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Abstract— Projector video compensation aims to cancel the geometric and photometric distortions caused by non-ideal projection
surfaces and environments when projecting videos. Most existing projector compensation methods start by projecting and capturing a
set of sampling images, followed by an offline compensation model training step. Thus, abundant user effort is required before the
users can watch the video. Moreover, the sampling images have little prior knowledge of the video content and may lead to suboptimal
results. To address these issues, this paper builds a video compensation system that can online adapt the compensation parameters.
Our approach consists of five threads and can perform compensation, projection, capturing, and short-term and long-term model
updates in parallel. Due to the parallel mechanism, rather than projecting and capturing hundreds of sampling images and training the
model offline, we can directly use the projected and captured video frames for model updates on the fly. To quickly apply to the new
environment, we introduce a deep learning-based compensation model that integrates a fixed transformer-based method and a novel
CNN-based network. Moreover, for fast convergence and to reduce error accumulation during fine-tuning, we present a strategy that
cooperates with short-term and long-term memory model updates. Experiments show that it significantly outperforms state-of-the-art
baselines.

Index Terms—Projector compensation, Video compensation, Spatial augmented reality, Projector-camera system, Continuous
projection mapping

1 INTRODUCTION

Projectors are widely used in many applications, such as interactive
entertainment [2, 3, 27, 39], immersive display [32, 33, 41, 57, 60], and
spatial augmented reality [16, 34, 35, 53]. For immersive and accurate
visual experiences in a complex environment, projector compensation
is usually applied to correct geometric and photometric distortions due
to the environment or projection surfaces. Early approaches project
specifically designed sampling images onto the projection surface, and
independently estimate geometric and photometric distortions using
pixel correspondences [12, 36, 47, 50]. Recently, deep learning-based
methods have been proposed to jointly estimate geometric and photo-
metric distortions with a unified network [21, 31, 56]. These methods
show promising performance when the sampling image collection and
model training can be performed offline with some user effort.

Despite the progress achieved so far, current methods have three
major challenges for video compensation: (1) Existing methods mostly
require capturing many sampling images, and learning geometric and
photometric transformations offline. This process remains complex
and time-consuming for non-expert users. Moreover, users must redo
this process when the environment changes to some degree. (2) The
sampling images usually consist of handcrafted patterns or natural
images and have different data distributions compared to the actual
video frames users play. Using these samples to learn compensation
parameters may result in suboptimal performance. (3) Unlike single
images, videos, especially in lengthy formats like movies, present a
dynamic scenario where content evolves continuously within each cut.
There are noticeable variations in content between consecutive cuts
and the repetition of similar content across multiple cuts. However,
existing compensation methods treat videos as independent frames
without considering the characteristics of cuts and frames.

To address these video compensation challenges, we present a multi-
thread system called ViComp (Video Compensation), which comprises

• Yuxi Wang is with Hangzhou Dianzi University. E-mail:
yxwang@hdu.edu.cn

• Haibin Ling is with Stony Brook University. E-mail:
haibin.ling@stonybrook.edu.

• Bingyao Huang is with Southwest University. E-mail: bhuang@swu.edu.cn.
Corresponding author.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

Online prediction

Model update

Captured frames
𝑥"!, 𝑥"", . . . , 𝑥"#

Desired frames 
𝑥!$ , 𝑥"$ , . . . , 𝑥%$

Compensation frames
𝑥!∗, 𝑥"∗, . . . , 𝑥%∗

Pre-trained model

Projector-camera system

Synchronized frame pairs 𝑥'$ , 𝑥'∗ , 𝑥'∗ , 𝑥"'  

Model 
reset

Initialization 

Fig. 1: We consider video compensation and learn/update the compen-
sation model on the fly. Our system receives desired frames from a video
source that maintains continuity within a single cut but exhibits significant
differences across different cuts. To start, we use a base pre-trained
image compensation model to initialize the network. Afterward, compen-
sation frames are generated online and then projected onto a textured
non-planar surface via a projector-camera system. Meanwhile, we adjust
model parameters to the target environment using synchronized frame
pairs, which are formed by sampling from the desired frames, the corre-
sponding compensation frames, and the captured frames.

five threads and concurrently achieves online video compensation,
projection, data collection, and model update. An example of this
system’s application is shown in Fig. 1. We first initialize the base
compensation model using pre-trained parameters. Subsequently, we
compensate video frames using this base model and simultaneously
perform online model updates using synchronized frame pairs.

In ViComp, multiple threads are coordinated: the compensation
thread generates compensation frames and sends them to the projection
thread; the projection thread then projects the received frames onto
the surface to achieve high-quality visual effects; the capture thread
captures frames using a static camera at scheduled intervals; meanwhile,
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two additional threads collaborate to update the model parameters using
the desired frame, the projector input and the frame captured from the
observer’s viewpoint. Thanks to this collaboration, our system can
achieve video compensation and model updates in parallel.

