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Abstract. We propose a novel framework, aspect space, to balance deforma-
bility and discriminability, which are often two competing factors in shape and
image representations. In this framework, an object is embedded as a surface in
a higher dimensional space with a parameter named aspect weight, which con-
trols the importance of intensity in the embedding. We show that this framework
naturally unifies existing important shape and image representations by adjust-
ing the aspect weight and the embedding. More importantly, we find that the
aspect weight implicitly controls the degree to which a representation handles
deformation. Based on this idea, we present the aspect shape context, which ex-
tends shape context-based descriptors and adaptively selects the “best” aspect
weight for shape comparison. Another observation we have is the proposed de-
scriptor nicely fits context-sensitive shape retrieval. The proposed methods are
evaluated on two public datasets, MPEG7-CE-Shape-1 and Tari 1000, in compar-
ison to state-of-the-art solutions. In the standard shape retrieval experiment using
the MPEG7 CE-Shape-1 database, the new descriptor with context information
achieves a bull’s eye score of 95.96%, which surpassed all previous results. In the
Tari 1000 dataset, our methods significantly outperform previous tested methods
as well.

1 Introduction

To understand and analyze object deformation is one of the most important goals in
pattern recognition. The study of object shapes dates back to at least a century ago in
D’Arcy Thompson’s seminal work [35]. Recently, great successes have been achieved
in robust image and shape representation for many computer vision tasks [24, 25, 18,
27, 9, 21, 14, 5, 36, 33, 13]. Many approaches gain the robustness by using representa-
tions that are invariant (or insensitive) to certain groups of deformations. For example,
the popular scale invariant feature transform (SIFT) [24] selects scale invariant blob re-
gions [20] for reliable key point matching. Some further works push this frontier to more
general deformations such as affine invariant [27], projection invariant [37], or general
deformation invariant [25, 21]. Similar progress has been made in shape analysis as
well. Moment invariants [12] are well known to be robust to similarity transformations.
Bending invariants [10, 6, 7] for 2D and 3D shapes can be achieved by using geodesic
distances. Articulation insensitivity is gained similarly by using the inner-distance [22].
Topology invariants [8, 30] have been applied for both 2D and 3D shape analysis. In-
variant representations are also used in texture analysis [18, 39].
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Fig. 1. Four shape classes from the MPEG7 dataset and their discriminative deformabilities α (§
3.3)

On the other hand, invariants to larger groups of deformation often come at a price
of reduced discriminability [37, 21] and sometimes introduce vulnerability to imaging
nuisances such as noises and illumination variations. In fact, as observed in category
classification tasks [42], the best local features are often a trade off between descriptive
abilities and robustness to deformations.

In Fig. 1, we see that objects often undergo different degrees of deformation and a
trade off between deformation robustness and discriminability is desired. For example,
simple Euclidean distance based approaches (e.g., shape context [5]) can work well for
rigid objects like bottles (first row in Fig. 1) while the articulation invariant represen-
tations (e.g., inner-distance shape context [22]) handles articulated shapes like human
body (fourth row of Fig. 1) successfully. However, for complicated shapes like the pie-
shaped devices in Fig. 1 (second row), articulation invariance becomes an over-killing
that easily confuses a query shape with other shapes through articulation. This fact is
illustrated in the first row of Fig. 2.

Motivated by the above work and especially by [21, 20], we propose a new frame-
work called aspect space1 to balance the deformation and discriminability for object
representation. The basic idea is to embed a 2D image or a shape (or a 3D volume) as
a surface in a 3D space (or a 4D space) with a parameter named aspect weight, which
controls the importance of intensity in the embedding. The embedded surfaces with dif-
ferent aspect weights then form an aspect space, such that the aspect weight naturally
correlates to the degree of object deformation. By converting silhouettes to binary im-
ages, we show that the aspect space provides a unified framework for several popular
shape descriptors including the shape context [5], the inner-distance shape context [22],
and the bending invariant shape signature [10].

