matching algorithm.

5.1 Singular points discovery

The first step in BPF is to discover singular points. Theoretically, these points
can be detected by checking whether the Jacobian of F is of full rank. However,
it is impractical to check discrete samples by sampling λi, since these samples
are rarely able to cover the exact singular points.

Denote Jλ the Jacobian of F parameterized by λ. A singular point (λ, u)
should have |Jλ| = 0. A reasonable assumption is that the curve formed by
(λ, |Jλ|) over λ is continuous. This implies there is at least one singular point
between two points (λ1, u1) and (λ2, u2) if |Jλ1

| and |Jλ2
| have different signs.

Thus inspired, we design a simple yet effective way for singular point discov-
ery by checking the signs of determinants of Jacobian on consecutive sampled
points. Specifically, denote (λt, ut) the point at iteration t in the path, we mark
(λt, ut) as a singular point if |Jλt ||Jλt+1

| ≤ 0.
It is computationally expensive to decide determinants of large Jacobian

matrices. Since we are only interested in the signs of these Jacobian matrices,
we develop an efficient solution that first decompose the Jacobian matrices using
the LU decomposition and then accumulate the signs of the diagonal elements
of decomposed matrices.

5.2 Branch switching

Finding the solution curves passing a singular point is called branch switching.
Once a singular point (λt, ut) is discovered, we branch a new curve using the
pseudo-arclength continuation (PAC) algorithm [22, 23].

PAC is based on the observation that an ideal parameterization of a curve is
through arclength s. With the parameterization, we extend equations in (10) to
the following form

G(λ, u) =

{
F (λ, u)
N(λ, u, s)

}
=

{
0
0

}
, (12)

where the normalization equation N(.) = 0 approximates the statement that s
represents arclength. Denote (λ̇, u̇) the tangent vector at point (λt, ut), we have

N(λ, u, s) = u̇>(u− ut) + λ̇>(λ− λt)− s = 0. (13)

According to the implicit function theorem [35], the tangent vector (λ̇, u̇) can be
computed as

(λ̇, u̇) =
(
∆λ,∆λ

∂u

∂λ
(λt, ut)

)
=
(
∆λ,∆λ(Fu(λt, ut))

−1Fλ(λt, ut)
)
. (14)



8 T. Wang et al.

However, it is inapplicable to the bifurcation point and is computationally expen-
sive. We therefore propose approximation of the tangent vector using previous
points for computational efficiency. The tangent vector at a previous iteration i
(i < t) is approximated as (∆λ, ui+1 − ui), and the tangent vector (λ̇, u̇) at t be
estimated as

(λ̇, u̇) =
(
∆λ,

∑k
i=1 (k − i+ 1)(ut−i+1 − ut−i)∑k

i=1 i

)
, (15)

where k controls the size of the window used for approximation. The motivation
behind this approximation is the smoothness of the path, which implies the
similarity between tangent vectors of consecutive iterations.

The Jacobian of the pseudo-arclength system is the bordered matrix
[Fu Fλ
u̇ λ̇

]
.

Appending the tangent vector as the last row can be seen as determining the
coefficient of the null vector in the general solution of the Newton system [36]
(particular solution plus an arbitrary multiple of the null vector).

Finally, we solve Eq. (12) using the trust-region-reflective algorithm [37], and
then branch a new curve using the solution (λ∗, u∗) as the initial solution.

5.3 Applying BPF to GNCCP

Now we apply the BPF strategy to GNCCP [17] to develop our new graph
matching algorithm named BPF-G.

Note that, in both steps of singular point discovery and branch switching,
we need to compute the Jacobian of F in advance, which includes a parameter-
dependent sub-matrix, the Jacobian of ∇Eλ(x) (denoted as J(λ,x)). In GNCCP

Eλ(x) =

{
(1− λ)x>Kx + λtr(x>x), if λ ≥ 0,
(1 + λ)x>Kx + λtr(x>x), if λ < 0.

(16)

Applying BPF here, we have

J(λ,x) =

{
(1− λ)(KT +K) + 2λI, if λ ≥ 0,
(1 + λ)(KT +K) + 2λI, if λ < 0.

(17)

The pseudo-code of BPF-G is shown in Algorithm 1. Note that, since the
solution of the original algorithm is always in set T , the new algorithm is guar-
anteed to achieve the same or better solution in terms of objectives.

The computational complexity of GNCCP is O(n3) [17], where n is the vertex
number of the graph. Thus, the computational complexity of our algorithm is
O(kn3), where k is the number of explored additional branches. As a result, the
complexity of the proposed algorithm roughly equals to O(n3) because k is a
small bounded integer.
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Algorithm 1 Branching Path Following.

{T is the set of candidate solutions (end points of branching paths).}
Compute path P by GNCCP.
Push the end point of P into set T .
Discover the set of singular points S from P .
for each point (λ,x) in S do

Compute the solution (λ∗, u∗) of Eq. (12).
Compute the new path P ∗ using (λ∗, u∗) as initial point.
Push the end point of P ∗ int set T .

end for
Select the best solution from T in terms of objectives.