Specifically, to rapidly generate high-quality compensation frames,
we employ an efficient network that consists of two subnets as the base
compensation model. The first subnet is a transformer-based network
that estimates the displacement field using a pair of images. Note that
we use the pre-trained model for this subnet without offline or online
fine-tuning. The second subnet is a CNN-based network that models
the photometric transformation function and generates high-resolution
compensation images from the low-resolution frontal view images with
color distortion. This network is efficient and can quickly converge to
the optimal solution even with minimal samples in new settings.

However, naive online model update strategies use every frame
to update the compensation model and may lead to overfitting and
error accumulation. To address these issues, we propose a novel model
update strategy that can leverage the knowledge of both the environment
and the video content. In particular, by considering the characteristics
that videos have a strong correlation between adjacent frames within a
single cut and difference across cuts, we employ two memory threads:
a short-term memory thread to update the model using every other
frame within a cut; and a long-term memory thread to update the model
using the first synchronized frame pair of each cut.

Our contributions are summarized as follows:
• We build an online video compensation system that compensates

frames and adjusts model parameters in parallel.

• The system employs an efficient base model that can generate
high-quality compensation frames and be optimized using a few
samples in new environments.

• we propose a model update strategy combining long-term and
short-term memory mechanisms that enable the compensation
model to adapt to the target configuration and video content
rapidly while reducing error accumulation.

• Experiments demonstrate the effectiveness of our system on video
compensation. It outperforms the state-of-the-art baselines.

Our source code is available at https://github.com/cyxwang/
ViComp.

2 RELATED WORK

2.1 Projector compensation
Projector compensation involves two key tasks: geometric correction
which calculates the corresponding positions of pixels between the
projected input and the captured frame, and photometric compensation
which estimates the reflectance properties and the color transformation
of each pixel. Detailed reviews can be found in [4, 15]. Traditionally,
to correct geometry, the geometric mapping function can be estimated
by obtaining pixel correspondences between the projector input and the
frames captured by a camera placed at the viewpoint. Most existing
methods project well-defined patterns or markers onto the surface, such
as structured light [14, 50]. Due to their high precision, these methods
have been widely used in many applications. Subsequently, some works
are devoted to simplifying this process by designing specific patterns.
Narita et al. [36] designed fiducial markers consisting of four types of
dot clusters, which can be detected in real-time and applied to dynamic
projection mapping. Then, Watanabe et al. [59] extended this work to
design the marker automatically. To make the marker imperceptibility,
Kagami et al. [25] inserted the 3×3 chessboard with a larger margin
into every sixth binary frame using a white light source. Li et al. [30]
obtained sparse correspondences by extracting and matching natural
features. Furthermore, some methods incorporate additional hardware,
such as infrared (IR) camera [17], depth camera [23, 48] for tracking
surfaces without visible patterns. They can avoid interference from
markers in dynamic projection mapping.

Photometric compensation generates a projector input that compen-
sates for the distortion of color and texture of the projection surface
and the photometric environment. Prior algorithms estimate the color

transfer function by projecting additional patterns. Akiyama et al. [1]
applied a perceptually-based optimization to generate compensation
images. Moreover, for dynamic mapping, Fujii et al. [12] adapted
the model according to the difference between the captured image
and the desired image. Bokaris et al. [5, 6] generated images using
a linear transformation matrix for dynamic surfaces with one-frame
delay. Kurth [29] corrected image color continuously by solving the
projector’s response curve, the environment lighting in the scene, and
the target object’s surface color. Hashimoto et al. [18] utilized the offset
of the adjacent moment to update the inter-pixel correspondence and
optimized the current reflectance using the present correspondence and
the sum of past correspondence. Considering the effect of inter-pixel
coupling, Shih et al. [47] estimated the dynamic reflectance using the
projected images as calibration patterns. As the successful application
of deep learning in computer vision, Huang et al. [19] proposed an
end-to-end trainable method that learns the photometric transformation
function from the projected and captured image pairs. Kageyama et
al. [26] presented an online deblurring method for video display. This
method extracts information from the current frame and the previous
as well as its projecting results using two U-Net-like subnets and then
generates a compensation image by incorporating this information.

Additionally, some methods estimate geometric and photometric
distortions jointly using well-designed patterns [40, 45]. Recently, the
latest works trended to design deep neural networks to model both
geometric and photometric transformation functions within a unified
framework. Huang et al. [20, 21] proposed an end-to-end method that
consists of a coarse-to-fine process for calculating warping field and a
U-Net [42] like network for modeling the photometric transformation
function. Then, Wang et al. [56] improved its efficiency for high-
resolution applications by introducing the pixel shuffle operation. Li
et al. [31] proposed a physics-based framework that compensates for
geometric distortion and color deviation by considering the response
function, geometric displacement, and the reflectivity of textured sur-
faces using natural images. Erel et al. [11] presented a solution for
geometric and color compensation by training a neural reflectance field
using black, white, and lollipop-illuminated frames. These trainable
methods can generate high-quality compensation images with a small
amount of training data. However, they require offline sampling image
collection and model training and thus are less user-friendly to video
compensation. Moreover, due to the lack of prior knowledge of video
content, the model optimized using offline samples cannot achieve the
best compensation effect for target videos. Thus, online methods, e.g.,
test-time adaptation ones are preferable for video compensation.

