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Abstract
Single object tracking (SOT) is a fundamental problem in computer vision, with a wide range of applications, including
autonomous driving, augmented reality, and robot navigation. The robustness of SOT faces two main challenges: tiny target
and fast motion. These challenges are especially manifested in videos captured by unmanned aerial vehicles (UAV), where the
target is usually far away from the camera and oftenwith significantmotion relative to the camera. To evaluate the robustness of
SOTmethods, we proposeBioDrone—the first bionic drone-based visual benchmark for SOT. Unlike existing UAV datasets,
BioDrone features videos captured from a flapping-wing UAV system with a major camera shake due to its aerodynamics.
BioDrone hence highlights the tracking of tiny targets with drastic changes between consecutive frames, providing a new
robust vision benchmark for SOT. To date, BioDrone offers the largest UAV-based SOT benchmark with high-quality fine-
grained manual annotations and automatically generates frame-level labels, designed for robust vision analyses. Leveraging
our proposed BioDrone, we conduct a systematic evaluation of existing SOT methods, comparing the performance of 20
representative models and studying novel means of optimizing a SOTA method (KeepTrack Mayer et al. in: Proceedings of
the IEEE/CVF international conference on computer vision, pp. 13444–13454, 2021) for robust SOT. Our evaluation leads
to new baselines and insights for robust SOT. Moving forward, we hope that BioDrone will not only serve as a high-quality
benchmark for robust SOT, but also invite future research into robust computer vision. The database, toolkits, evaluation
server, and baseline results are available at http://biodrone.aitestunion.com.

Keywords Robust vision · Visual tracking · Flapping-wing aerial vehicle · High-quality benchmark · Tracking evaluation
system
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1 Introduction

Single object tracking (SOT) (Huang et al. 2021; Hu et
al. 2023), an essential computer vision task that aims to
locate a user-specifiedmoving target, has attracted numerous
researchers to propose effective tracking algorithms (Hen-
riques et al. 2014; Bertinetto et al. 2016; Li et al. 2018;Mayer
et al. 2021; Cui et al. 2022). Although existing methods have
been widely used in application scenarios like self-driving
(KongandFu2022;Dendorfer et al. 2021), augmented reality
(Abu Alhaija et al. 2018; Gauglitz et al. 2011) and robot nav-
igation (Dupeyroux et al. 2019; Ramakrishnan et al. 2021),
key challenges like tiny target and fast motion can still affect
the robustness of algorithms. SOT is commonly formulated
as a sequential decision process (i.e., tracking the current
frame should rely on previous frames’ tracking results), and
corresponding tracking algorithms highly depend on the tar-
get’s appearance and motion information during execution.
However, the tiny target means that the available appearance
information is limited, while fast motion increases the diffi-
culty in modeling motion information, and even the relative
movement of the target and camera can disrupt motion con-
tinuity. Therefore, building a high-quality environment for
researching the aforementioned challenging factors can con-
tribute to enhancing the robustness of trackers.

Regrettably, the majority of SOT datasets are designed
for generic scenarios, with a primary focus on addressing
generalization issues. Thus, they always encompass a wide
range of target categories and scene categories, resulting in a
sparse distributionof the aforementioned challenging factors.
Consequently, there is a necessity to establish a dedicated
environment that incorporates densely distributed challeng-
ing factors to facilitate robustness research. Compared with
generic scenarios that are recorded by fixed or handheld
cameras, visual tracking based on unmanned aerial vehicles
(UAVs or drones) highlights challenges and requires more
visual robustness. (1) Tiny target: the aerial overhead view
causing the target size of a UAV-based system to be much
smaller than other traditional datasets. (2)Fastmotion: unlike
fixed cameras, UAV-based datasets include both camera and
target motion, resulting in frequent and drastic target posi-
tion changes in consecutive frames. (3)Abrupt variation: due
to the long distance between the target and UAV-mounted
camera, a slight movement of UAV will lead to a drastic
change in its viewpoint, making the visual information (both
foreground and background) shift drastically between con-
secutive frames.

High-quality UAV-based benchmarks with the above
challenging factors are critical to developing robust visual

tracking algorithms. Although existing works have provided
an important basis (Table 1), they still have several short-
comings:

• Small-scale dataset Early UAV datasets (Hsieh et al.
2017; Xia et al. 2018) usually cover only a few thou-
sand images. Although recent works have improved the
dataset scale, the size of any single task remains rela-
tively small (Yu et al. 2020; Zhu et al. 2021; Bondi et
al. 2020), often insufficient to support data-driven vision
algorithms.

• Scarcity of UAV-based data Most UAV datasets (Xia et
al. 2018; Mueller et al. 2016; Li and Yeung 2017; Bondi
et al. 2020) contain multiple data sources, such as data
collection fromwebsites or data generated from the UAV
simulators, but lack UAV data collected in real scenarios.

• Limited UAV types UAVs can be classified into fixed-
wing, rotary-wind, and flapping-wing vehicles. Among
the three, bionic UAVs with flapping-wing structure
remains under exploration. However, the existing UAV
datasets (Hsieh et al. 2017; Xia et al. 2018; Mueller et
al. 2016; Li and Yeung 2017; Yu et al. 2020; Zhu et al.
2021; Bondi et al. 2020) all use fixed-wing or rotary-wing
UAVs for data collection and lack attention to visual data
from the flapping-wing UAVs.

The above problems motivate us to focus on new chal-
lenges posed by the aerodynamic structure of flapping-wing
drones. Using the Large Wingspan bionic flight platform, a
flapping-wing aircraft with cutting-edge flight performance
made by our team, we construct the first bionic drone-based
visual benchmark BioDrone for SOT task. We summarize
the characteristics of our benchmark and our contributions
as follows.

• Large-scale and high-quality benchmark with robust
vision challenges We take robust vision research as the
entry point to construct BioDrone, which includes 600
videos with 304,209 manually labeled frames, and is
annotated and reviewed under a precise process. To
our knowledge, BioDrone is the first SOT benchmark
collected by the bionic-based vision system and the
largest UAV-based SOT benchmark. Figure1 qualita-
tively compares BioDrone to other SOT benchmarks,
demonstrating the impact of challenging factors on track-
ing performance. Most SOTA methods can maintain
robust tracking for thousands of frames on generic bench-
marks, but easily lose target after tens of frames on

123



International Journal of Computer Vision

Ta
bl
e
1

Su
m
m
ar
y
of

ex
is
tin

g
U
A
V
-b
as
ed

da
ta
se
ts
an
d
ge
ne
ri
c
SO

T
da
ta
se
ts
(1
k=

10
3
,1
m
=
10

6
)

N
am

e
Y
ea
r

Ta
sk

#F
ra
m
es

#
V
id
eo
s

R
es
ol
ut
io
n

C
ol
le
ct
io
n
W
ay

U
A
V
-b
as
ed

O
th
er

So
ur
ce
s

C
A
R
PK

(H
si
eh

et
al
.2
01
7)

20
17

D
E
T

1.
4k

–
12
80
*7
20

R
ot
ar
y-
w
in
g
U
A
V
(D

JI
Ph

an
to
m

3
Pr
of
es
si
on
al
)

N

D
O
TA

(X
ia
et
al
.2
01
8)

20
18

D
E
T

2.
8k

–
V
ar
io
us

R
ot
ar
y-
w
in
g
U
A
V

M
ul
tip

le
pl
at
fo
rm

s
(e
.g
.,
G
oo
gl
e
E
ar
th
)

U
A
V
12

3
(M

ue
lle

r
et
al
.2
01
6)

20
16

SO
T

11
0k

12
3

12
80
*7
20

R
ot
ar
y-
w
in
g
U
A
V
(D

JI
S1

00
0)

U
A
V
si
m
ul
at
or

(U
E
4)

U
A
V
20

L
(M

ue
lle

r
et
al
.2
01
6)

20
16

SO
T

58
.7
k

20
12
80
*7
20

R
ot
ar
y-
w
in
g
U
A
V
(D

JI
S1

00
0)

U
A
V
si
m
ul
at
or

(U
E
4)

D
T
B
70

(L
ia
nd

Y
eu
ng

20
17
)

20
17

SO
T

15
.8
k

70
12
80
*7
20

R
ot
ar
y-
w
in
g
U
A
V
(D

JI
Ph

an
to
m

2
V
is
io
n)

W
eb
si
te

U
A
V
D
T
(Y
u
et
al
.2
02
0)

20
18

V
ID

,S
O
T,

M
O
T

80
k

10
0

10
24
*5
40

R
ot
ar
y-
w
in
g
U
A
V
(D

JI
In
sp
ir
e
2)

