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Abstract

Bird’s-eye-view (BEV) map layout estimation requires an accurate and full under-
standing of the semantics for the environmental elements around the ego car to
make the results coherent and realistic. Due to the challenges posed by occlusion,
unfavourable imaging conditions and low resolution, generating the BEV semantic
maps corresponding to corrupted or invalid areas in the perspective view (PV) is
appealing very recently. The question is how to align the PV features with the
generative models to facilitate the map estimation. In this paper, we propose to
utilize a generative model similar to the Vector Quantized-Variational AutoEncoder
(VQ-VAE) to acquire prior knowledge for the high-level BEV semantics in the
tokenized discrete space. Thanks to the obtained BEV tokens accompanied with
a codebook embedding encapsulating the semantics for different BEV elements
in the groundtruth maps, we are able to directly align the sparse backbone image
features with the obtained BEV tokens from the discrete representation learning
based on a specialized token decoder module, and finally generate high-quality
BEV maps with the BEV codebook embedding serving as a bridge between PV
and BEV. We evaluate the BEV map layout estimation performance of our model,
termed VQ-Map, on both the nuScenes and Argoverse benchmarks, achieving
62.2/47.6 mean IoU for surround-view/monocular evaluation on nuScenes, as
well as 73.4 IoU for monocular evaluation on Argoverse, which all set a new
record for this map layout estimation task. The code and models are available on
https://github.com/Z1zyw/VQ-Map.

1 Introduction

BEV layouts represent high-dimensional structured data that encompasses significant prior knowledge,
particularly regarding road structures. While current methods for BEV map layout estimation mainly
focus on constructing dense BEV features [2, 1, 3] for semantic segmentation as map prediction,
they often overlook the incorporation of map prior knowledge. Additionally, occlusion and inherent
challenges in depth estimation often lead to inaccuracies in dense features, especially in the areas
that are corrupted or invalid in the PV. These factors contribute to incoherent and unrealistic BEV
layout results, often with numerous artifacts (see Fig. 1). Yet, humans can rely solely on partial
observations of a scene in the PV to imagine the entire coherent BEV layout elements. A natural
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Figure 1: We showcase the prediction results in various environmental conditions (day, rainy and night from
top to bottom). Our VQ-Map produces more reasonable results, even for areas that are not directly visible, while
significantly reducing artifacts. Color scheme is the same as in [1].

approach to imitating the human imagination process is to leverage generative models to learn the
prior knowledge from the groundtruth BEV map layouts. However, the question is how to align the
PV features with the generative models to facilitate BEV map estimation.

To this end, we propose a novel pipeline called VQ-Map (see Fig. 2), which aligns the generative
models well in the spirit of discrete tokens. In specific, VQ-Map utilizes a generative model similar
to VQ-VAE [4] to encode the groundtruth BEV semantic maps into tokenized, discrete and sparse
BEV representations, termed BEV tokens, accompanied with a discrete embedding space (i.e., the
codebook embedding). Each BEV token is the index of the nearest neighbor in the codebook
embedding for an encoded BEV patch feature, representing the high-level semantics of a BEV patch.
BEV tokens serve as a new classification label to directly supervise the PV feature learning via
a specialized token decoder in our pipeline. The training of the generative model and the token
decoder module is separated. By aligning with the sparse BEV tokens, our token decoder module
is able to rely solely on sparse backbone features directly queried by token queries for BEV token
prediction using an arbitrary transformer-like architecture [5–7]. Simultaneously, directly employing
these sparse features for token prediction bypasses the challenges of building accurate dense BEV
features in common practice. The predicted tokens can be integrated into BEV embeddings through
the off-the-shelf codebook embedding for generating the final high-quality BEV semantic maps. This
process is similar to the human brain’s memory mechanism [8], where the targets (BEV map layouts)
are encoded into highly abstract, sparse representations (BEV embeddings) through memory neurons
(BEV tokens) that can be activated by specific visual signals (generated based on token queries).