6 Experiments

We compare the proposed BPF-G algorithm with four state-of-the-art graph
matching algorithms including GNCCP [17], IPFP [28], RRWM [13] and PSM [20],
and report experimental results on a synthetic dataset and four benchmark
datasets. Two indicators, matching accuracy and objective ratio, are used to
evaluate algorithms. Specifically, denote fi the objective achieved by the i-th
algorithm gi, the objective ratio ri of gi is computed as ri = fi/maxk fk.

6.1 Synthetic dataset

We first perform a comparative evaluation of the algorithms on graphs randomly
synthesized following the experimental protocol in [13]. For each trial, we con-
struct two graphs, G(1) and G(2), with 20 inlier nodes and later add nout outlier
nodes to both graphs. The edges between nodes are randomly generated with
respect to an edge density parameter ρ. Each edge (i, j) in the first graph G(1)

is assigned with a random edge weight A
(1)
ij distributed uniformly in [0,1], and

A
(2)
ab = A

(1)
ij + ε the edge weight of the corresponding edge (a, b) in G(2) is per-

turbed by adding a random Gaussian noise ε ∼ N (0, σ2). The edge affinity is

computed as Kind(i,a)ind(j,b) = exp
(
− (A

(1)
ij −A

(2)
ab )2/0.15

)
and the node affinity

is set to zero.
We compare the performance of the algorithms under three different set-

tings by varying the number of outliers nout, edge density ρ and edge noise σ,
respectively. For each setting, we construct 100 different pairs of graphs and
evaluate the average matching accuracy and objective ratio. In the first setting
(Fig. 1((a)), we fix edge density ρ = 0.5 and edge noise σ = 0, and increase the
number of outliers nout from 0 to 10. In the second setting (Fig. 1(b)), we change
the edge noise parameter σ from 0 to 0.2 while fixing nout = 0 and ρ = 0.5. In
the last case (Fig. 1(c)), the edge density ρ ranges from 0.3 to 1, and the other
two parameters are fixed as nout = 0 and σ = 0.1.

It can be observed that in almost all of cases under varying parameters, our
approach achieves the best performance in terms of both objective ratio and
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Objective ratio Objective ratio Objective ratio

Matching accuracy Matching accuracy Matching accuracy

Computational time Computational time Computational time

(a) varying outliers (b) varying noise (c) varying density

Fig. 1. Evaluation on the synthetic dataset by different settings.

matching accuracy. From Fig. 1(c), the PSM, RRWM and GNCCP algorithms
are comparable to our approach when the graphs are close to full connections (the
density parameter ρ near to 1). All algorithms fail to achieve reasonable solutions
when graph pairs present extreme deformation or sparsity. The comparison on
the running time is also provided in Fig. 1. Our approach spends several times of
running time comparing to the GNCCP algorithm of which the multiple depends
on the number of explored additional branches.

6.2 CMU house dataset

The CMU house dataset includes 111 frames of image sequences, where all se-
quences contain the same house object with transformation cross sequence gaps.
In order to assess the matching accuracy, following [38, 2], 30 landmarks were
manually tracked and labeled across all frames. We matched all possible im-
age pairs, in total 560 pairs gapped by 10, 20, ..., 100 frames, where increasing
sampling gaps implies the increase of deformation degree. To evaluate graph
matching algorithms against noise, we use two different settings of nodes (n1, n2)
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source image pair IPFP: 10/20 RRWM: 13/20

PSM: 14/20 GNCCP: 8/20 BPF-G: 18/20

Fig. 2. An example of graph matching on the CMU house dataset. The algorithm, the
number of true matches per ground truths for each subfigure are captioned. Graph
edges are represented by yellow lines, true matches by green lines and false matches by
red lines (best viewed in color, and the same style is also used for figures 5, 6 and 7).

Objective ratio Objective ratio

Matching accuracy Matching accuracy

(a) (n1, n2) = (30, 30) (b) (n1, n2) = (20, 30)

Fig. 3. Comparison of graph matching on
the CMU house dataset.

Objective ratio Objective ratio

Matching accuracy Matching accuracy

(a) Pascal dataset (b) Willow dataset

Fig. 4. Evaluation on (a) the Pascal
dataset, and (b) the Willow dataset.

=(30,30) and (20, 30), where decreasing n1 implies the increase of outlier. In the
setting where n1 < 30, n1 points are randomly chosen out of the 30 landmark
points.

We model each landmark as a graph node, and then build graph edges by
Delaunay triangulation [39]. Each edge (i, j) is associated with a weight Aij
which is computed as the Euclidean distance between the connected nodes vi
and vj . The node affinity is set to zero, and the edge affinity between edges

(i, j) in G(1) and (a, b) in G(2) is computed as Kind(i,a)ind(j,b) = exp(−(A
(1)
ij −

A
(2)
ab )2/2500).