We apply the aspect space framework for shape retrieval tasks that is an important
problem in computer vision. Taking advantage of the aspect weight’s ability of con-
trolling the degree of deformation, we propose a new shape descriptor named aspect
shape context (ASC), which extends the inner-distance shape context (IDSC) [22] by
replacing the inner-distance with geodesic distances in the aspect space. In fact, both
the shape context (SC) [5] and inner-distance shape context are special cases of ASC,
corresponding to a zero aspect value and a sufficiently large aspect value, respectively.

1 The “aspect” in our work comes from “aspect ratio”, which should not be confused with that
used in the “aspect” graph.



Fig. 2. The top 10 nearest neighbors obtained by IDSC (the first row) and ASC (the second row)
for the query of a pie-shaped device

When comparing two shapes, the distance between them is chosen as the minimum
distance over different aspect weights. This way, ASC successfully balances the shape
deformation and discriminability. We tested the proposed approach on a standard shape
retrieval experiment with the MPEG7-CE-1 shape database. ASC demonstrates promis-
ing retrieval results and improves the previous approach. For example, in Fig. 2, one
comparison between IDSC and ASC is given. The query shape is a pie-shape device.
It is obvious that the retrieval results of IDSC are very different from the query shape
demonstrating that articulation invariance becomes an over-killing factor. The results
of the second row clearly show that ASC can balance between deformation robustness
and discriminability.

In summary, we make three main contributions in this paper. First, we propose the
aspect space framework, which provides a unified image and shape representation that
allows controlling the degree of deformation. Second, with the framework, we designed
a new shape descriptor that automatically balances the deformation and discriminabil-
ity for shape matching. The descriptor demonstrates excellent performance for shape
matching tasks on two benchmark shape datasets, the MPEG7 shape database [17] and
the Tari 100 database [4]. Third, the novel shape descriptor can describe the relation
between shapes very well, not only in the same class, but also in different classes. Thus,
it provides an excellent input for diffusion based, context-sensitive shape similarity,
which reaches the best ever bull’s eye score of 95.96% on the MPEG7 shape database.
This increases by 20% the best bull’s eye scores on this dataset [17] published first time
in CVPR 2000, which clearly demonstrates the progress in the field achieved in the last
10 years.

The rest of the paper is organized as follow. § 2 describes the aspect space frame-
work and its relation to existing object and shape representations. Then, we describe
the new shape descriptor, aspect shape context, in § 3. To compute a context-sensitive
shape distance, we utilize the locally constrained dissuasion process described in § 4.
Experimental results are reported and analyzed in § 5. Finally, § 6 concludes the paper.

2 Aspect Space

2.1 Aspect Space and Geodesics

Given an image I : Λ → [0, 1], where Λ ⊂ R2 is the image domain, we define its
induced aspect space A(I; α) of I as

A(I;α) = (x, y, αI(x, y)), (x, y) ∈ Λ,α ∈ [0,∞) . (1)



Fig. 3. Aspect spaces and geodesics on embedding surfaces. Left: a “T” shape and two geodesics
between points p, q for α = 2 and 50 respectively. Middle: the aspect space and the geodesic for
α = 2. Right: the aspect space and the geodesic for α = 50

Note that the embedding is equivalent to the one used in [21], i.e.,

(1− α)x, (1− α)y, αI(x, y), α ∈ [0, 1],

but the new definition is practically more convenient and numerically stabler. Also note
that the embedding and the following derivations are not restricted to 2D.

A natural way to study the embedding in A(I; α) is to investigate the curves espe-
cially geodesics on it. Following [21], for a given parameterized curve

γ(t) = (x(t), y(t), αI(x, y)), t ∈ [0, 1]

on A(I; α) with a fixed α, its curve length is l(γ) =
∫ 1
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dt.
Fig. 3 shows an example of embedding a “T” shape and the geodesics between two
points p, q on the embedded surfaces.