N

V
is
D
ro
ne

(Z
hu

et
al
.2
02
1)

20
18

D
E
T,

V
ID

,S
O
T,

M
O
T

17
9k
+
10
k

26
3

38
40
*2
16
0

R
ot
ar
y-
w
in
g
U
A
V
(D

JI
M
av
ic
an
d
Ph

an
to
m

se
ri
es
)

N

B
IR
D
SA

I
(B
on
di

et
al
.2
02
0)

20
20

V
ID

,M
O
T

16
2k

17
2

64
0*
48
0

Fi
xe
d-
w
in
g
U
A
V

U
A
V
si
m
ul
at
or

(A
ir
Si
m
-W

)

B
io
D
ro
ne

20
22

SO
T

30
4k

60
0

14
40
*1
08
0

F
la
pp

in
g-
w
in
g
U
A
V

N

O
T
B
50

(W
u
et
al
.2
01
3)

20
13

SO
T

29
k

59
V
ar
io
us

N
W
eb
si
te

O
T
B
10
0
(W

u
et
al
.2
01
5)

20
15

SO
T

59
k

10
0

V
ar
io
us

N
W
eb
si
te

V
O
T
20

16
(K

ri
st
an

et
al
.2
01
6)

20
16

SO
T

21
.5
k

60
V
ar
io
us

N
W
eb
si
te

V
O
T
20

17
(K

ri
st
an

et
al
.2
01
7)

20
17

SO
T

21
.3
k

60
V
ar
io
us

N
W
eb
si
te

T
ra
ck
in
gN

et
(M

ul
le
r
et
al
.2
01
8)

20
18

SO
T

14
.4
m

30
.6
k

V
ar
io
us

N
W
eb
si
te

L
aS

O
T
(F
an

et
al
.2
02
1)

20
20

SO
T

3.
87
m

1.
55
k

V
ar
io
us

N
W
eb
si
te

G
O
T-
10
k
(H

ua
ng

et
al
.2
02
1)

20
21

SO
T

1.
45
m

10
k

V
ar
io
us

N
W
eb
si
te

V
id
eo
C
ub
e
(H

u
et
al
.2
02
3)

20
22

SO
T

7.
46
m

50
0

V
ar
io
us

N
W
eb
si
te

To
ou
r
kn
ow

le
dg
e,
B
io
D
ro
ne

is
th
e
fir
st
SO

T
be
nc
hm

ar
k
co
lle
ct
ed

by
th
e
bi
on
ic
-b
as
ed

vi
si
on

sy
st
em

an
d
th
e
la
rg
es
tU

A
V
-b
as
ed

SO
T
be
nc
hm

ar
k

123



International Journal of Computer Vision

Fig. 1 This paper aims to study the robust vision problem in visual
object tracking; thus, we propose a bionic drone-based SOT bench-
mark named BioDrone to support this goal. In this figure, we compare
BioDrone (G–J) with generic SOT benchmarks represented by VOT
short-term tracking competition (Kristan et al. 2019b, a) (A, B), LaSOT
(Fan et al. 2021) (C, D), VideoCube (Hu et al. 2023) (E, F). Here
we select the same object categories (car and person) in different
benchmarks, and add performances of state-of-the-art (SOTA) track-
ing methods for better comparison ( green bounding-box represents

ground-truth, yellow bounding-box represents KeepTrack (Mayer et
al. 2021), blue bounding-box representsMixFormer (Cui et al. 2022),

red bounding-box represents SiamRCNN Voigtlaender et al. 2020).
Compared to other benchmarks, BioDrone highlights the challenges of
tiny target and fast motion. The above factors can affect appearance
and motion information, bringing troubles to most tracking algorithms
on BioDrone. Most SOTA methods lose the target after tens of frames
on BioDrone, but they perform well for thousands of frames on other
benchmarks (Color figure online)
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Fig. 2 Summary of existing SOT benchmarks, including classical
benchmarks (OTB100 Wu et al. 2015, VOT2016 Kristan et al. 2016,
VOT2018 Kristan et al. 2019b, VOT2019 Kristan et al. 2019a, GOT-
10k Huang et al. 2021, VOTLT2019 Kristan et al. 2019a, LaSOT Fan
et al. 2021, Videocube Hu et al. 2023), and UAV-based benchmarks
(UAV123 Mueller et al. 2016, UAVDT Yu et al. 2020, DTB70 Li and
Yeung 2017, VisDrone Zhu et al. 2021). The bubble diameter is in pro-

portion to the total frames of a benchmark. The bubbles with dashed
borders represent UAV-based benchmarks. The horizontal coordinate
represents the average relative scale of the target, and the vertical coordi-
nate represents the average correlation coefficient between consecutive
frames. The proposedBioDrone has a smaller target size andmore dras-
tic frame changes between consecutive frames, with higher demands on
the robustness of tracking algorithms

BioDrone. Figure2 quantitatively compares BioDrone
with others and indicates that smaller target size and
more drastic frame changes between consecutive frames
in BioDrone put higher demands on tracking robustness.

• Videos from Bionic-based UAV Unlike the existing UAV-
based datasets that ignore the flapping-wing UAV struc-
ture, our team designs the Large Wingspan bionic flight
platform with cutting-edge performance for data collec-
tion. Compared with other mechanical structures, the
flapping-wing system has broader application prospects
due to its lifelike bionic structure. Besides, the flapping-
wing design includes additional visual challenges due to
more damaging camera shake during the air movements,
as shown in Fig. 3.

• Rich challenging factor annotation Different from exist-
ing UAV-based datasets (Mueller et al. 2016; Li and
Yeung 2017;Yu et al. 2020; Zhu et al. 2021) that only pro-
vide sequence-level annotation for several challenging
factors, BioDrone first provides high-quality fine-grained
manual annotations (bounding-box and occlusion anno-
tation) and automatically generate frame-level labels for
ten challenge attributes, aiming to provide detailed infor-
mation for further analyses.

• Effective tracking baseline As shown in Fig. 1, chal-
lenging factors in BioDrone cause algorithms to fail
easily. Thus, we optimize the SOTA method KeepTrack
(Mayer et al. 2021) and design a new baseline UAV-
KT. Besides, we propose a suitable training strategy, and

finally achieve a 5% performance boost in the precision
score.

• Comprehensive experimental analyses BioDrone con-
tains a complete evaluation mechanism and metrics,
compares 20 represent methods and 3 proposed base-
lines, and analyzes their tracking performance inmultiple
dimensions, aiming to systematically explore the prob-
lems of robust vision brought by flapping-wing UAVs.

2 RelatedWork

2.1 Generic SOT Datasets

SOT (Wu et al. 2015) is a category-independent task, which
intends to track a moving target without any assumption
about the target category. This characteristic allows SOT to
be suitable for open-set testing with broad prospects. Since
2013, several generic SOT datasets have been released to
support related research.

As one of the earliest benchmarks, OTB501 (Wu et al.
2013) released in 2013 can be regarded as the earliest SOT
benchmark for scientific evaluation. Two years later,OTB100
(Wu et al. 2015) expands the original version for more
comprehensive comparisons. Subsequently, the VOT com-

1 http://cvlab.hanyang.ac.kr/tracker_benchmark/index.html.
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Fig. 3 Example of typical UAVs. Compared to the other two types of UAVs, flapping-wing UAVs include more challenges due to their bionic
mechanical structure. a Fixed-wing UAV (Hu et al. 2022). b Rotary-wing UAV (Müller et al. 2018). c Flapping-wing UAV.

petition2 (Kristan et al. 2013, 2014, 2015, 2016, 2017,
2019b, a, 2020, 2021) series providediverse andhigh-quality
datasets to challenge algorithms.

With the advancement of data-driven trackers, datasets
with larger scales are demanded. GOT-10k3 (Huang et al.
2021) is a significant high-diversity short-term tracking
dataset that comprises 10,000 videos with one-shot proto-
col. Long-term tracking dataset LaSOT4 (Fan et al. 2021)
has 3.8m manually labeled frames with 1,550 videos. It fol-
lows the one-shot protocol as well for improving tracking
generalization. Recently, the global instance tracking dataset
VideoCube5 (Hu et al. 2023) is proposed to provide videos
with shot-cut and scene-switching. Compared with other
SOT datasets, VideoCube not only models the real world
comprehensively but also challenges both the perceptual and
cognitive components of trackers.

However,most sequences in these generic benchmarks are
collected by fixed cameras, in which the target usually moves
smoothlywith a notable appearance. The distribution of chal-
lenging factors is sparse and usually requires data mining to
support robust vision research.

