
The Treasure Beneath Multiple Annotations: An Uncertainty-aware Edge
Detector

Caixia Zhou1, Yaping Huang1*, Mengyang Pu2, Qingji Guan1, Li Huang1, Haibin Ling3

1Beijing Key Laboratory of Traffic Data Analysis and Mining, Beijing Jiaotong University, China
2 School of Control and Computer Engineering, North China Electric Power University, China

3Department of Computer Science, Stony Brook University, USA
{cxzhou,yphuang,qjguan,20112044}@bjtu.edu.cn mengyang.pu@ncepu.edu.cn hling@cs.stonybrook.edu

Abstract

Deep learning-based edge detectors heavily rely on
pixel-wise labels which are often provided by multiple an-
notators. Existing methods fuse multiple annotations using
a simple voting process, ignoring the inherent ambiguity of
edges and labeling bias of annotators. In this paper, we
propose a novel uncertainty-aware edge detector (UAED),
which employs uncertainty to investigate the subjectivity
and ambiguity of diverse annotations. Specifically, we first
convert the deterministic label space into a learnable Gaus-
sian distribution, whose variance measures the degree of
ambiguity among different annotations. Then we regard the
learned variance as the estimated uncertainty of the pre-
dicted edge maps, and pixels with higher uncertainty are
likely to be hard samples for edge detection. Therefore we
design an adaptive weighting loss to emphasize the learn-
ing from those pixels with high uncertainty, which helps
the network to gradually concentrate on the important pix-
els. UAED can be combined with various encoder-decoder
backbones, and the extensive experiments demonstrate that
UAED achieves superior performance consistently across
multiple edge detection benchmarks. The source code is
available at https://github.com/ZhouCX117/UAED.

1. Introduction

Edge detection is a fundamental low-level vision task. It
greatly reduces irrelevant information and retains the most
important structural attributes. An efficient edge detector
can generate structural edges that depict important areas
from a whole image, thereby benefiting many downstream
tasks [31, 37, 42, 50, 63]. Early pioneering methods [4, 26]
compute the gradient and choose suitable thresholds to se-
lect pixels with obvious brightness changes. Hand-crafted

*Corresponding author.

c

fed

a b

a

c d

e f

b

Figure 1. Illustration of the proposed Uncertainty-Aware Edge De-
tector (UAED). The first row shows (a) an image from the BSDS
test set and (b) four diverse labels by different annotators. The
second row shows (c) the final edge label computed by majority
voting and (d) our estimated uncertainty map (red means high un-
certainty and blue means low uncertainty). The third row shows
the edge detection results by (e) EDTER [41] and (f) our UAED,
both processed by non-maximum suppression.

feature based methods [1, 35] extract features from low-
level cues including density and texture, and then design
complex rules to distinguish edges. Benefiting from the
powerful feature representation of Convolution Neural Net-
work (CNN) and Transformer, recent works [16, 32, 41, 59]
concentrate on designing elaborate network architectures to
learn high-level semantic representations.

The previous efforts are mainly dedicated to designing
advanced networks to extract distinctive features. Except
for the well-designed models, precise pixel-level annota-
tion is another key factor in building an efficient edge de-
tector under the supervised setting. Due to the complex-

https://github.com/ZhouCX117/UAED


ity of the scenes and the ambiguity of the edges, most of
the works [1, 36] involve multiple annotators for labeling
edges. However, the subjectivity of the annotators, e.g., dif-
ferent people may perceive the same scene differently and
annotate the edges at different granularities, leading to in-
consistent annotations (Fig. 1(b)). Previous methods simply
utilize the majority voting strategy to fuse multiple anno-
tations into single ground truth, where all annotations are
averaged to generate an edge probability map (Fig. 1(c)),
ranging from 0 to 1. During training, the pixels with proba-
bility higher than a fixed threshold are regarded as positive
and the pixels with probability equal to 0 as negative. And
the remaining pixels are dropped. Such a simple voting pro-
cess neglects the inherent ambiguity and label bias caused
by the labeling process.

To address the issues, in this paper, we propose a novel
uncertainty-aware edge detection (UAED) framework that
converts the deterministic labels into distributions to ex-
plore the inherent label ambiguity in the edge detection task.
Unlike previous works that focus on architecture modifi-
cation, we target modeling the uncertainty underlying the
multiple edge annotations.