2.2 Test-time adaptation methods

For models that are pre-trained in the source domain, test-time adapta-
tion improves their performance on the target domain in the absence
of source data and the label of test input during inference. Most of
the existing methods [24, 51, 54] leverage pseudo-labeling or entropy
minimization techniques to address this problem. Wang et al. [54]
adapted the pre-trained model and update the parameters in BatchNorm
layers by minimizing the entropy. Iwasawa and Matsuo [24] focused on
adjusting only the linear layer at test time to reduce their computation.
Nguyen et al. [37] employed an invariance regularization technique and
updated affine parameters using an unsupervised surrogate loss function.
Instead of revising the parameters directly, some approaches [52, 55]
use teacher-student strategies to average model weights. These methods
exhibit significant improvements when the test data originates from
the same domain. However, as the environment continually changes in
the real world, models tend to forget the knowledge acquired during
pre-training, and the noise can lead to error accumulation in lifelong
adaptation. To prevent forgetting, Wang et al. [55] restored a small
subset of model parameters from the source model randomly. Brahma
and Rai [7] took into account the model uncertainty and restored only
irrelevant parameters based on the Fisher Information Matrix. Döbler
et al. [10] introduced a mean teacher with symmetric cross-entropy
loss.

Different from the applications of test-time adaptation methods,
the training samples with ground truth can be obtained with a one-
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frame delay in the projector-camera system. Thus, in our task, fine-
tuning using these samples can improve the compensation performance.
However, due to the similarity of video content, the continuous updating
process may lead to overfitting and error accumulation. This is a key
concern that needs to be addressed in our online update method.

2.3 Our method
Unlike existing image compensation methods [1, 11, 12, 14, 25], we
develop ViComp, an online video compensation system using deep
neural networks under the assumption that users play videos in new
environments where lighting, projection surface, and reflections are
unknown and remain constant.

Drawing inspiration from the deep learning-based compensation
methods [21, 31], we introduce two subnets to model both the geomet-
ric and photometric transformation functions. Unlike these methods
requiring training samples from the target environment, our base model
performs well using pre-trained parameters, so it can be easily config-
ured to unknown environments.

To enhance display quality, motivated by the adaptive compensation
method [12], we update our compensation model during video playback
without manual intervention. But different from [12], our model update
process not only considers the difference between captured frames and
desired effects but also uses synchronized captured and projected frame
pairs as training data. Notably, for the specific video playback task, our
method employs an online update strategy that combines long-term and
short-term memory models based on video characteristics, where the
contents of long videos exhibit strong consistency and distinctiveness.
Moreover, to prevent overfitting and reduce accumulated errors during
model update, inspired by the novel test-time adaptation method [55],
we introduce an averaging strategy to the long-term model update
process. This online update strategy allows our base model to quickly
adapt to the target configuration and video contents.

Furthermore, considering the requirement for real-time projection in
the video compensation task, our system integrates projection, captur-
ing, video compensation, and model update into a parallel framework
to improve its efficiency.

In summary, to the best of our knowledge, our ViComp is the first
online video compensation system that compensates frames and adapts
model parameters in parallel. It is user-friendly and can be rapidly
configured to unknown environments with good performance.

3 PROJECTOR COMPENSATION PROBLEM

In this section, we first provide a brief description of the compensa-
tion problem and then introduce the architecture of our base video
compensation model.

3.1 Problem formulation
Our compensation model is designed to compensate for geometric and
photometric disturbances online. Let the projector input be x, the
global lighting be g, and the surface reflection parameters be s. Denote
G as the function that maps the projector input to the camera view,
and P be the function for mapping the input frame pixel color to the
uncompensated camera-captured ones. Then the entire projection and
capturing process can be written as:

x̃= G(P(x;g,s)) (1)

where x̃ is the captured frame. The goal of projector compensation is
to find the projector input image x∗ by modeling the pseudo-inverse of
P and the inverse of G, such that when projected, the camera-captured
frame matches the ideal viewer-perceived frame x′:

x∗ = P†(G−1(x′;g,s)) (2)

Inspired by [21], s and g can be implicitly captured by the camera-
captured surface image s̃0:

s̃0 = G(P(x0;g,s)) (3)

where x0 is an input image with plain gray illumination. Thus, Equ. (2)
can be rewritten as:

x∗ = P†(G−1(x′),G−1(s̃0)) (4)

Deep neural networks are employed in [21] to model G−1 and P† in
Equ. (4). The parameters are trainable through the use of frame pairs
(x′,x∗). However, a significant challenge arises because G−1 in [21]
cannot be estimated through pre-training. Consequently, additional
training samples are required when applying it with different settings.
In this paper, inspired by [31], considering that the geometric correction
process can be viewed as the estimation of the displacement field, we
reformulate Equ. (4) as:

x∗ = P†(W(x′,u),W(s̃0,u)) (5)

where u represents the calculated displacement field from the camera
view to the projector input, while W denotes the warping operation
that transforms the captured frame into the projector’s canonical frontal
view.