2.2 UAV and UAVVision

In 1879, French engineer Alphonse Pénaud created a rubber-
band-powered aircraft to model the flapping-wing structure,
which has been used for toy design due to its straightforward
structure. However, restricted by technology, the research on
flapping wing aircraft has progressed slowly. At this stage,
the Wright brothers invented plane in 1903, and Paul Kear-
ney prompted helicopter in 1907, causing fixed-wing and
rotary-wing aircraft to occupy the sky, and promoting a
series of research in the following decades (McMasters and
Cummings 2002, 2004; Sims and Uhlig 1991). Recently,
with the development of microcomputers, electrical engi-

2 https://votchallenge.net/.
3 http://got-10k.aitestunion.com.
4 https://cis.temple.edu/lasot/.
5 http://videocube.aitestunion.com.

neering, and artificial intelligence, UAVs have gradually
been favored worldwide, and significantly shortened the gap
between enthusiasts and traditional large aircraft. UAVs are
typically battery-powered, hand-launched, and belly-landed,
and can be divided into three types: fixed-wing, rotary-wing,
and flapping-wing, as shown in Fig. 3.

The appearances of the first two UAVs are similar to air-
planes or helicopters, relying on fixed or rotating wings to
provide power for their fuselages, and have been widely used
by academia and industry applications, such as intelligent
transportation, agricultural procedures, material conveyance,
security surveillance, etc.(Fraire et al. 2015; Barrientos et al.
2010). Although the research of fixed-wing and rotary-wing
UAVs has become increasingly sophisticated, their struc-
tures’ shortcomings are also gradually explored. Defects like
large size, insufficient mobility energy, and low efficiency
motivate researchers to reconsider designing flapping-wing
UAVs—a kind of bionic aircraft with high lift coefficient and
flexiblemaneuverability for various task situations (Lee et al.
2018; Zhang and Rossi 2017). In recent years, flapping-wing
UAVs have attracted growing attention due to their flexibil-
ity. It is worth noting prosperous information obtained by
visual sensors installs a pair of “eyes” for the flapping-wing
UAVs, enabling a prerequisite for accomplishing various
tasks smoothly. This section will introduce representative
flapping-wing UAVs and their vision system.

In 1988, researchers proposed the first flapping-wingUAV
Microbat, which has a 15–20cm wingspan and 20–30 Hz
flapping frequency (Pornsin-Sirirak et al. 2001). In the same
year, another flapping-wing UAV, Entomopter, is designed
for Mars exploration (Rigelsford 2004). In 2016, DelFly II
(De Croon et al. 2016), which contains an airborne stereo-
scopic perception system (two cameras that can collect visual
images simultaneously at 30Hz), was published for research.
Flight experiments illustrate that it can successfully detect
and avoidwalls, but the short battery life and the poor imaging
quality (720 × 240 resolution) restrict its application. Some
other researchersmodified a commercial flapping-wingUAV
and equipped it with a lightweight first-person view (FPV)
camera to realize the basic object tracking function (Ryu et
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al. 2016). It has a vision algorithm integration system to com-
municate with the ground control system, which can transfer
the captured images to the ground station in real time. How-
ever, the transmission system has a short communication
distance, making it difficult to achieve long-distance track-
ing. Recently, another research group has developed Dove
(Yang et al. 2018), which can transmit color video to the
ground station. But its function is mainly limited to aerial
photography, and there is still a broad space for development.

Consequently, the visual systems of existing flapping-
wing UAVs are all airborne; sensors are mounted on the
fuselage and provide environmental information like birds’
eyes. However, specific defects like imaging quality and
flight endurance limit the captured visual information. There-
fore, although existing research on flapping-wing UAVs has
been boosted, it is still difficult to construct high-quality
visual datasets like fixed-wing or rotary-wing UAVs.

2.3 UAV-Based Tasks and Datasets

Encouraged by the eye-catching development of UAV-based
research, various visual tasks have been applied in UAV sys-
tems to process environmental information. Since detection
and tracking are closely related to UAV vision systems, most
UAV-based datasets are constructed to support these two
tasks.

Object detection (Liu et al. 2020) aims to accurately
determine the category and location of targets, which can
be further divided into image object detection (DET Rus-
sakovsky et al. 2015) and video object detection (VID Han
et al. 2021). It’s worth noting that the target category of
object detection is generally restricted to pre-defined classes.
Car Parking Lot (CARPK)6 (Hsieh et al. 2017) is the first
large-scale vehicle detection and counting dataset, which is
collected by rotary-wingUAVs and covers nearly 90,000 cars
in various parking lots. DOTA7 (Xia et al. 2018) is another
large-scale DET dataset with image resolution ranges from
800 × 800 to 20, 000 × 20, 000 pixels.

Object tracking (Zhu et al. 2021; Wu et al. 2021) can
be further divided into single object tracking (SOT Hu et
al. 2023; Fan et al. 2021; Huang et al. 2021) and multi-
object tracking (MOT Luiten et al. 2021; Dendorfer et
al. 2021). MOT usually combines with the VID task—
algorithms should detect objects in the first frame, then
calculate the similarity to determine instances with the same
ID in consecutive frames. Conversely, SOT is a category-
independent task, which intends to track a moving target
without any assumption about the target category. UAV123
and UAV20L8 (Mueller et al. 2016) are pioneering works

6 https://lafi.github.io/LPN/.
7 https://captain-whu.github.io/DOTA/.
8 https://cemse.kaust.edu.sa/ivul/uav123.

that construct UAV-based SOT datasets from three systems:
a rotary-wing UAV, a low-cost UAV, and a UAV simulator
(UE49). Significant deviation (e.g., target scale and ratio)
challenges classical SOT methods and invokes the follow-
ing research in UAV-based visual tracking. Drone Tracking
Benchmark (DTB70)10 (Li and Yeung 2017) includes 70
video sequences to support short-term and long-term track-
ing. Some sequences are captured by a rotary-wing UAV,
while others are collected from YouTube.

Besides, some other UAV datasets are designed to sup-
port multiple visual tasks. UAV Detection and Tracking
(UAVDT)11 (Yu et al. 2020) is a large-scale vehicle detection
and tracking dataset, which includes 100 video sequences
collected by rotary-wing UAVs to support multiple vision
tasks like VID, SOT and MOT. VisDrone12 (Zhu et al.
2021) combines 263 video clips with 179k frames and addi-
tional 10k static images to support DET, VID, SOT, and
MOT. Recently, a challenging object detection and track-
ing datasetBIRDSAI13 (Bondi et al. 2020) is published. As
a multi-modality dataset, it includes 48 real videos collected
by a TIR camera mounted on a fixed-wing UAV and 124 syn-
thetic aerial TIR videos generated from AirSim-W simulator
(Bondi et al. 2018).

Table 1 summarizes the existing generic and UAV-based
SOT datasets. Most datasets are collected from websites or
simulators, while the limited UAV data comes from rotary-
wing or fixed-wing UAVs, lacking visual datasets collected
by flapping-wing UAVs. This blank area motivates us to con-
duct this work and build the first bionic drone-based SOT
benchmark to better support robust vision research.

3 BioDrone Benchmark

Ahigh-quality benchmark labels the target in the video frame
and provides criteria for algorithm evaluation. Particularly,
benchmarks incorporating multiple challenging factors are
critical for training and testing robust trackers.

As summarized in Sect. 2, existing benchmarks all ignore
collecting data from bionic-based aircraft, motivating us to
conduct BioDrone for robust vision research. BioDrone is
collected by a state-of-the-art (SOTA) flapping-wing UAV
and annotated under a precise process. It includes 600 videos
with 304,209 manually labeled frames. The sequence length
varies from 300 to 990 frames, and the average length
is around 507. To our knowledge, BioDrone is the first

9 https://www.unrealengine.com.
10 https://github.com/flyers/drone-tracking.
11 https://sites.google.com/site/daviddo0323/projects/uavdt.
12 https://github.com/VisDrone/VisDrone-Dataset.
13 https://sites.google.com/view/elizabethbondi/dataset.
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SOT benchmark collected by a bionic-based aircraft and the
largest UAV-based SOT benchmark.

3.1 Data Collection and Annotation

3.1.1 Data Collection

We use the Large Wingspan bionic flight platform for data
acquisition. It is designed with a high degree of biological
similarity in appearance and sporty performance, as shown in
Fig. 4a. Compared with existing flapping-wing UAVs, Large
Wingspan adopts a rotor-flapping composite power arrange-
ment with a single-section wing streamlined aerodynamic
layout. Its fuselage length is 800mm, wingspan is 1500mm,
biplane flutter frequency is 0–4 Hz, and flight altitude is
5–100m. Functional loads such as high-definitionmap trans-
mission and network communication are also deployed in
Large Wingspan, ensuring that it can collect visual images
from higher altitudes.