It has been shown in [21] that geodesic distances become invariant to general de-
formation (i.e., homeomorphism) when α approaches ∞, in which case the intensity
term dominates l(γ). On the other extreme, when α equals to zero, geodesic distances
degenerate to the Euclidean distances that are invariant to only rigid deformations. This
brings a connection between the geodesic intensity histogram [21] and the spin im-
age [18]. Motivated by this observation, we will use the aspect space framework for
designing robust and discriminative shape descriptor (§ 3).

2.2 Relations to Robust Shape Descriptors

We now show how the aspect space relates to several popular shape descriptors in-
cluding the shape context (SC) [5], inner-distance shape context (IDSC) [22], and the
bending invariant signature [10].

The shape context [5] uses the joint distance-orientation distributions of landmarks
for shape description. It has been shown to be very effective in many shape comparison



tasks. The inner-distance shape context [22], IDSC extends SC to achieve articulation
invariant by using the so called inner-distance, which is defined as the length of shortest
paths between landmark points when the paths are restricted within a shape boundary.
To relate them in the aspect space framework, we treat a given shape S : Λ → [0, 1] as
a binary mask, i.e.,

S(x, y) =
{

1 if (x, y) ∈ shape interior
0 otherwise . (2)

Consequently, the aspect space of S is defined as

A(S; α) = (x, y, αS(x, y)) . (3)

Given two points p, q on shape S, it can be shown that the geodesic distance between
them on A(S;α) is equivalent to the inner-distance between them, for a large enough
α. An example is shown in Fig. 3 for α = 50. The reason is, when α is large enough,
the geodesic path from p to q along the surface will remain on the plateau formed by
the object. This means that the geodesic path, which is also a shortest path, is restricted
within the shape boundary. Therefore, it reduces to the inner-distance used in IDSC.

On the other hand, when α=0, the geodesic distance on the surface degenerates to
the Euclidean distance, as illustrated for α=2 in Fig. 3. This is the distance used in SC.

The bending invariant signature uses geodesic distances along object surfaces. Let
a 3D volume V : Λ′ ⊂ R3 → [0, 1] has boundary ∂(V ), we first build a 3D volume
mask as following

V (x) =
{

1 if x ∈ ∂(V )
0 otherwise . (4)

Then, with a large enough aspect weight, the geodesic path on A(V ; α) is restricted
on the object boundary ∂(V ), which is used for building the bending invariant signa-
tures [10].

It is also worth mentioning that our work is related the work on shape analysis using
the diffusion distances [8, 30] and the Gromov-Hausdorff framework [7, 6].

2.3 Relations to Other Image Representations

Aside from the above representations, the aspect space also closely relates to many other
image representations or statistics. For example, when α → ∞, aspect space relates to
the total variation (TV) [29] in that only intensity values are taken into account. In this
case, the geodesic distance along between points becomes, up to a constant ratio, the
total variation of the geodesic path connecting them.

Another important motivation to our work is the Beltrami flow framework [34],
where an image is embedded as a surface in 3D space and differential properties of the
surface are used for low-level image processing. We expect future works along similar
directions in the aspect space.



3 Balancing Deformability and Discriminability for Shape
Comparison

3.1 Aspect shape context

We propose to use the aspect space framework for shape analysis. As shown in § 2,
for a given shape S as defined in equation (2), the geodesic distances between land-
mark points of S on A(S; α) varies from the Euclidean distance to the inner-distance
when α increases from 0 to a large positive value. This property provides a natural way
to unify the shape descriptors taking advantages of both distances, namely the shape
context (SC) [5] and the inner-distance shape context (IDSC) [22]. Motivated by this
observation, we present the aspect shape context (ASC) as below:
Definition: Let {pi}n

i=1 be n silhouette landmark points of S, its aspect shape context
(ASC) is defined as a set of n histograms on its aspect space A(S;α) as

ASC(S, α) = {Hi(S, α)}n
i=1 , (5)

where Hi(S, α) ∈ Rng×no is a ng×no histogram measuring the joint geodesic distance-
orientation distribution of landmarks w.r.t. point pi, such that the geodesic distances and
orientations are all computed w.r.t. A(S; α). Specifically, Hi(S, α) captures the joint
distribution of geodesic distances and orientations of all other points with respect to
point pi. In ASC, for the orientation, we use the angle between boundary tangent direc-
tion and the direction of the geodesic projected to the 2D image domain, which is an
extension of the inner-angle defined in [22]. The geodesic distance in our implementa-
tion is through the fast marching algorithm [32].