According to Equ. (5), we transform the problem of fine-tuning the
parameters in both geometric transformation function G−1 and the pho-
tometric transformation function P† using pre-collected training data
into the task of estimating the displacement field u during initialization
and gradually updating the parameters of photometric transformation
function P† during video playback.

3.2 Base compensation network
Our base compensation network consists of two subnets that estimate
the displacement field u and model the photometric transformation
function P† respectively. The architecture is shown in Fig. 2. To
improve the display quality, we input high-resolution frames into the
base model and subsequently generate high-resolution compensation
frames for projection.

3.2.1 Displacement field estimation
Denote the displacement field estimation function as F , then the dis-
placement field u in Equ. (5) can be estimated by:

u= F(x̃,x) (6)

Inspired by [31], we employ FlowFormer [22], a novel transformer-
based network to model F . In this network, a Siamese encoder is
used to extract features from both the source and target images, and
an encoder and a recurrent decoder are leveraged to encode the 4D
cost volume to a cost memory and estimate the displacement of each
pixel from the cost memory. The detailed architecture can be found
in [22]. Particularly, in our system, we use the parameters pre-trained
on the Sintel dataset [8] provided by [22] directly. Benefiting from it,
the displacement field u can be pre-calculated using a pair of texture
images during initialization.

Furthermore, as shown in Fig. 2, to estimate the displacement field
more accurately, we preprocess the captured image before estimating
u. During initialization, we first project a gray image s0 and capture
the surface image s̃0. Then we find the field of view (FOV) from s̃0
using the Ostu’s method [38] and extract the region of interest (ROI)
from s̃0. After that, we project an additional texture image xa onto the
surface and obtain the camera-captured image x̃a, then extract its ROI
and rescale the cropped patch to match the resolution of xa. Finally,
we estimate the displacement field u between the cropped patch of x̃a
and xa using F .

3.2.2 Photometric compensation
To adapt parameters of the base compensation model to unknown envi-
ronments, we utilize the photometric compensation subnet introduced
in CompenNeSt++ [21] to model the photometric transformation func-
tion P†. This network consists of a Siamese encoder and a decoder
with six convolutional layers, two transposed convolutional layers, and
five skip convolutional layers. Additional details can be found in [21].
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Fig. 2: The base model of video compensation. During initialization (in the gray dash bounding box), we project a gray image x0 and a texture
image xa onto the surface and capture the images s̃0 and x̃a. We extract the region of interest (ROI) from captured images and estimate the
displacement field u from the cropped ROI of x̃a to xa using a displacement field estimation function F . Then, we get the warped surface s̃w from
s̃0 by warping operation. During online testing, according to the field of view (FOV), the video frame xk is converted to the desired frame x′

k, and
then its ROI is sent to the base compensation model, which consists of a warping operation and a photometric transformation function P†. After that,
the high-resolution compensation frame x∗

k is generated.

This architecture demonstrates good performance on photometric com-
pensation and can be efficiently trained with limited training samples.
However, it is essential to note that the computation of this network
increases significantly with the resolution of the training samples. To
address this issue without compromising the performance of compensa-
tion, we use it to obtain low-resolution compensation frames, and then
acquire the high-resolution projector input via an upsampling operation.
Thus, Equ. (5) can be reformulated as:

x∗ =⇑ (P†(W(x′,u),W(s̃0,u))) (7)

where ⇑ (·) denotes the upsampling operation, which is realized by the
bicubic interpolation algorithm.

4 PARALLEL VIDEO COMPENSATION SYSTEM

In this section, we will introduce the proposed ViComp system and its
key components.

4.1 Multithread system
The proposed ViComp system consists of five threads: the primary
thread Tp for projection, and four auxiliary threads Tc, Tm, Ts, Tl
for capturing, compensation, short-term memory model update, and
long-term memory model update, respectively. Their collaboration is
described in Fig. 3.

During initialization, we first project a gray image x0 and a tex-
ture image xa with the resolution of 1024×1024 onto the projection
surface, and capture the corresponding images s̃0 and x̃a from the
observer’s viewpoint. Afterward, we estimate the displacement field
u from x̃a to xa according to Section 3.2.1, and generate the warped
surface image s̃w from s̃0 using u with bilinear interpolation. Then we
initialize parameters of the short-term memory model fθ0 and the long-
term memory model gθ0 using the pre-trained model provided by [21].
After that, all auxiliary threads start and wait for data exchange.