In the data acquisition process, we set different flight
attitudes for various scenes under three lighting conditions,
ensuring that the raw data can fully reflect the robust visual
challenges of the flapping-wing UAVs. In the original date
processing process, no post-processing such as frame selec-
tion or editingwas applied to the collected videos. Therefore,
the sequences in the dataset are transformed from real-time
recorded videos (30FPS), maintaining a consistent sample
rate of 30 Hz.

3.1.2 Data Annotation and Quality Control

An experienced team precisely labels BioDrone by following
two main rules: (1) using the tightest bounding-box to mark
the visible part of the user-specified target; and (2) adding an
absent label for out-of-view or full-occluded target. A strict
three-round review process is executed to ensure the anno-
tation quality. Experienced annotators are trained to conduct
the preliminary work and self-inspection, then submit the
result to verifiers for second-round verification. Finally, the
authors judge whether to accept it in the third-round valida-
tion. Any rejection in the above processes will result in the
re-annotation to guarantee a high-quality benchmark. The
representative data of BioDrone is shown in Fig. 4b.

3.1.3 Subset Division

We divide BioDrone into the training set (300 videos), the
validation set (100 videos), and the test set (200 videos).
The sequence length distribution is illustrated in Fig. 5a; we
ensure that the distribution on the three subsets is essentially
the same. In particular, three representative algorithms (i.e.,
KeepTrack Mayer et al. 2021, MixFormer Cui et al. 2022,
and SiamRCNN Voigtlaender et al. 2020) are selected to

test the 600 videos, and the mean performance of the three
trackers is regarded as the score of each sequence. We then
organize 600 sequences according to their scores, and finally
obtain the difficulty ranking of all data. The distribution of
sequence difficulty in each subset is roughly the same. As
shown in Fig. 5b, BioDrone includes three illumination con-
ditions: bright light (295 videos), low light in the evening
(241 videos), and low light at night (64 videos). Figure5c
indicates that BioDrone has two main target categories: per-
son (295 videos) and vehicle (305 videos).

3.2 Challenging Attributes

The need for robust vision in SOT tasks is primarily from
a large number of challenging factors in the environment.
Notably, special collection situations (e.g., lens shake, the
unique viewpoint, and the long shooting distance) bringmore
challenging factors to UAV-based datasets and require more
robust algorithms to accomplish tracking tasks. However,
we note that existing UAV-based datasets (Mueller et al.
2016; Li and Yeung 2017; Yu et al. 2020; Zhu et al. 2021)
only provide sequence-level annotation for several challeng-
ing attributes—these coarse-grained labels cannot effectively
provide detailed information for further analyses.

Therefore, we first provide high-quality frame-by-frame
manual annotations (bounding-box and occlusion annota-
tion) and automatically generate frame-level labels for ten
challenge attributes based on SOTVerse (Hu et al. 2022) and
VideoCube (Hu et al. 2023).

For the t-th frame Ft in a sequence si = {F1, F2, . . . , Ft ,
. . .}, BioDrone uses (xt , yt , wt , ht ) (i.e., the coordinate
information of the upper left corner and the shape of the
bounding-box) like most classical benchmarks to represent
the target bounding-box. Challenging attributes in BioDrone
are two categories: static attributes only relate to the current
frame,whiledynamic attributes record changes between con-
secutive frames. The calculation rules for static attributes are
as follows:

• Target aspect ratio and scale Target ratio is defined as
rt = ht/wt , and target scale is calculated via st =√

wt ht . Specifically, we calculate relative scale by s
′
t =

st/
√
Wt Ht to eliminate the influence of image resolution,

where Wt and Ht represent the image resolution of Ft .
• Illumination condition Visual information recorded in
special light conditions can be transferred to standard
illumination by multiplying a correction matrix Ct (Fin-
layson and Trezzi 2004). Thus, BioDrone quantifies
the illumination by calculating the Euclidean distance
between Ct and 11×3.

• Image clarity BioDrone uses the blur box degree to mea-
sure the image clarity, which is generated by Laplacian
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Fig. 4 Illustrations of the flapping-wing UAV used for data collection
and the representative data of BioDrone. Different flight attitudes for
various scenes under three lighting conditions are included in the data

acquisition process, ensuring that BioDrone can fully reflect the robust
visual challenges of the flapping-wing UAVs

transform (Pech-Pacheco et al. 2000). We convert the
RGB bounding-box into gray-scale Gt , then convolve
Gt with a Laplacian kernel, and calculate the variance as
clarity.

Several dynamic attributes can be directly calculated from
static attributes. Correspondingly, the variations of the above

static attributes in two sequential frames are defined as delta
ratio, delta relative scale, delta illumination and delta blur
box. Besides, BioDrone also supplies another two dynamic
attributes for in-depth analyses:

• Target motion Fast motion is selected to quantify the
target center distance between consecutive frames by
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Fig. 5 Data distribution of BioDrone. The data distribution of different dimensions keeps consistent in each subset. a The distribution of sequence
lengths and tracking difficulties. b The distribution of illumination conditions. c The distribution of target categories

dt = ‖ct − ct−1‖2/max(st , st−1). Note that we do not
distinguish between the specific causes of the target cen-
ter distance (e.g., target motion or camera motion), but
rather focus on the disruption of the target trajectory due
to fast motion. For instance, some SOT algorithms only
locate the target position in the next frame within a lim-
ited search region near the result of the previous frame.
However, fast motion can disrupt the continuity of the
target’s motion trajectory (e.g., the target’s position in
the next frame is likely to exceed the search region of the
algorithm) and challenge the tracking robustness.

• Integrated variation between consecutive frames Corre-
lation coefficient is ametric used tomeasure the similarity
between current frame Ft and the previous frame Ft−1.
BioDrone selects the Pearson product-moment correla-
tion coefficient ρt = cov(Ft ,Ft−1)

σFt σFt−1
, in which the numerator

calculates the covariance of Ft and Ft−1, and the denom-
inator is the product of the standard deviation. The
correlation coefficient reflects the changes between con-
secutive frames and has been normalized in [0, 1].

To further demonstrate the challenges of BioDrone, we
compare the attribute distributions of BioDrone and other
SOT benchmarks (frame-level annotations are provided by
SOTVerse), then plot the attribute distributions in Fig. 6.
Compared with other SOT benchmarks, BioDrone includes
more tiny targets (Fig. 6a, b) with more drastic variations
(Fig. 6c, d) between consecutive frames, which provides a
high-quality test bed for further research.

4 Trackers

4.1 Single Object TrackingMethods

Table 2 shows 20 representing SOT algorithms covering both
classic and SOTA methods. Here, we list the basic informa-
tion about these trackers.

KCF (Henriques et al. 2014) is a classical correlation filter
(CF) based method, which balances high speed and tracking
accuracy, and becomes a representative tracking framework
in the early days. ECO (Danelljan et al. 2017) combines con-
volutional neural networks (CNN) with CF, aiming to use
deep networks to improve feature representation. The fea-
ture representation of ECO is a combination of the first and
last convolutional layer in theVGG-m (Chatfield et al. 2014),
along with histogram of oriented gradient (HOG) (Dalal and
Triggs 2005) and color names (CN) (Van De Weijer et al.
2009).