3.2 Comparing aspect shape context

How should we compare two shapes S1, S2 given their ASCs? The basic idea is to
compare two shapes by adaptively choosing the “best” aspect weight α. We expect that
a small α (such that ASC works like SC) will be used for rigid shapes while a large α
(such that ASC works like IDSC) for non-rigid ones.

We define the co-aspect α̂ as the one that produces minimum shape distances be-
tween S1 and S2

2.

α̂(S1, S2) = arg min
α

dH(ASC(S1, α), ASC(S2, α)) , (6)

where dH(., .) computes a distance between two sets of shape context histograms at a
fixed α (e.g., the “shape context” distance used in [5, 22]). Consequently, the distance
between S1, S2 is defined as the histogram distance that minimizes (6), i.e.,

dASC(S1, S2) = dH (ASC(S1, α̂(S1, S2)), ASC(S2, α̂(S1, S2))) . (7)

Another choice is to integrate the distances over α,

d′ASC(S1, S2)=
∫

dH(ASC(S1, α), ASC(S2, α))dα . (8)

2 If such α is not unique, the smallest one is chosen.



However, we observed that this definition is less effective than that in (7), since the
“smoothing” over all α may wash out the information provided by the right α.

Here we clarify a potential confusion. For two topologically equivalent shapes S1, S2,
one may guess that dASC(S1, S2) = 0 with a very large (theoretically infinite) co-
aspect, since they are the same up to a homeomorphic transformation. This is fortu-
nately not true, except when S1, S2 are related by an articulation. This observation is
very important, because it shows that ASC is not biased toward arbitrary deformations
while being able to handle articulation.

3.3 Discriminative deformability

To further understand the relation between aspect weights to shape deformation and dis-
criminability, we define the discriminative deformability for a set of shapes S={Si}|S|i=1

coming from the same class. The discriminative deformability of S, denoted as α(S), is

α(S) =
1

|S|(|S| − 1)

∑

1≤i<j≤|S|
α̂(Si, Sj) . (9)

Roughly speaking, the deformability of a class of object is defined as the average
aspect that minimizes the distances between image pairs from the class. Such a de-
formability naturally takes into account the discriminative information. For example, in
Fig. 1, we have shown the discriminative deformabilities of four classes of images. For
the pie-shaped devices (e.g., the second row of Fig. 1), each single shape seems to have
complex structures that can easily lead to articulation. However, by checking objects in
the class, we find no articulation at all and the global shapes of these devices remain
fairly rigid. Consequently, it has a relatively small discriminative deformability.

4 Beyond pairwise shape similarity

Recent work clearly demonstrated that adding context information to direct pairwise
shape similarity can substantially improver shape retrieval [40, 15, 41]. Under context of
a given shape we understand here its first K nearest neighbors. However, these methods
[40, 15, 41] mainly focus on improving the transduction algorithms. We demonstrate
that a ’better’ original distance matrix is also very crucial for the shape retrieval with
context information. The word ’better’ does not necessarily mean a better bull’s eye
score. Instead, it means the algorithm can balance the deformation and discriminability,
so that the retrieval results should have really similar view to the query. In other words,
even if the retrieved results are not from the same shape class, they have perceptual
resemblance to the query. Otherwise, totally different objects in the top retrieval results
may ruin the graph structure constructed by the shapes, which makes negative impact
for the graph transduction or diffusion processes to learn the shape manifold structure.
In order to show that ASC is suitable for context information based shape retrieval, we
use the Locally Constrained Diffusion Process (LCDP) introduced in [41] to learn the
sub-manifold structure for shapes.