For online compensation and model updates, as summarized in Al-
gorithm 1, the compensation thread Tm reads a video frame xk from
memory and converts it to the desired frame x′

k, then generates the
compensation frame x∗

k using the short-term memory model fθn−1 . The

details of the online compensation process are described in Fig. 2. Ad-
ditionally, due to the challenge of achieving hardware synchronization
in projector-camera systems, we synthesize the projector input using
x∗

k and print an ArUCo marker [13] next to x∗
k at every other frame

to implement a soft synchronization. After receiving the synthetic
frame, the projection thread Tp projects it onto the surface. Meanwhile,
the capturing thread Tc collects images every 0.01s and recognizes
the marker in the captured frame x̃k. Subsequently, the synchronized
frame pairs (x′

k,x
∗
k ) and (x∗

k , x̃k) are sent to model updating threads.
By learning knowledge from these synchronized frame pairs, the short-
term memory model update thread Ts and long-term memory model
update thread Tl cooperate to adapt the base model to the target con-
figuration. Thanks to the parallel processing of these multiple threads,
our system can perform online compensation, projection, and model
updates automatically. Therefore, it can be easily and quickly applied
to different configurations with high display quality.

4.2 Online model updates
In ViComp, we present an online model update strategy to adapt the
base compensation model to the target environment during video play-
back.

As shown in Fig. 3, the video used for projection generally consists
of multiple cuts, with the content between each cut having continuity,
while the content across adjacent cuts typically varies drastically. Based
on this observation, we introduce a short-term memory model to learn
the local information (e.g., video cut content) within the single cut
and a long-term memory model to learn the global information, e.g.,
environmental knowledge of the scene and the entire video (e.g., color
tunes, styles).

In the short-term memory model update thread Ts, we fine-tune the
model fθn using each synchronized frame pairs (x̃k,x

∗
k ) and (x∗

k ,x
′
k)

within a cut according to the loss function described in Equ. (8):

L= Lcmp +Lvis

= ℓmix
(
P†(W(x′

k,u), s̃w),P†(W(x̃k,u), s̃w)
)
+ ℓmix

(
x′

k, x̃k

)
= ℓmix

(
x∗

k , fθn(x̃k)
)
+ ℓmix

(
x′

k, x̃k

)
(8)



Fig. 3: Pipeline of ViComp. The system consists of five threads. The first two threads are timed to start: Tp for initialization and projection, and Tc for
collecting synchronized frame pairs. The third thread Tm reads the source video and generates the compensation frame. The last two threads Ts and
Tl work in coordination, updating model parameters using the synchronized image pairs to adapt to the target environment. The rectangular blocks
indicate different image data, while square blocks indicate different models. Solid blocks are examples of empty blocks. The solid lines with arrows
represent the transmission of image data between threads, while the dashed lines with arrows represent the transmission of model parameters.

Algorithm 1 Online compensation and model update algorithm

Require: Video frames X′ = {x′
t }T

t=0, pre-trained model of displace-
ment field estimation function F , pre-trained model of photometric
transformation function P†, cut index H = {hl}L

l=0.
Ensure: Captured frames X̃ = {x̃}Cc=0

1: Initialization:
2: Project a gray image s0 and capture the surface s̃0, then project a

texture image xa and capture the image x̃a.
3: Calculate FOV based on s̃0.
4: Estimate displacement u from x̃a to xa using the pretrained model

of F , then obtain the warped surface s̃w .
5: Initialize the short-term memory model fθ0 , and the long-term

memory model gθ0 using u and the pre-trained model of P†.
6: Denote the short-term memory model index as n = 0,1, ...,N as

and the long-term memory model index as m = 0,1, ...,M

7: while t <= T do
8: Convert video frame xt to the desired frame x′

t
9: if t >= hl then

10: Reset fθn using long-term memory model gθm

11: Compensation using short-term memory model: x∗
t =

fθn(x
′
t , s̃w) = P†(W(x′

t ,u), s̃w)
12: Project x∗

t
13: Capture the frame x̃c
14: if the k-th frame can be recognized then
15: if k > hl then
16: l← l +1,m← m+1
17: Update long-term memory model gθm using frame pairs

(x′
k,x

∗
k ) and (x∗

k , x̃k)

18: n← n+1
19: Update short-term memory model fθn using frame pairs

(x′
k,x

∗
k ) and (x∗

k , x̃k)

20: t← t +1
return X̃ = {x̃}Cc=0

where Lcmp denotes the compensation loss calculated between the
projector input x∗

k and the compensation frame generated from the
captured image x̃k, Lvis denotes the visual loss computed between the
desired effect and the captured frame, and ℓmix represents a combination
of l1 norm, l2 norm and the structure similarity [58].

Using this naive fine-tuning method, the short-term memory model
can be quickly optimized to a local optimum with a few frame pairs.
However, overfitting and error accumulation may appear in this model
update process after multiple training iterations with similar content.
As a result, it leads to poor display quality. To handle this issue, we
leverage a long-term memory model update thread that keeps track of
global information using frame pairs with different content to reset the
short-term memory model after each cut transition.

In the long-term memory model update thread Tl , inspired by [55],
we preserve the knowledge from two models: the long-term student
model gθ ′m

and the long-term teacher model gθm . The long-term student
model gθ ′m

extracts features from the long video, and the parameters
are updated according to the loss function:

L= Llt +Lls +Lvis

= ℓmix
(
x∗

k ,gθ ′m
(x̃k)

)
+ ℓmix

(
x∗

K ,gθm(x̃k)
)
+ ℓmix

(
x′

k, x̃k

) (9)

where Llt and Lls represent the compensation loss calculated using the
teacher and student models respectively.