As the originator of siamese neural network (SNN) based
trackers, SiamFC (Bertinetto et al. 2016) achieves satisfac-
tory tracking performance by matching features between the
template region and the search region through a simple net-
work structure. It uses AlexNet (Krizhevsky et al. 2021)
for feature representation and matches features via cross-
correlation operation. After that, SiamRPN (Li et al. 2018)
select the region proposal network (Girshick 2015) to achieve
accurate target regression, DaSiamRPN (Zhu et al. 2018)
uses data augmentation to enhance the discriminative ability,
SiamRPN++ (Li et al. 2019) and SiamDW (Zhang and Peng
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Fig. 6 Challenging attributes distribution of BioDrone and representa-
tive SOT benchmarks. a The distribution of relative scale (smaller value
means including more tiny targets). b The distribution of aspect ratio
(smaller or larger value means including more irregular shapes). c The
distribution of fast motion (larger value means including faster target

movement). d The distribution of correlation coefficient (smaller value
means including more drastic variations between consecutive frames).
Clearly, BioDrone includes more tiny targets with more drastic varia-
tions between consecutive frames, and requires more robust methods to
accomplish target tracking

Table 2 Characteristic of the single object tracing methods in this work

Tracker Publish Feature Representation Matching Operation Update

KCF (Henriques et al. 2014) TPAMI’15 HOG Correlation Filter Y

SiamFC (Bertinetto et al. 2016) ECCV’16 AlexNet Cross Correlation

ECO (Danelljan et al. 2017) CVPR’17 VGG-m Correlation Filter Y

SiamRPN (Li et al. 2018) CVPR’18 AlexNet Cross Correlation

DaSiamRPN (Zhu et al. 2018) ECCV’18 AlexNet Cross Correlation

ATOM (Danelljan et al. 2019) CVPR’19 ResNet-18 Correlation Filter Y

SiamRPN++ (Li et al. 2019) CVPR’19 ResNet-50 Cross Correlation

SiamDW (Zhang and Peng 2019) CVPR’19 ResNet-22 Cross Correlation

DiMP (Bhat et al. 2019) ICCV’19 ResNet-50 Correlation Filter Y

GlobalTrack (Huang et al. 2020) AAAI’20 ResNet-50 Hadamard Correlation

SiamFC++ (Xu et al. 2020) AAAI’20 AlexNet Cross Correlation

Ocean (Zhang et al. 2020) ECCV’20 ResNet-50 Cross Correlation

KYS (Bhat et al. 2020) ECCV’20 ResNet-50 Correlation Filter Y

SiamCAR (Guo et al. 2020) CVPR’20 ResNet-50 Cross Correlation

PrDiMP (Danelljan et al. 2020) CVPR’20 ResNet-50 Correlation Filter Y

SuperDiMP (Danelljan et al. 2020) CVPR’20 ResNet-50 Correlation Filter Y

SiamRCNN (Voigtlaender et al. 2020) CVPR’20 ResNet-101 Concatenate and Re-detection Y

KeepTrack (Mayer et al. 2021) ICCV’21 ResNet-50 Correlation Filter Y

TCTrack (Cao et al. 2022) CVPR’22 Temporally Adaptive CNN Adaptive Temporal Transformer Y

MixFormer (Cui et al. 2022) CVPR’22 Mixed Attention Module Y

CNN Convolutional Neural Network, HOG Histogram of Oriented Gradient
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2019) introduce deeper and wider backbones (ResNet He
et al. 2016) for feature extraction. Besides the development
of backbone utilization, SiamFC++ (Xu et al. 2020), Ocean
(Zhang et al. 2020), and SiamCAR (Guo et al. 2020) employ
an anchor-free structure (Tian et al. 2019) to eliminate the
dependence on anchors. Recently, SiamRCNN (Voigtlaen-
der et al. 2020) utilizes a re-detection mechanism (based
on FasterRCNN Ren et al. 2015) and proposes a tracklet
dynamic programming algorithm to process object disap-
pearance.

Another series of works started by ATOM (Danelljan
et al. 2019) tries to combine CF and SNN together, and
proposes a new framework to combine offline training and
online updating. Based on the framework, DiMP (Bhat et al.
2019) optimizes the loss function for stronger discrimina-
tive ability, PrDiMP and SuperDiMP (Danelljan et al. 2020)
use probabilistic regression to improve the accuracy. Keep-
Track (Mayer et al. 2021) combines SuperDiMPwith a target
candidate association network, which is re-trained on hard
sequences mined from LaSOT (Fan et al. 2021).

Some other works design custom networks to solve
specific problems like target absence or similar instance
interference. GlobalTrack (Huang et al. 2020) aims to keep
tracking performance in long sequences; it does not assume
motion consistency and performs a full-image search to elim-
inate cumulative error. KYS (Bhat et al. 2020) aims to better
use scene information in the tracking process; it represents
scene information as state vectors and combines them with
the appearance model to locate the object. TcTrack (Cao
et al. 2022) and MixFormer (Cui et al. 2022) are the two
newest methods based on the transformer structure. TcTrack
(Cao et al. 2022) is designed for object tracking in UAV-
based scenes, which aims to fully exploit temporal contexts
for aerial tracking. MixFormer (Cui et al. 2022) designs an
end-to-end transformer-based framework to simultaneously
accomplish feature extraction and target information integra-
tion.

4.2 New Baselines

As we analyzed in Sect. 1, challenging factors such as tiny
target and fast motion cause algorithms to lose the target eas-
ily. Although some methods have combined a re-detection
mechanism, fast motion makes it difficult to relocate the tar-
get via continuous trajectories, while the small object size
significantly limits available appearance information. Thus,
it is easy for trackers to relocate interferers rather than the
target. Based on the above analyses, we optimize the SOTA
method KeepTrack (Mayer et al. 2021), which employs a
learned target candidate association network to track both
the target and distractor objects, and design a new baseline
UAV-KT for BioDrone (Fig. 7).

4.2.1 Base Model: KeepTrack

To improve the robust tracking ability when facing similar
object interference, KeepTrack (Mayer et al. 2021) designs
a mechanism to keep track of distractor objects. It chooses
SuperDiMP (Danelljan et al. 2020) as the baseline, and adds
a learnable correlation network to propagate the identity of
all candidate targets in the tracking process. KeepTrack con-
tains a classification branch and a bounding-box regression
branch. The classification branch first obtains the score map
through the SuperDiMP network, then generates the coor-
dinates of candidates by selecting points that satisfy the
requirements (i.e., the score is a local maximum and should
exceed the threshold). Afterward, candidates’ features are
extracted and sent to the target candidate association network
for candidate matching and location information genera-
tion. The regression branch follows the IoUNet (Jiang et al.
2018) utilized in ATOM (Danelljan et al. 2019) to precisely
regress the bounding-box, and the target position information
obtained from the classification branch is used to obtain and
refine its position. Please refer to the original paper for more
detailed information on the above two branches. Since our
improvements are mainly concentrated in the candidate tar-
get matching network, here we briefly describe its structure
in KeepTrack as follows.

Problem formulation KeepTrack defines the set of target
candidates corresponding to the previous frame and the cur-
rent frame, including distractors and targets, as V

′
and V .

V = {vi }Ni , where N denotes the number of candidates
appearing in each frame. The target candidate association
problem for two subsequent frames is also formulated as
finding the assignment matrix A between the two sets V

′
and

V .
Target candidate extraction KeepTrack first processes the

score map by selecting points that meet the requirements
as candidate locations and extracts their features. After that,
KeepTrack uses the candidate location ci as a strong cue, then
selects the candidate score s(ci ) and the feature fi = f (ci )
obtained after a learnable convolutional layer as the other
two complementary cues. Finally, a feature tuple is created
for each candidate and is combined in the following way:

zi = fi + ϕ(si , ci ),∀vi ∈ V (1)

where ϕ denotes a multilayer perceptron that maps s and c
to the same dimensional space as fi .

Candidate embedding network To get more represen-
tative candidate features, KeepTrack uses sparse feature
matching to exchange zi with bilateral information and
self-information. Finally, a new more robust feature repre-
sentation hi is obtained.

Candidate matching The similarity matrix S, which is
obtained by the dot product operation of Si, j =< h

′
i , h j >,
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Fig. 7 Overview structure of the proposed new baselineUAV-KT based
on KeepTrack (Mayer et al. 2021). The parts connected by red arrows
represent our proposed shallow target candidate feature association net-
work module, including target candidate feature extraction, production,
embedding, and other operations. The parts connected by gray arrows
are the original modules of KeepTrack. The score matrices obtained

from different depth features are summed by a learnable coefficient w

and perform matching and association operations (the parts connected
by black arrows). Since the improvements are closely related and par-
allel to the original structure of KeepTrack, we draw UAV-KT based on
KeepTrack to show the similarities and differences between these two
methods clearly

is used to represent the similarity of candidates in V
′
and

V . Due to situations like occlusion, disappearance, new
appearance, or reappearance, the candidate targets do not
necessarily have a definite correspondence within V

′
and V .

However, the candidatesmust have a definite correspondence
result to support the followingprocess. Therefore,KeepTrack
designs a dustbin to match candidates without correspon-
dence (DeTone et al. 2018; Sarlin et al. 2020). Finally, an
augmented assignment matrix A is obtained, in which an
additional row and column are added to represent the dust-
bin. Note that a dustbin is a virtual candidate without any
feature representation, and a candidate corresponds only if
its similarity to all other candidates is low to a dustbin.

Object association A library O is used to keep track of
each object that appears in the scene over time, in which each
entry is an object that is visible in the current frame. When
tracked online, the estimated assignment matrix A is used
to determine the situation of objects (i.e., disappear, newly
appear, or remain visible), and the visible objects can be
explicitly associated and help in reasoning the target object
Ô .