Specifically, the proposed UAED is designed based on
the encoder-decoder architecture, where the encoder gen-
erates the feature representations followed by two separate
decoders. Instead of using fixed labels, we treat the predic-
tion as a learnable Gaussian distribution, whose mean and
variance are learned by two decoders respectively, and the
variance can be supervised by multiple annotations. The
learned variance can be naturally regarded as uncertainty,
which measures the label ambiguity. Therefore we further
utilize the learned uncertainty to boost the performance.
Fig. 1(d) shows the estimated uncertainty map. We can ob-
serve that the uncertainties of pixels that are close to edges
are much higher than those of smooth regions. This phe-
nomenon suggests that pixels with higher uncertainty are
visually more important than pixels with lower uncertainty
and can be regarded as hard samples for detecting edges.
Thus inspired, unlike most uncertainty estimation meth-
ods that regard the pixels with higher uncertainty as unre-
liable and discard them, we encourage the model to learn
more from the hard samples with higher uncertainty pro-
gressively. The experiments on two popular edge detection
datasets with multiple annotations show the effectiveness of
our proposed method. Compared with transformer-based
EDTER [41] (Fig. 1(e)), our proposed UAED combined
with CNN-based architecture can generate more detailed
edges (Fig. 1(f)), while requires less computation resource
and time. Our contributions can be summarized as follows:

• We propose an uncertainty-aware edge detector,
named UAED, which captures the inherent ambiguity
caused by multiple subjective annotations. To our best
knowledge, this is the first work that provides an un-

certainty perspective in edge detection.
• We concentrate on the pixels with higher uncertainty

that play a more important role in edge detection, and
further design an adaptive weighting loss to emphasize
the training from those hard pixels.

• UAED can be combined with various encoder-decoder
backbones without increasing much computation bur-
den. We conduct comprehensive experiments on pop-
ular datasets across different model architectures and
achieve consistent improvement.

2. Related Work

2.1. Edge Detection

Edge detection is an important vision task have been at-
tracting a great amount of study. Early methods, such as
Sobel [26] and Canny [4], calculate the gradient of density,
color or texture of the images for edge clues. Traditional
learning-based methods aim to design hand-crafted features
from low-level density and texture cues to train a edge clas-
sifier. For example, Pb [35] defines the changes in bright-
ness, color and texture as the edge features. gPb [1] utilizes
standard Normalized Cuts for detecting edges.

Benefiting from the success of deep learning technolo-
gies, CNN-based methods become predominant edge de-
tectors. Early methods [3, 47] are based on image patches
that extract features from the predefined patches, and de-
termine whether there are edge pixels. Later, pixel-based
models have achieved promising performance. HED [59]
utilizes VGG16 [49] as the backbone and obtains five stage
feature maps as the side outputs, which are then fused into
final outputs by learnable image-level weights. RCF [32]
connects each convolution layer in VGG16 to a convolu-
tion layer, and then accumulate the results to attain hy-
brid features to fully use multi-scale multi-level informa-
tion. LPCB [9] applies VGG16 as the backbone and utilizes
the ResNetXt [17] block and deconv module to fuse features
across stages to decode the edge maps. Instead of treating
side outputs and final outputs the same, BDCN [16] approx-
imates the specific edge ground truth for different scales.
RINDNet [40] uses multi-branch strategy for fine grained
edge detection. Recently, a transformer-based edge detector
EDTER [41] is proposed, which first splits the input image
into a sequence of 16×16 patches to extract global features,
and then extracts the short-range local cues on 8×8 patches.

Some other works aim to construct lightweight mod-
els [8, 51] consuming as few resources as possible while
maintaining performance. PiDiNet [51] introduces pixel
difference convolution (PDC) which integrates the tradi-
tional edge detection operators such as Sobel and local bi-
nary patterns (LBP) into the popular convolution opera-
tions. LDC [8] is an encoder-decoder structure, where the
encoder is tested on three different lightweight models, i.e.,



E

D1

D2

H1

H2

Sampling

Label Sets

bvar

E Encoder

D Decoder

H Pred Head

X Weighting

𝜖~𝑁(0, 𝑰)

Ƹ𝜇 + 𝜖 ො𝜎

Ƹ𝜇

ො𝜎2

𝜎2

෠𝑌

𝑌(𝑘)

uedge

𝑌 𝑘=1
𝐾

Figure 2. The overall framework of our proposed UAED. Given an input X , the encoder E extracts multi-scale features, which are then fed
to two independent decoders D1,D2 and prediction heads H1,H2 to obtain respectively mean µ̂ and variance σ̂2. We construct a multi-
variate Gaussian distribution according to the learned mean and variance, and sample prediction Ŷ from this distribution. The learned
variance is supervised by the label variance σ2 computed from the labeling sets {Y (k)}Kk=1, and the prediction Ŷ is supervised by the label
Y (k) sampling from the labeling sets.

SqueezeNet [21], MobileNetV2 [18], and RegNetX [43].
The decoder module designs a spatially Squeeze-and-
extraction (SSE) module to explore global contextual infor-
mation and an SE module to extract local context.

Despite the thorough exploration of the network design
and great performance achievement, existing works ignore
the exploration of the inherent ambiguity in the label space,
which is the focus of our work.