In LCDP, a fully connected graph is constructed. The vertices are the data points
(shapes) and each edge is labeled with the strength of the connection P (i, j) = k(xi, xj),
where k is a kernel function that is symmetric and positivity preserving. In this paper,
given two shapes xi and xj , k(xi, xj) is defined by applying a Gaussian to dASC(xi, xj).
We then normalize row wise the matrix (P (xi, xj))i,j so that the sum of each row is
one. We obtain a stochastic matrix (P (xi, xj))i,j , which we denote with the same sym-
bol. Then, the original graph G is replaced by a K nearest neighbor (KNNs) graph GK

that has the edge weights defined as follows: PK(i, j) = k(xi, xj) if xj belongs to the
KNNs of xi and PK(i, j) = 0 otherwise. We also row wise normalize (PK(xi, xj))i,j

to a stochastic matrix. It represents one-step transition probabilities PK(xi, xj) from xi

to xj .
LCDP only considers the paths between the KNNs of xi and the KNNs of xj ,

which can be viewed as a soft measure of their KNNs’ compatibility. The probability
of transition from node xi to xj is high if all the the paths between points in KNNs(xi)
and in KNNs(xj) contain high strength. This restriction make the diffusion focus on
more meaningful paths, as KNNs have higher probability to be the same class. This
helps to remove the negative impact from far away noises. To reach this goal, LCDP
defines an iterative method to update probability of transition PKK

P t+1
KK = PK P t

KK (PK)T . (10)

where t controls the degree of diffusion, P 1
KK = P and (PK)T is the transpose of

PK . After several iterations updating, PKK can describe the manifold structure of the
shapes well and it is used as the final distances for retrieval. LCDP has been proved
to be able to learn the sub-manifold structure of shapes very well and obtain excellent
retrieval results [41]. With the help of LCDP, bull’s eye score on MPEG-7 data set can
reach the highest ever 95.24%, which is discussed in details below.

5 Experiments

5.1 Shape classification using MPEG7 dataset

The proposed framework and shape descriptor is tested for shape classification on a
commonly used MPEG7 CE-Shape-1 part B database [17]. The database contains 1400
silhouette images from 70 classes, where each class has 20 different shapes (some ex-
amples are shown in Fig. 4). The performance of different solutions is measured by the
so called bull’s eye score: every shape in the database is submitted as a query and the
number of shapes from the same class in the top 40 is counted. The bull’s eye score is
then defined as the ratio of the number of correct hits to the best possible number of hits
(which is 20× 1400).

We tested on the MPEG7 dataset using the distance dASC defined in (7), with α =
0, 10, . . . , 60,∞, where ∞ indicates the IDSC. We used 300 sample point son each
shape and 8×12 distance-orientation bins. Table 1 lists the performance along with
previous reported results. It is clear that the proposed ASC descriptor achieves excellent
classification rate that is comparable to the state-of-the-art. Example retrieval results by
ASC and IDSC are shown in Fig. 2.



Fig. 4. Typical shape images from the MPEG7 CE-Shape-1, two images from each class.

Table 1. Retrieval rates (bull’s eye) of different methods on the MPEG-7 data set

Alg. CSS Vis. Parts Shape Multiscale IDSC Hier.
[28] [16] Context [5] Rep. [1] [22] Procrustes [26]

Score 75.44% 76.45% 76.51% 84.93% 85.40% 86.35%

Alg. IDSC+ Triangle Shape ASC Layered Contour
EMD-L1 [23] Area [2] Tree [11] (proposed) Graph [19] Flexibility [38]

Score 86.56% 87.23% 87.70% 88.30% 88.75% 89.31%

Table 2. Retrieval rates (bull’s eye) of different context shape retrieval methods on the MPEG-7
data set

Alg. IDSC + IDSC + IDSC + IDSC + proposed approach +
LP [40] LCDP [41] LCDP+gp [41] Mutual graph [15] LCDP

Score 91.00% 92.36% 93.32% 93.40% 95.96%

Table 2 shows a combined result of LCDP and ASC and compares it to other
context-sensitive methods. The proposed method can reach the best ever result 95.96%
on MPEG7 data set. For using LCDP, we set K = 7 and number of iteration t = 19.