Besides, KeepTrack also allows online updating. It
describes a memory sample confidence score to decide
whether to keep a sample in memory or not, and old samples
will be replaced when a fixed memory size is used.

4.2.2 A New Baseline: UAV-KT

KeepTrack performs well among the representative SOT
trackers in Sect. 4.1. However, due to the robust vision chal-
lenges introduced by the BioDrone benchmark, the original

KeepTrack still has some limitations, motivating us to make
appropriate modifications to obtain a more suitable model
architecture.

Compared with generic object tracking, the tiny target in
BioDrone not only lacks appearance information, but also
needs wider receptive fields of deeper-level features to locate
its position. On the one hand, deep features can obtain rich
high-level semantic information, but cannot compensate for
the lost pixel information for tiny targets. On the other hand,
the smaller receptive field of low-level features can avoid the
information loss problem, but it mainly extracts spatial infor-
mation and ignores important semantic information (e.g.,
assumed as high-level features like temporal and spatial rela-
tionships, forward andbackward scenes logical relationships,
etc.). Based on the above analyses, a proper feature fusion
module is added in KeepTrack to generate a new baseline
named UAV-KT, which aims to improve the capability of
tracking tiny targets in BioDrone.

Design of target candidate matching network based on
different depth backbone features. As shown in Fig. 7, the
red arrows represent operations of the new target candidate
matching network proposed byUAV-KT, inwhich the feature
map in the shallow block of the backbone is selected as a
new cue, aiming to enhance the candidate target features and
facilitate the ability of target candidate matching.

Unlike the original KeepTrack, we extend the target can-
didate matching network into two parallel networks for
processing backbone features of different depths. The results
of these processes are fused to obtain the final matching
results. The operation on the shallow features and the infor-
mation fusion method are described as follows:
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Algorithm 1 Target candidate association algorithm
Input:
V : Set of target candidates;
Z ′

2(Vi ): Set of embedded features of the previous frame;
S: Depth target candidate feature matching score matrix
Output:
Ô: Target candidate association and matching module

1 N = |V | // Initialize
2 for i ← 1 to N do
3 // Extraction via id
4 f2(Vi ) ← extract from f eatbackbone

// Extract backbone features
5 f2(Vi ) ← MAXPOOL(CONV( f2(Vi )))

// Produce target candidate features
6 z2(Vi ) = ADD(�(c(Vi ) + s(Vi )), f2(Vi ))

// Feature integration
7 h2(Vi ), h′

2(Vi ) ← EMBED(z2(Vi ), z′2(Vi ))

8 Ss ← {h2(Vi )}Ni=1 � {h′
2(Vi )}Ni=1

// Obtain score matrix
9 Sm = ADD(w[0] ∗ Sd , w[1] ∗ Ss)

// Fusion score matrix

10 Ô ← match and associate by Sm
// Target candidate association and
matching module

11 return Ô

• Step 1The shallow features f eat2 of the target candidates
extracted from the backbone are fed into a maximum
pooling layer and a learnable convolution layer to obtain
a more discriminative appearance f2i of the same size as
f3i .

• Step 2 f2i is encoded respectively with the target candi-
date coordinates and scores according to Eq.1 to obtain
the shallow target candidate features z2i .

• Step 3The shallow target candidate features of the current
frame and past frame are fed into the target candi-
date embedding network for information exchange and
extraction, and finally generate richer and more robust
features h2i , h′

2i . The dot-product operation is performed
on them to obtain the score map Ss .

• Step 4 Here, the fusion operation is performed to obtain
the final score matrix Sm . Notably, we introduce a learn-
able weight w to control the effect of different depth
features, which is borrowed fromBiFpn (Tan et al. 2020).
The final score matrix is calculated by:

Sm = w[0] ∗ Sd + w[1] ∗ Ss

w[i] = w[i]
1∑

i=0
w[i] + ε

(2)

where w[i] denotes the learnable weight set in the net, ε
is a constant, generally set to 1 × 10−4.

• Step 5 Finally, the fused score matrix is used for subse-
quent operations such as candidate association and object
association.

4.2.3 Training Strategies

Unlike large-scale general benchmarks,BioDrone is designed
for robust vision research based on the flapping-wing UAV
scenario,which containsmultiple challenging factors. There-
fore, a reasonable training strategy can help trackers enhance
robustness in facing challenging factors such as tiny tar-
gets, fast motion, and interfering objects. In this section, we
illustrate the detailed training strategies for the BioDrone
benchmark andpropose the re-trainedbaselines namedKeep-
Track* and UAV-KT*.

Generic SOT benchmarks include LaSOT (Fan et al.
2021), GoT-10k (Huang et al. 2021), and the proposed Bio-
Drone are selected to re-train the base tracker (the left part in
Fig. 7), which makes the tracker more robust in tracking tiny
targets with fast motion in the UAV-based tasks. We sam-
ple multiple training and test frames from a video sequence
to form training sub-sequences. 40k sub-sequences with a
weight of 1:1:1 for each dataset are obtained for training
the base tracker. The training and testing processes are con-
ducted in a server with 4 NVIDIA TITAN RTX GPUs and
a 64 Intel(R) Xeon(R) Gold 5218 CPU @ 2.30 GHz. We
use adaptive moment estimation (Adam) with a batch size of
32 to train our model, in which the learning rate decay by
0.2 every 20th epoch with a learning rate of 2 × 10−4. We
train 30 epochs and freeze the first half of the weights of the
backbone network during the training period.

The original KeepTrack and the proposed UAV-KT are
trained based on the above training strategy to generateKeep-
Track* and UAV-KT*. Furthermore, we notice that a proper
training strategy is important—training different parts of
the module (e.g., the target candidate association network)
by BioDrone may decrease the performance of the original
versions. Please refer to Sect. 5.3.2 for detailed results and
analyses.
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Fig. 8 Execution process of two evaluation mechanisms. a The tradi-
tional OPE mechanism proposed by the OTB benchmark, in which the
trackers keep tracking during the whole sequence. b) The R-OPEmech-

anism proposed by VideoCube, in which trackers will be re-initialized
in the next frame when tracking failure (i.e., the IoU of predicted result

pt and ground-truth gt
pt

⋂
gt

pt
⋃

gt
< 0.5) occurs

5 Evaluation and Experiments

5.1 Evaluation Protocol

5.1.1 Mechanisms

SOT tasks use two evaluation systems—OPE and the re-
initialization mechanism (R-OPE). OPE mechanism initial-
izes a tracker in the first frame and continuously records the
results, which has been widely used by classical benchmarks
(Wu et al. 2015; Fan et al. 2021; Huang et al. 2021). Recently,
VideoCube (Hu et al. 2023) provides the R-OPEmechanism,
which re-initializes the tracker when it fails in ten consecu-
tive frames. BioDrone provides the above two mechanisms
for performance evaluation, as shown in Fig. 8.

5.1.2 Metrics

For the t-th frame Ft in a sequence si = {F1, F2, . . . , Ft , . . .},
the positional relationship (e.g., intersection over union
(IoU) and center distance) between predicted result pt and
ground-truth gt is usually selected to calculate tracking
performance. Like other SOT benchmarks, all evaluation
indicators in BioDrone are based on the relationship between
two bounding-boxes and their center points (i.e., the pre-
dicted center point cp and the actual center point cg). Note
that target absent is regarded as an empty set (i.e., gt = φ).

Precision (PRE) Traditional precision score is calculated
by:

dc = ∥
∥cp − cg

∥
∥
2

P(θd) = 1

|G|
∑

si∈G

1

|si | |{Ft : dc ≤ θd}|

Pscore = 1

|G|
∑

si∈G

1

|si | |{Ft : dc ≤ 20}| (3)

where |·| is the cardinality, θd is a threshold to judge whether
the tracking result is precise. The precision score of si is
defined as the proportion of frames whose center distance
dc ≤ θd . Calculating the mean value of each sequence si
under video group G can generate the final precision score
P(G). Previousworks (Wuet al. 2015; Fan et al. 2021;Muller
et al. 2018) usually draw the statistical results based on differ-
ent θd into a curve named precision plot. Typically, θd = 20
is widelyused to rank trackers (Pscore).