We evaluate our proposed VQ-Map on both the surround-view and monocular map estimation
tasks, and our method sets new records in both tasks, achieving 62.2/47.6 mean IoU for surround-
view/monocular evaluation on nuScenes [9], as well as 73.4 IoU for monocular evaluation on
Argoverse [10].

In summary, our contributions are as follows: (1) We propose a novel pipeline VQ-Map exploring a
discrete codebook embedding to generate high-quality BEV semantic map layouts. The acquired
prior knowledge subsequently helps to effectively align the sparse backbone image features with the
generative models based on a specialized token decoder, leading to more accurate BEV map layout
estimation with generation. (2) By formulating map estimation as the alignment of perception and
generation, our achieved BEV codebook embedding serves as a bridge between PV and BEV, and can
be used in the off-the-shelf manner. (3) Extensive experiments show that our VQ-Map establishes new
state-of-the-art performance on camera-based BEV semantic segmentation. Meanwhile, we confirm
that as a PV-BEV alignment method, token classification is more effective than value regression.
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2 Related Work

BEV Map Layout Estimation. Most existing approaches treat BEV map layout estimation as a
semantic segmentation task in the BEV frame, where map elements are rasterized into pixels with
each allocated multiple class labels. As a pioneer of such technology, LSS [3] explicitly predicts
discrete depth distributions on image features, and then ‘lifts’ these 2D features to obtain pseudo 3D
features, which are finally flatten into BEV features through a pooling operation. Building upon it,
BEVFusion [1] introduces LiDAR point clouds and implements multi-sensor fusion within a unified
BEV space, effectively maintaining semantic and geometric information. Other approaches [11–15],
such as VectorMapNet [12] and HIMap [15], tackle layout issues by incorporating vectorized prior
maps. Besides, TaDe [16] utilizes a task decomposition strategy to improve monocular BEV semantic
segmentation performance.

Recently, some methods utilize generative model-based technologies to enhance the performance of
BEV map layout estimation. MapPrior [17] employs a generative map prior built on VQ-GAN [18]
architecture to capture the detailed structure of traffic scenarios on the basis of conventional dis-
criminative models, achieving a unified advantage in precision, realism and uncertainty awareness.
Furthermore, DDP [19] and DiffBEV [20] focus on integrating the denoising diffusion process [21]
into contemporary perception frameworks, exhibiting outstanding performance.

The above mentioned work MapPrior [17] and TaDe [16] both approach the BEV map segmentation
task through two stages: a perceptual stage and a generative stage, which is relevant to our work.
However, MapPrior aligns with the generative model by deriving complex BEV variables, which
are constrained by the challenges of acquiring accurate dense BEV features. As for TaDe, training
the generative model based on polar inverse-projected BEV groundtruth maps results in the loss
of certain prior knowledge embedded in conventional BEV maps, making it prone to artifacts. In
contrast, our method aligns the generative model with tokenized discrete representations, which are
more meaningful and easier to predict, while also preserving BEV map prior knowledge.

Tokenized Discrete Representation. VQ-VAE [4] innovatively employs codebook mechanisms
to establish an encoder-decoder architecture in a tokenized discrete latent space, capturing and
representing richer and more complex data distributions. Following this approach, other generative
models such as VQ-GAN [18], DALL-E [22] and VQ-Diffusion [23] also map inputs into discrete
tokens corresponding to codebook entries to represent high-dimensional data. Meanwhile, some
visual pre-training works [24, 25] use tokens to represent image patches and treats the prediction of
masked tokens as a proxy task. Recently, UViM [26], Unified-IO [27] and AiT [28] encode various
outputs as tokens and predicts them through an auto-regressive modeling [29], modeling a wide range
of visual tasks. In this paper, we draw inspiration from the above work to predict BEV tokens for
generating high-quality BEV map layouts.