After updating the student model, the long-term teacher model gθm
can be adjusted by:

gθm = αgθm +(1−α)gθ ′m (10)

where α is a smoothing factor, and is set to 0.6 in our experiments. In
the transition of different cuts, the short-term memory model fθn needs
to be reset by the long-term memory model gθm .

The collaboration of long-term and short-term memory models en-
ables our compensation model to not only acquire knowledge from
the environment but also extract information about the video content.
Consequently, it effectively prevents overfitting and reduces error accu-
mulation.
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Fig. 4: Four examples of surfaces used in our experiments. (a) (b) (c)
are poster papers with different textures, and (d) is a fabric pillow.

5 EXPERIMENTS

5.1 System configuration

Our projector-camera system comprises a Sony α6400 camera and an
EPSON projector with a resolution of 1920×1080. An Elgato Cam
Link 4K video capture card is used to collect real-time data from the
camera and then transfer it to the processor. The projector is placed
around 1.0 meters in front of the projection surface, while the camera
is placed in the range of 0.2 to 0.5 meters away from the projector.

We use four different texture surfaces for projection, including three
poster papers with different patterns and one striped fabric pillow
(Fig. 4), each paper is covered with plastic film. In each experiment, we
arrange them with different deformation and adjust camera settings such
as exposure, focus, and white balance manually based on the ambient
light and surface material. These settings remained fixed during data
capture.

Our system is built on an Intel Core i9 13900K CPU, and the online
compensation and model update processes are implemented using Py-
torch and executed on an NVIDIA GeForce RTX 4090 GPU. We utilize
the Adam optimization algorithm [28] with the learning rates of 0.0001
for updating the short-term memory model and 0.001 for updating the
long-term memory model one step at each iteration.

5.2 Experiment settings

The testing video sequences are extracted from two open-source films
provided by Blender [9]. We take all the frames in each video except
for the opening credits with a large amount of black background and
then resize them to 1024×1024. The cut indexes are initially detected
by [49] and then revised manually. The details of these sequences are
listed in Tab. 1.

Table 1: Video sequences used for compensation. (BBB: Big Buck
Bunny.)

Data Duration Resolution #Frame #Cut

BBB [43] 10m34s 1920×1080 18930 137
Spring [44] 7m44s 2048×858 11040 104

For evaluation, we start a new thread for saving ROI of all synchro-
nized frame pairs (x̃,x′) with the resolution of 256× 256, and then
measure the similarity between them using PSNR, RMSE, SSIM [58]
and ∆E (the CIE standard for perceptual color differences) [46].

Table 2: Quantitative comparison of different methods. We sequentially
projected two videos onto three surfaces with different settings. Here are
the averages of the results for six setups.

Method PSNR↑ SSIM↑ RMSE↓ ∆E ↓

Uncompensated 15.1456 0.3395 0.3298 17.1034
FFCmpNeSt 18.6041 0.5959 0.2155 13.7359
CmpNeSt-8 23.0093 0.6489 0.1358 7.9959
CmpNeSt-500 23.3515 0.6693 0.1322 7.6656
ViComp (ours) 23.8559 0.6833 0.1280 7.9059

5.3 Comparison with different compensation methods
In this experiment, as there is no existing online video compensation
method, we compare the proposed ViComp with CompenNeSt++ [21],
a state-of-the-art offline full compensation method. To apply to an
unknown environment, CompenNeSt++ should be trained/fine-tuned
using additional natural image samples collected under the target config-
uration. Thus, under each setup, we first project 500 natural images onto
the surface and collect image pairs in this static environment as training
samples. During offline training, we initialize CompenNeSt++ using
the pre-trained photometric compensation model provided by [21],
which is trained on synthetic data from 100 setups, and then fine-tune
the parameters of both G−1 and P† using 8 natural image samples
(CmpNeSt-8) and 500 natural image samples (CmpNeSt-500) respec-
tively. All hyper-parameters are set as [21]. During video playback,
our online compensate frames using ViComp and CompenNeSt++ with
the two fine-tuned models and then project them onto the surface. Sub-
sequently, we evaluate the display quality of these methods. For a
fair comparison, the photometric compensation model of each method
uses low-resolution frames as input, and the high-resolution projector
output is obtained through upsampling. Additionally, we also evaluate
the method that estimates displacement field using FlowFormer and
compensates frame color using the pre-trained photometric compen-
sation model in CompenNeSt++. We name this combined method
FFCmpNeSt.