Normalized precision (N-PRE) Recent work (Hu et al.
2023) indicates that thePREscore ignores the influence of the
target scale, andprovides a normalizedprecision score named
N-PRE to solve this problem.Trackerswith a predicted center
outside the ground-truth rectanglewill add a penalty item dc p

(i.e., the shortest distance between center point cp and the
ground-truth edge). For trackers whose center point falls into
the ground-truth rectangle, the center distance dc

′
equals the

original precision dc (i.e., dc p = 0). Besides, to exclude the
influence of target size and frame resolution, N-PRE selects
the maximum value in frame Ft to normalize the result. The
calculation can be summarized as:

N (dc
′
) = dc

′

max({di ′ | i ∈ Ft })
P ′

(θ
′
d) = 1

|G|
∑

si∈G

1

|si | |
{
Ft : N (dc

′
) ≤ θ

′
d

}
|

P
′
score = 1

|G|
∑

si∈G

1

|si | |
{
Ft : cp ∈ gt

}| (4)
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Draw statistical results based on different θd
′ ∈ [0, 1] into a

curve generates the normalized precision plot. Particularly to
overcome the influence of threshold selection, the proportion
of frames whose predicted results successfully fall in the
ground-truth rectangle is used to rank trackers (P

′
score).

Success.Like the calculation process in the precision plot,
traditional success score of frame Ft is calculated by:

st = 	(pt , gt ) = pt
⋂

gt
pt

⋃
gt

S(θs) = 1

|G|
∑

si∈G

1

|si | |{Ft : st ≤ θs}|

Sscore = 1

|
s |
∑

θs∈
s

S(θs)

(5)

where	(·) is the intersection over union. Recent work (Hu et
al. 2023) also implements two more success scores based on
generalized IoU (GIoU Rezatofighi et al. 2019) and distance
IoU (DIoU Zheng et al. 2020) for calculation. Frames with
overlap st ≥ θs are defined as successful tracking. Draw the
results based on various overlap threshold θs into a curve is
the success plot, where the mAO (mean average overlap) is
widelyused to rank trackers (Sscore).

Robustness in R-OPE. The robust plot aims to exhibit
the performance of trackers in the R-OPE mechanism. Each
sequence is divided into several segments by the tracker’s
re-initialization points, thus the longest sub-sequence that
a tracker successfully runs and the re-initialization points
can be used to represent the robustness of the tracking pro-
cess. Taking the number of restarts (Rcount ) and the average
value of the longest sub-sequence Lmax as abscissa and ordi-
nate can generate a robust plot. Trackers closer to the upper
left corner perform better (indicating successful tracking in
longer sequences with rare re-initializations). Note that we
do not limit the number of restarts under the R-OPE mech-
anism. Thus, we cannot only evaluate an algorithm by the
above three metrics, since the high scores may be generated
by frequent re-initializations. Therefore, the most reasonable
metric for the R-OPE mechanism is the robustness plot and
the number of restarts (Rcount ).

5.2 Performance of Generic SOT Trackers

We first compare the 20 represent trackers (Sect. 4.1) with
the proposed baselines (Sect. 4.2) based on OPE and R-OPE
evaluation mechanism, as shown in Table 3.

For OPE mechanism, precision plot, normalized preci-
sion plot, and success plot are selected for evaluation, as
shown in Fig. 9. Except for the top-4 trackers which are all
based on KeepTrack architecture (KeepTrack Mayer et al.
2021 and three proposed new baselines), we note that two

Fig. 9 General experiments of BioDrone based on OPE mechanism,
evaluated by precision plot (a), normalized precision plot (b), and suc-
cess plot (c). In brackets, we rank trackers by Pscore, P

′
score, and Sscore
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Fig. 10 General experiments of BioDrone based on OPE mechanism, evaluated in different target categories (A) and different light condition (B)

other trackers with different model architectures also per-
form well. MixFormer (Cui et al. 2022), a simple end-to-end
model based on transformer structure, performs well in all
evaluationmetrics, indicating that theMixed AttentionMod-
ule (MAM) and a straightforward detection head can provide
powerful tracking ability. Another re-detection-based model
SiamRCNN (Voigtlaender et al. 2020) combines a two-stage
scheme with a new trajectory-based dynamic planning algo-
rithm and also achieves suitable tracking scores.

We also test trackers on two categories of targets (i.e.,
vehicles and persons) and three illumination conditions (i.e.,
bright light, low light (evening), and low light (night)). We
combine low light (evening) and low light (night) into a single
category and represented the test results in the abovefigure. In
relation to different categories of moving targets (Fig. 10A),
most algorithms exhibit better tracking performance on vehi-
cles compared to persons. One possible explanation is that,
from the perspective of a flapping-wing UAV, the size of a
person is smaller than that of a vehicle, leading to a reduced
number of available visual features and decreased robust-
ness of the trackers. In various lighting conditions (Fig. 10B),
most algorithms demonstrate superior tracking performance
under bright light compared to low light. This indicates that
inadequate lighting conditions diminish the visual features
of moving targets and present challenges to the robustness of
tracking.

Distinguished from the OPE mechanism, the R-OPE
mechanism measures robust tracking capability mainly by
the number of restarts. As shown in Fig. 11 and Table 3,
all trackers perform better than the original OPE mecha-

nism thanks to the re-initialization. However, all generic SOT
trackers need more than 3 times re-initialization in tracking
one BioDrone sequence, which means their robust tracking
performances are limited in a very short period.

Moreover, we note that the series of methods based on
combining CF and SNN (e.g., KeepTrack Mayer et al. 2021,
SuperDiMP Danelljan et al. 2020, PrDiMP Danelljan et al.
2020, DiMP Bhat et al. 2019, ATOM Danelljan et al. 2019)
are superior to the SNN-based algorithms (e.g., SiamRPN++
Li et al. 2019, SiamCAR Guo et al. 2020, SiamFC++ Xu et
al. 2020, DaSiamRPN Zhu et al. 2018, SiamRPN Li et al.
2018, SiamDW Zhang and Peng 2019, SiamFC Bertinetto
et al. 2016) of the same period in both OPE and R-OPE
mechanisms. A possible reason is that most SNN-based
methods exclude the update mechanism, and highly rely
on the integrity of appearance and motion information. The
tracking process is executed by matching features between
the template region and the search region, while tiny target
and fast motion can decrease the available target information,
causing the SNN-based trackers to lose the target easily. On
the contrary, the CF and SNN combination can take advan-
tage of offline training and online updating, helping trackers
to suit the appearance variations in the tracking process, and
that is why we select the best CF-SNN combination tracker
KeepTrack (Mayer et al. 2021) as our base model (Fig. 12).

5.3 Performance of the Proposed Baselines

Obviously, UAV-KT* and KeepTrack*, the two trackers
which have been re-trained on the BioDrone benchmark,
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Fig. 11 General experiments of BioDrone based on the R-OPE mech-
anism, evaluated by precision plot (a), normalized precision plot (b),
and success plot (c). In brackets, we rank trackers by Pscore, P

′
score,

and Sscore . d Besides, BioDrone counts the number of restarts for each
video, divides the entire video into several segments based on the restart

point, and returns the longest sub-sequence that the algorithm success-
fully runs. Taking the number of restarts and the mean value of the
longest sub-sequence as abscissa and ordinate can generate a robust
plot. Trackers closer to the upper left corner perform better (indicating
successful tracking in longer sequences with rare re-initializations)

achieve the best two performances in both OPE (Fig. 9) and
R-OPE mechanisms (Fig. 11). For all trackers that have not
been re-trained onBioDrone (we use the parameters and con-
firmations provided by the original authors), the proposed
new baseline UAV-KT performs well. Here we design sev-
eral ablation experiments to better exhibit the performance of
the proposed new baseline UAV-KT and the training strate-
gies.

5.3.1 Target Candidate Matching Network

The proposedUAV-KT utilizes some shallow features, which
is especially effective for tiny targets, to obtain more mean-
ingful features at the candidate embeddingmodule. The score
matrices are summed through the learnedweights by the can-
didatematchingmodule.Here, theweights are finally learned
as [0.4929, 0.5070], in which the former is the shallow score
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Fig. 12 Qualitative results of KeepTrack (Mayer et al. 2021) and
the proposed baselines on BioDrone under the OPE mechanism (
green bounding-box represents ground-truth, yellow bounding-box
represents KeepTrack (Mayer et al. 2021), blue bounding-box rep-

resents UAV-KT, violet bounding-box represents KeepTrack*,
red bounding-box represents UAV-KT*). Compared to the base model,
UAV-KT* performs better when facing challenges in BioDrone (Color
figure online)

matrix summing coefficient. Table 4(a) illustrates the perfor-
mance of the original KeepTrack (Mayer et al. 2021) and the
proposed UAV-KT. Note that neither of the two trackers is
re-trained on BioDrone. Obviously, based on the target can-
didate matching network, UAV-KT improves its robustness
by perceiving targets of different scales.