3 Methods

We herein summarize our VQ-Map perception framework in Fig. 2 as follows. Firstly, we create
the discrete representations which encapsulate the high-level BEV semantics for different BEV
elements in the groundtruth maps to serve as the prior knowledge (i.e., the codebook embedding) for
map generation. Secondly, we conduct the PV-BEV alignment training with the specially designed
token decoder module to predict the BEV tokens associated with the corresponding groundtruth
maps. Finally, we directly combine the off-the-shelf codebook embedding accompanied by the map
generation decoder with the PV-BEV alignment module to predict the BEV map layouts.

3.1 Discrete Representation Learning for BEV Generation

Similar to some visual pre-training methods [24, 25], we formulate the discrete representation learning
as the task of BEV map reconstruction via a sequence of discrete tokens to acquire prior knowledge
for the high-level BEV semantics. We obtain this tokenized discrete space by employing the VQ-VAE
architecture [4], which comprises three modules: BEV Patch Embedding E , Vector Quantization Q
and BEV Map Generation Decoder D. Roughly speaking, E transforms local BEV semantic patches
into more abstract high-level semantics; Q then clusters the semantics derived from patch embedding
to create the discrete representations; and finally,D is attached to utilize these discrete representations
for reconstruction of the corresponding groundtruth maps.
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Figure 2: VQ-Map employs a generative model similar to the VQ-VAE framework to encode the BEV
groundtruth maps into BEV tokens accompanied with a codebook embedding. After the generative model
training, the BEV tokens serve as the classification labels to supervise the PV feature learning via a specialized
token decoder module. During inference, VQ-Map utilizes the predicted BEV tokens to generate high-quality
BEV map layouts based on the off-the-shelf codebook embedding and the BEV map generation decoder.

BEV Patch Embedding E . BEV semantic maps significantly differ from the raw images with
complex scenes. They inherently represent high-level semantics annotated by humans, which
eliminates the need to aggregate extensive features using heavy encoders. Specifically, we initially
patchify a groundtruth BEV map M 2 BC×H×W into a sequence of non-overlapping BEV patches�

Mi 2 BC×P×P
	N
i=1

, where B = f0; 1g, P is the patch size, C is the number of the groundtruth
map layouts and N = HW=P 2 is the patch number. Our patch embedding E is simple, aiming
to abstract high-level semantics zi 2 RD from individual patches Mi, where D is the embedded
dimension. Fig. 3 shows some BEV patch images to visualize our discrete representation learning.

Vector Quantization Q. We define a latent embedding space V 2 RK×D as our codebook em-
bedding, where K represents the maximum number of representations in the discrete latent space.
We further denote it using the set fv1; v2; : : : ; vk; : : : ; vKg. Our vector quantization Q receives the
continuous latent vector zc from the patch embedding and outputs discrete latent zq, termed BEV
embedding, through the nearest neighbor search in the codebook. This is calculated as

zq = Q(zc) = arg min
ℓ2(vk)

k‘2(zc)� ‘2(vk)k2 (1)

where ‘2 means L2 normalization employed for codebook lookup based on cosine similarity, as
described in ImprovedVQGAN [30]. Each discrete latent can also be represented by its index in the
codebook as the BEV token:

kq = arg min
k
k‘2(zc)� ‘2(vk)k2 : (2)

BEV Map Generation Decoder D. We feed the BEV embeddings fziq = ‘2(vki
q
)gNi=1 to our map

generation decoder D by firstly reshaping them into a grid format and then reconstructing the original
groundtruth BEV map following

M′ = D(Q(E(M))) : (3)

Training Loss. The overall training loss includes a VQ loss Lvq based on the codebook embedding
due to the non-differentiable vector quantization operation besides the reconstruction loss Lre.
Unlike the common practice, we additionally incorporate a loss term reflecting the patch-level data
augmentations (such as small-scale rotations, translations, and resizing) to aid clustering. The VQ
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