From the results in Tab. 2, it can be observed that the proposed online
video compensation system achieves significantly better display quality
compared to CompenNeSt++ fine-tuned with 8 samples (CmpNeSt-8),
while slightly surpassing the results obtained by that fine-tuned with
500 samples (CmpNeSt-500) on PSNR/SSIM/RMSE. In terms of the
basic model structure, CompenNeSt++ uses grid sampling as the main
method for estimating geometric deformations. As ViComp employs
a transformer-based method, it performs better than CmpNeSt-8 and
CmpNeSt-500 in handling surface deformations, especially in cases
where the surface shape is complex. As FlowFormer can not address
the issue caused by surface texture content, the end-to-end methods
(CmpNeSt-8 and CmpNeSt-500) achieve better geometric correction ef-
fects if the surface texture is easily confused with the projected content.
In terms of model fine-tuning, CmpNeSt-8 and CmpNeSt-500 need to
acquire additional samples in advance so that they are too complex and
time-consuming for non-expert users. Furthermore, they can only learn
environmental information, as these samples are unrelated to the video
content. Additionally, due to the use of fewer samples for fine-tuning,
the display quality of CmpNeSt-8 is consistently lower than that of
CmpNeSt-500. In contrast, ViComp directly uses synchronized frame
pairs to update the model during video playback. It is user-friendly and
can adapt to both the current scene environment and video content.

We also show an example of captured frames in Fig. 5. At the
beginning of video playback, the display quality obtained by ViComp
is slightly lower than that of CmpNeSt-8 and CmpNeSt-500. However,
as the video progresses, our ViComp gradually adapts to the current
configuration and learns knowledge of video content from preceding
frames, so that it achieves better display quality in subsequent frames.
CmpNeSt-8 learns limited information from eight training samples,
resulting in the loss of high-frequency details. CmpNeSt-500 achieves
good compensation effects in the entire sequence, while its performance
is poorer than our method for parts close to pure white or black. Due to



Table 3: Running time of the proposed framework. We projected the video “Spring” ten times. Here is the average running time of the main
components. Note that the time spent on displacement estimation is the time taken for flow inference.

Displacement estimation Projection Capturing & Recognition Compensation Short-term update Long-term update

2948.8096 24.9066 6.2155 0.8110 5.4570 7.2575
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Fig. 5: Qualitative comparison. Project the video “BBB” onto the surface “paint”. From top to bottom: desired frame, uncompensated, captured
frames with different methods (FFCmpNeSt, CmpNeSt-8, CmpNeSt-500, ViComp). From left to right: frame #480,2201,4274,6087,7857,9487,10098.

the pre-trained model not being fine-tuned with data from the current
configuration, the captured frames obtained by FFCmpNeSt differ
significantly from the desired effects.

Next, we give the average computational consumption of the main
components of our system. As shown in Tab. 3, the offline displacement
field estimation takes about 3 seconds, while projecting a frame in the
primary thread costs approximately 25 milliseconds. The running time
for compensating is under 1 millisecond per frame, and the time needed
for updating the parameters of our compensation model is about 5.5
milliseconds per iteration. Therefore, benefiting from the cooperation
of multi-threads, the proposed system can achieve real-time projection
compensation and model update under our experimental conditions.

5.4 Comparison with different model update strategies

In this section, we show the effectiveness of our model update strat-
egy. In our system, the parameters of the displacement field estimation
network are frozen during the model update and only the parameters
of the photometric transformation estimation network are adjusted. To
ensure a fair comparison, we pre-estimate a displacement field in each
setup and then online adjust parameters of P† by sequentially activat-

Table 4: Quantitative comparison of different models update strategies.
We projected two videos onto three different surfaces. Here are the
averages of the results for six setups. (S is the abbreviation of the short-
term memory model, and L is the abbreviation of the long-term memory
model. FineCoTTA: Fine-tuned (S) + CoTTA (L))

Method PSNR↑ SSIM↑ RMSE↓ ∆E ↓

Uncompensated 15.5524 0.3467 0.3093 15.5923
Pre-trained 19.8838 0.5886 0.1859 11.3167
Fine-tuned (S) 22.7853 0.6011 0.1518 8.5260
Fine-tuned (L) 23.2339 0.6423 0.1332 8.4541
CoTTA(L) 20.7329 0.6063 0.1698 10.6009
FineCoTTA 22.7181 0.6429 0.1390 8.5822
ViComp (L) 23.3521 0.6517 0.1303 8.1515
ViComp (S+L) 24.0956 0.6689 0.1214 7.4182

ing short and long-term memory model update threads with different
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Fig. 6: Qualitative comparison. Projecting the video “Spring” to the surface “wool”. From top to bottom: desired frame, uncompensated, captured
frames with different model update strategies ( Pre-trained, Fine-tuned (S), Fine-tuned (L), CoTTA (L), FineCoTTA, ViComp (L), ViComp (S+L)).
From left to right: frame #487,1501,5053,5503,6374,8436,9095.

update strategies. First, we directly compare with the pre-trained model
of P† provided by [21]. Subsequently, We enable the long-term and
short-term threads respectively and utilize the naive fine-tuning method
for parameter adjustment in the activated model update thread. These
two model update approaches are referred to as Fine-tuned (S) and
Fine-tuned (L). Following this, we evaluate the method that updates
the compensation model by the state-of-the-art test time adaptation
approach CoTTA [55] using the first synchronized frame pairs of each
cut and refer to it as CoTTA (L). The hyper-parameters of CoTTA are
set as specified in [55]. Additionally, we replace our long-term memory

model update strategy with CoTTA and name this combined method
FineCoTTA. Finally, we disable the short-term memory update thread
of ViComp and denote it as ViComp (L). To mark the active state of
each model update thread, we represent ViComp as ViComp (S+L).
In this experiment, the high-resolution projector input of each method
is still obtained through bicubic interpolation. The data acquisition
method and model update frequency used during each thread are consis-
tent with ViComp. The learning rates of short and long-term memory
model update processes are set to 0.0001 and 0.001 respectively.