Fig. 2 presents an example for graph matching with 10 outliers and significant
deformation. Fig. 3 shows the performance curves for n1 = 30 and 20 with respect
to variant sequence gaps. All algorithms except IPFP achieve perfect matching
when no outliers existing (n1 = 30). When we increase the number of outliers
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motorbike images IPFP: 12/28 RRWM: 12/28

PSM: 21/28 GNCCP: 26/28 BPF-G: 28/28

Fig. 5. A matching example of motorbike images in the Pascal dataset.

to 10 (n1 = 20), our approach gains remarkable improvement in both accuracy
and objective compared with the original GNCCP algorithm. It is interesting to
see that PSM gains comparable matching accuracy to our approach with certain
sequence gaps but achieves lower objectives.

6.3 Pascal dataset

The Pascal dataset [40] consists of 30 pairs of car images and 20 pairs of mo-
torbike images selected from Pascal 2007. The authors provide detected feature
points and manually labeled ground-truth correspondences for each pair of im-
ages. To evaluate the performance of each algorithm against noise, we randomly
select 0 ∼ 20 outlier nodes from the background.

For each node vi, we associate it with a feature pi which is computed as
its orientation of the normal vector at that point to the contour where the
point was sampled. The node affinity between nodes vi and vj is consequently
computed as exp(−|pi − pj |). We use Delaunay triangulation to build graph
edges, and associate each edge (i, j) with two features dij and θij , where dij is the
pairwise distance between the connected nodes vi and vj , and θij is the absolute
angle between the edge and the horizontal line. Consequently, the edge affinity
between edges (i, j) in G(1) and (a, b) in G(2) is computed as Kind(i,a)ind(j,b) =
exp(−(|dij − dab|+ |θij − θab|)/2).

Fig. 5 presents an example for graph matching of motorbike images (with
10 outliers). The matching accuracy and objective ratio of each algorithm with
respect to the outlier number was summarized in Fig. 4(a). It can be observed
that our approach outperforms other algorithms remarkably in both matching
accuracy and objective ratio. In the case when no outliers exist, our method
achieves near 90% matching rate which is much higher than other ones.
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duck images IPFP: 5/10 RRWM: 5/10

PSM: 2/10 GNCCP: 7/10 BPF-G: 10/10

Fig. 6. A matching example of duck images on the Willow dataset.

6.4 Willow object dataset

In this experiment, we create 500 pairs of images using Willow object class
dataset [41]. This dataset provides images of five classes, namely car, duck, face,
motorbike and winebottle. Each class contains at least 40 images with different
instances and 10 distinctive landmarks were manually labeled on the target
object across all images in each class. We randomly select 100 pairs of images
from each class respectively.

We use Hessian detector [42] to extract interesting points and SIFT descrip-
tor [43] to represent the node attributes. To test the performance against noise,
we randomly select 0 ∼ 10 outlier nodes from the background. We utilize the
Delaunay triangulation to connect nodes and compute the affinity between nodes
via their appearance similarity. Edge affinity is computed following the method
used in Sec. 6.3.

Fig. 6 shows a representative example for graph matching selected from the
duck class (with 10 outliers). The comparison on matching accuracy and objec-
tive ratio of each algorithm is summarized in Fig. 4(b). Our approach achieves
remarkable improvement compared with GNCCP and outperforms other algo-
rithms.

6.5 Caltech image dataset

The Caltech image dataset provided by Cho et al. [13] contains 30 pairs of real
images. The authors provide detected MSER keypoints [44], initial matches,
affinity matrix, and manually labeled ground-truth correspondences for each
image pair. In [13], the low-quality candidate matches are filtered out according
to the distance between SIFT features [43]. The affinity matrix is consequently
computed by the mutual projection error function [45].

Fig. 7 shows a representative example for graph matching with significant
deformation and plenty of repeated patterns. The matching accuracy and ob-
jective ratio of each algorithm was summarized in Table 1. Our approach gains
remarkable improvement compared with the original GNCCP algorithm in both
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source image pair IPFP: 2/27 RRWM: 27/27

PSM: 19/27 GNCCP: 1/27 BPF-G: 27/27

Fig. 7. A matching example on the Caltech dataset.

Table 1. Comparison of graph matching on the Caltech dataset (The top 1 result is
indicated in red and top 2 in blue).

Algorithm IPFP[28] RRWM[13] PSM[20] GNCCP[17] BPF-G (ours)

Objective ratio 0.91 0.88 0.75 0.92 1

Accuracy(%) 68.83 75.49 66.26 68.72 73.56

matching accuracy and objective ratio. It is interesting to see that RRWM per-
forms better in terms of accuracy, whereas our approach obtains much higher
objectives.

7 Conclusion

In this paper, we proposed a novel branching path following strategy for graph
matching aiming to improve the matching performance. To avoid the pitfalls at
singular points in the original path following strategy, our new strategy first dis-
covers singular points and subsequently branches new paths from them seeking
for potentially better solutions. We integrated the strategy into a state-of-the-art
graph matching algorithm that utilizes the original path following strategy. Ex-
perimental results reveal that, our approach gains remarkable improvement on
matching performance compared to the original algorithm, and also outperforms
other state-of-the-art algorithms.
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