We also show the precision/recall curves of IDSC, the proposed ASC, and ASC with
LCDP in Fig. 5. We follow [4] for the precision/recall curves. Precision can be seen as
a measure of exactness or fidelity, whereas recall is a measure of completeness, which
is more informative for retrieval task. It is clear that ASC has better performance than
IDSC not only in the bull’s eye score, but also in the precision/recall curve. Moreover,
the LCDP improves the performance a lot, which demonstrates ASC provides a very
good input to context-sensitive shape retrieval.

In order to further demonstrate the reason why the proposed approach with context
information can obtain much better results, we show the bull’s eye score increment for
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Fig. 5. Precision/Recall curves of IDSC, ASC and ASC+LCDP on the MPEG7 CE-Shape-1
database
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Fig. 6. (a) The percent gain in bull’s eye retrieval rates for each class by the proposed approach.
(b) The percent gain in bull’s eye retrieval rates for each class in [41].

each class after LCDP in Fig. 6(a). Compared to Fig. 6(b), which is taken from [41],
none of the class bull’s eye score has obvious drop after LCDP. This demonstrates the
advantage of ASC compared to IDSC. The class which has the most obvious drop in
[41] is the class spoon. In Fig. 7, we compare the retrieval results on an example from
class spoon between IDSC+LCDP [41] (the first row) and ASC+LCDP (the second
row). The shapes with red rectangles mean wrong retrieval results. They come from
the class guitar. It is clear that the ASC+LCDP yields better results than IDSC+LCDP.
Only guitars with shape very similar to the query spoon remained.



Fig. 7. The retrievals of IDSC+LCDP [41] (the first row) and ASC+LCDP (the second row). The
shapes with red rectangle are the wrong results.

Fig. 8. Typical shape images from the Tari 1000 dataset, two images from each class

5.2 Shape classification using Tari 1000 dataset

In order to demonstrate the proposed approach can handle articulated shapes, we also
test it on recently constructed Tari 1000 data set [4] (see Figure 8), which is designed
to have large intra-class shape deformation. It is formed by extending the 180 data set
in [3] with shapes collected from various sources including [16, 31]. It consists of 1000
shapes with 50 class, each class contains 20 shapes. Many of the shapes are articulated
and have large deformation. On this dataset, Baseski et al. [4] have demonstrated an
effective shape matching algorithm based on using skeletal trees.

For the experiments on Tari 1000, we use exactly the same parameters as on MPEG7
dataset. For evaluation, however, the authors in [4] did not report the bull’s eye score
for the whole data set. Instead, they provided the precision/recall curve. We report both
of them. ASC can reach 95.44%, and with the help of LCDP, the bull’s eye can go to
nearly perfect 99.79%. For using LCDP, we set K = 10 and number of iteration t = 3.
The precision/recall curves are shown in Fig. 9.

6 Conclusion and future work

In this paper we introduce a general framework, aspect space, to simultaneously ad-
dress the deformation and discriminatingly problem. The framework naturally models
the degree of deformation that is allowed in a representation by adjusting a embed-
ding parameter named aspect weight. In this framework, we designed a new shape de-
scriptor named aspect shape context, which improves the original shape context and
inner-distance shape context in a standard shape retrieval benchmark testing, using the
MPEG7 CE-Shape-1 database. It also provides a very good input for context-sensitive
shape retrieval.

We also show that the framework is closely related to many existing image and
shape representations. These attractive properties indicate its potential for many inter-
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Fig. 9. Precision/Recall curves on Tari 1000 dataset. The result of “Tree Edit+Context” is from
[4]

esting future works. We are especially interested in the study of designing representa-
tions that address simultaneously the illumination and shape variations. Another topic
we would like to pursue is the shape descriptors without knowing silhouettes. One prac-
tical issue with the proposed shape descriptor is the computational cost. In addition to
seeking faster computational solution, we will also investigate supervised technology
to learn properties for each object class.
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