In Tab. 4, compared with other methods, benefiting from the coopera-
tion of short-term and long-term memory model update, ViComp (S+L)
achieves the best display quality in terms of PSNR, SSIM, RMSE, and
∆E. Three factors contribute to this notable performance. First, by em-
ploying every synchronous image pair to update the short-term model
via the naive fine-tuning method, Fine-tuned (S) enables the parame-
ters to rapidly adapt to the target environment and the played content.
However, as the main loss function involves the distance between two
compensated images, frequent training with frame pairs containing
similar content may lead to error accumulation and overfitting so that
the captured images lose some details. Consequently, Fine-tuned (S)
achieves higher PSNR and lower SSIM in the entire video. Second, due
to the limited number of training samples and iterations, updating the
model with the first frame pair after each cut transition results in lower
scores at the beginning of video playback. The performance of meth-
ods using only the long-term memory model update strategy (ViComp
(L) and Fine-tuned (L)) improves as the number of updates increases.
Third, in ViComp (L), we retain the averaging mechanism but omit
the stochastic model parameter reset strategy used in CoTTA. Because
unlike tasks commonly addressed by test-time adaptation methods, our
system can obtain pairs of projection-captured frames during video
playback in a static environment. These frame pairs can be used as train-
ing data with ground truth to fine-tune the model for better adaptation
to the current configuration and video content. The scores of CoTTA
(L) and FineCoTTA show that this parameter reset method is unsuitable
for our task, while the fact that ViComp (L) obtains slightly higher
scores than Fine-tuned (L) demonstrates the averaging mechanism can
further reduce error accumulation during model update. In conclusion,
benefiting from the use of long-term and short-term memory model
update strategy, ViComp (S+L) achieves the best display quality.

We also show the qualitative results in Fig. 6. At the beginning of
video playback, due to using all synchronized frame pairs for model
updates, Fine-tuned (S) rapidly converges and obtains captured effects
close to the desired frames. While, since only several frame pairs with
different content are used to update the model, the display quality of
Fine-tuned (L) is slightly lower than that achieved by Fine-tuned (S). As
the video plays continuously, the naive fine-tuning method tends to for-
get the previous models and accumulate errors in the updating process,
gradually losing image details. In contrast, as CoTTA restores the pa-
rameters of the source model stochastically, CoTTA(L) and FineCoTTA
which adjust parameters using CoTTA achieve a slightly better display
quality than the pre-trained model, even after multiple iterations. Our
system employs an averaging mechanism to update the long-term mem-
ory model gradually and continually resets the short-term memory
model after a cut transition. Benefiting from this model update strategy,
it can converge to the optimal solution quickly and reduce the accumu-
lation of errors to some extent. As a result, our ViComp (S+L) achieves
the best performance across the entire video.

6 DISCUSSION

In our system, estimating the displacement field using an optical flow-
based method allows for quick adaptation to different environments.
However, environmental disturbances, such as significant displacement
differences between pixels, textures on the surface closely resembling
those in the projected image, and highlights and shadows on the surface,
significantly impact its accuracy. Although projecting an additional
natural image with a rich texture can enhance the accuracy of estimating
the displacement field to some extent, more stable geometric correction
methods should be explored in future studies.

Additionally, as it is easy to implement without requiring exten-
sive data collection, the proposed system is user-friendly and can be
effectively applied in scenarios that require continuous video play-
back. However, since our photometric compensation method relies
on pre-captured surface images, it becomes less effective when the
configuration changes. Therefore, aiming to apply it to dynamic envi-
ronments, a photometric compensation model with fewer constraints is
expected.

7 CONCLUSION

This paper builds a user-friendly online video compensation system for
projector applications in unknown environments. The system maintains
five threads in parallel to ensure simultaneous video compensation,
data collection, and model update. To enhance the efficiency of video
compensation and model update, we present a base model that can
generate compensation frames with high display quality and can be
rapidly optimized with a small amount of data during testing. Further-
more, to improve the video compensation performance, by taking into
account the strong correlation between adjacent frames within a single
cut and the difference across different cuts, we propose a model update
strategy that leverages a long-term memory model to acquire knowl-
edge about the target environment and a short-term memory model
to extract information about the video content. Benefiting from these
techniques, our system can compensate video frames and adapt to the
target environment without manual intervention.
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