5.3.2 Different Training Strategies

As shown in Fig. 7, the original KeepTrack and UAV-
KT include several parts (i.e., the base tracker, the target
candidate extraction, and the target candidate association
network). We notice that end-to-end training is not an appro-
priate strategy. Thus, to find a better training method, We
design several strategies to explore the optimal parameters.

• Strategy-1 re-train on the base tracker (KeepTrack*).
• Strategy-2 Train target candidate association network
with data from LaSOT and BioDrone training sets that
meet the candidate conditions (KeepTrack#).

Table 4(b) shows that using BioDrone to re-train the
base tracker improves the performance of KeepTrack (Keep-
Track*), while the candidate association network performs
poorly after re-training by the supplementary dataset (Keep-
Track#).

We believe that this difference occurs because the two
modules are designed for different tasks. (1) The task of the
base tracker (SuperDiMP in KeepTrack) is target classifi-
cation. A discriminative target predictor weight is obtained
from template features, then it performs a cross-correlation
operation with the frame features to be detected, and finally
a score map is obtained. (2) Target candidate association net-
work uses the score map from the base tracker to select target
candidates, then extracts target candidate features for target
candidate matching to finally identify the target.

Thus, using Strategy-1 for the base tracker can effectively
improve the model’s discriminative ability between forward
and backward information, making it locate the target more
robustly.

On the contrary, when Strategy-2 is applied to the target
candidate association network, we first run the base tracker
on all sequences of the BioDrone train-set to obtain tracking

123



International Journal of Computer Vision

Table 4 Ablation experiments
of the proposed new baseline
UAV-KT, based on the OPE
mechanism

Tracker Pscore ↑ P
′
score ↑ Sscore ↑

(a) Performance of the new target candidate matching module

KeepTrack (Mayer et al. 2021) 0.504 0.523 0.424

UAV-KT 0.513 (0.009 ↑) 0.537 (0.014 ↑) 0.428 (0.004 ↑)
(b) Performance of different training strategies

KeepTrack (Mayer et al. 2021) 0.504 0.523 0.424

KeepTrack* 0.538 (0.034 ↑) 0.551 (0.028 ↑) 0.457 (0.033 ↑)
KeepTrack# 0.496 (0.008 ↓) 0.520 (0.003 ↓) 0.417 (0.007 ↓)
(c) Performance of the combination results

Tracker Pscore ↑ P
′
score ↑ Sscore ↑

KeepTrack (Mayer et al. 2021) 0.504 0.523 0.424

KeepTrack* 0.538 (0.034 ↑) 0.551 (0.028 ↑) 0.457 (0.033 ↑)
UAV-KT* 0.554 (0.050 ↑) 0.568 (0.045 ↑) 0.466 (0.042 ↑)

results, and then set the train-set into two parts: a train-train
and a train-val set. These datasets contain several track-
ing situations: (1) The correct candidate object is selected
as the target. (2) It is no longer possible to track the tar-
get because the target classifier score of the corresponding
candidate object is below a threshold. (3) Tracking fails,
which includes the correct target existing but not selected
or there is no correct target and none of the target candidates
is selected. The task of the target candidate association mod-
ule includes learning how to distinguish between the target
with distractors, and how to remediate wrong results when
the base tracker fails. However, due to the tiny target chal-
lenge, the appearance information on targets and distractors
in BioDrone is not obvious. Thus, this training strategy may
cause even a negative impact on trackers (please refer to the
worse performance of KeepTrack# in Table 4(b)).

Based on the above analyses, Strategy-1 is selected as the
final training strategy.

5.3.3 Results of Our New Baseline

OurnewbaselineUAV-KT*employs theproposed target can-
didate association module and the training Strategy-1 based
on the BioDrone. Table 4(c) illustrates that the combination
improves the tracking performance effectively, which pro-
vides a novel direction for the following research.

5.4 Performance on Challenging Attributes

Different from tracking the target in generic scenarios, the
UAV-based SOT task requires more visual robustness. In this
section, we compare the proposed UAV-DT* baseline and
three SOTAmethods in challenging situations, to further ana-
lyze their robustness. Figure13 illustrates the performance of

trackers in tracking tiny target with fast motion. The above
two factors reduce the available appearance information and
abrupt the trajectories, causing trackers to fail easily.

Although SOTA methods like KeepTrack (Mayer et al.
2021), MixFormer (Cui et al. 2022), and SiamRCNN (Voigt-
laender et al. 2020) performwell in generic situations (Fig. 1),
they are easily failed in facing tiny target. Figure13a shows
that with the decrease in target size, performances of all
trackers based on different mechanisms and metrics all drop
quickly. For example, SiamRCNN (Voigtlaender et al. 2020)
even fails more than 30 times in a sequence (the rightmost
sub-figure in Fig. 13c), which shows that it is completely
unable to handle this task, regardless of what strategies it
has enabled. This phenomenon can also be observed in fast
motion situation. As exhibited in Fig. 13b, the faster motion
in two continuous frames, the poorer performance that track-
ers have.

Thus, the BioDrone benchmark introduces new challeng-
ing factors in the visual object tracking task and provides a
comprehensive experimental environment for robust vision.
Although existing methods perform poorly on this dataset,
the proposed UAV-KT* gives a preliminary solution by opti-
mizing the model structure and training strategies. However,
some bad cases presented in Fig. 14 demonstrate that our base
can be further improved, andmultiple robust vision problems
on BioDrone still deserve further research. The challenges
brought by the tiny target and fast motion are highlighted
in these examples. In contrast to tracking tasks in general
scenes, pedestrians and vehicles appear significantly smaller
in the drone’s field of view. Additionally, the shaking and
rotation of the camera during flapping flight can disturb the
motion trajectory of the target, thus presenting significant
challenges for algorithms that depend on visual features and
motion information.
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Fig. 13 Performance of the proposed UAV-KT* and represent generic
SOTmethods on challenging attributes. The scores of each algorithm in
the test set (200 videos) are plotted as scatter plots. Where the vertical
coordinates represent the scores of the algorithms (from left to right: pre-
cision score Pscore, normalized precision score P

′
score , and success score

Sscore inOPEmechanism; the average value of the longest sub-sequence

Lmax and the number of restarts Rcount in R-OPEmechanism). The hor-
izontal coordinates of a represent the average relative target scale, and
the horizontal coordinates of b represent the average target motion in
a video. Clearly, UAV-KT* performs better than KeepTrack (Mayer et
al. 2021), MixFormer (Cui et al. 2022), and SiamRCNN (Voigtlaender
et al. 2020) in both tiny target and fast motion challenges

123



International Journal of Computer Vision

Fig. 14 Qualitative results of some bad cases for the represent trackers
on OPE mechanism ( green bounding-box represents ground-truth,

yellow bounding-box represents KeepTrack (Mayer et al. 2021),

blue bounding-box represents UAV-KT, violet bounding-box repre-
sents KeepTrack*, red bounding-box represents UAV-KT*) (Color
figure online)

6 Conclusion

In this paper, a bionic drone-based single object tracking
benchmark BioDrone is proposed for robust vision research.
Unlike existing benchmarks that are mainly based on
fixed-wing or rotary-wing UAVs, the flapping-wing system
selected by BioDrone includes additional visual challenges
due to its serious camera shake. Compared with existing
works, BioDrone is the largest UAV-based SOT benchmark
with a smaller target size and more drastic appearance
changes between consecutive frames. It includes 600 videos
with 304,209 manually labeled frames, and automatically
generates frame-level labels for ten challenge attributes,
which provides a high-quality and challenging experimental
environment for robust vision research. Besides, We further
optimize the SOTA method KeepTrack (Mayer et al. 2021)
and design a new baseline UAV-KT with a suitable train-
ing strategy, aiming to propose a preliminary baseline for
challenging factors in BioDrone. Finally, we test our method
and 20 representative methods by comprehensive evalua-
tion mechanisms and metrics in BioDrone, and experimental
results indicate that the proposedmethod achieves 5%perfor-
mance boost in the precision score. However, several failure

cases and systematic analyses indicate that BioDrone still
contains many unresolved challenges and deserves further
attention in robust vision research.

In the future, we believe that the proposed BioDrone
benchmark can provide a high-quality experimental environ-
ment for further research, and help researchers to design new
robust tracking methods. Besides, this work also represents a
broader range of SOT problems, such as those in high-speed
autonomous driving, and egocentric vision. While BioDrone
mainly focuses on bionic UAVs, the results and findings in
this paper might transfer to those more comprehensive prob-
lems.
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