2.2. Uncertainty in Deep Learning

The major uncertainty encountered in deep learning [23]
incorporates aleatoric (data) and epistemic (model) uncer-
tainty, where data uncertainty is intrinsic while model un-
certainty can be reduced by more data. Common methods
for modeling uncertainty involve generative models [14,27,
64], introducing new branches [5, 39], and regarding model
parameters as a distribution [13, 30].

The techniques based on generative models can be clas-
sified into generative adversarial network (GAN) [64],
energy-based model (EBM) [14, 66], variational autoen-
coder (VAE) [2,27,65], normalizing flow (NF) [29,55], and
a hybrid of the above methods [46, 53]. Introducing addi-
tional branches can operate on both the feature space [5]
and label space [39] to convert the deterministic result into
a distribution, such as Gaussian and Laplace distribution.
Compared with other methods, modeling uncertainty on the
parameters space is relatively time or memory consuming,
such as MC-Dropout [13] and deep ensemble [30].

Despite effective uncertainty estimation methods having
been successfully applied in many computer vision tasks,
they have not been explored on the edge detection task. Our

work is the first to model uncertainty in edge detection and
design an efficient uncertainty estimation to explore the un-
certainty underlying multiple edge labels.

3. Uncertainty-aware Edge Detection
The overview of the proposed uncertainty-aware edge

detection (UAED) is shown in Fig. 2. Given an image X ∈
RH×W×3 and its corresponding annotations {Y (k)}Kk=1,
where Y (k) ∈ RH×W×1 is the k-th annotation and K is the
number of annotations. We first feed X into an encoder (E)
to extract multi-scale features, and then the extracted fea-
tures are fed into two independent decoders (D1,D2) and
prediction heads (H1,H2) to obtain mean (µ̂) and variance
(σ̂2) for the learned Gaussian distribution respectively. The
learned variance (σ̂2) is supervised by the variance com-
puted from the label sets (σ2). Finally, the sampling from
the distribution is regarded as the prediction (Ŷ ), which is
supervised by the annotation Y (k) randomly sampled from
the label sets.

We will detail the edge detection network in Section 3.1,
and then introduce the proposed uncertainty estimation in
Section 3.2 and the optimized objective in Section 3.3.

3.1. Edge Detection Network

We design our edge detector based on the encoder-
decoder architecture, which is widely used in the edge de-
tection task [7–9]. Here, we adopt EfficientNet [52] as the
encoder and UNet++ [67] as the decoder. It should be noted
that the edge detection network itself is not our contribution.
So we do not pay more attention to the design of the network



and just borrow the existing excellent framework for conve-
nience. In fact, our proposed uncertainty-driven method can
be combined with other edge detection networks, as demon-
strated in the experiments in Section 4.6.

The encoder of our edge detection network consists of
eight stages. Unlike the original EfficientNet starting with a
convolutional layer that aims to change the input channels,
we modify the stride of the first stage so that it can down-
sample the feature map by half. The seven middle stages
are the same as the original EfficientNet, where each stage
has different number of convolutional blocks consisting of
the convolutional layer, batch normalization layer [22] and
swish activation layer [44]. We remove the last ninth stage
of the original EfficientNet [52] that is a classifier head in-
cluding pooling and fully connected layers, since edge de-
tection needs a fully convolutional network. We store the
feature maps from the first, the third, the fourth, the sixth,
and the eighth as multi-scale features for objects of different
sizes, and then feed them into the following decoders. Note
that the feature maps are down-sampled to 1/2, 1/4, 1/8,
1/16, and 1/32 of the original images respectively. The de-
tails of the encoder are given in supplementary material.

The decoder of our edge detection network generates
high-resolution representations from the received five-level
multi-scale features by dense short-range connections and
long-range connections, which is based on UNet++ [67]
and can be viewed as four UNets with different sizes. Each
UNet is a U-shape architecture including contracting and
expansive path. The contracting path is responsible for the
reduction of spatial information and the increase of abstract
features. The expansive path up-samples the features and
connects them with features from the contracting path to
recover the images with high semantic information.

To summarize, for the input image X , we first extract the
multi-scale features by the designed encoder. Then the ex-
tracted features are fed to the decoder and prediction head,
which converts the high-dimensional channels of feature
maps to one channel by a convolutional layer. Finally, a
sigmoid activation function acts on the result to obtain the
predicted edge map Ŷ , which ranges from 0 to 1.

3.2. Uncertainty Estimation

To introduce uncertainty into the edge detection task, we
convert the deterministic output into a learnable distribu-
tion in the label space. Specifically, we add a decoder and
a prediction head, which share the same structure but not
the same parameters with the original decoder and predic-
tion head, into the edge detection network. Then we feed
the extracted multi-scale features into those two indepen-
dent decoders (D1,D2) and prediction heads (H1,H2). The
outputs are denoted as the mean µ̂ and the variance σ̂2 of the
predicted edge maps:

µ̂ = H1(D1(E(X)), σ̂2 = H2(D2(E(X))). (1)

The predicted mean and variance are naturally built into
a multi-variate Gaussian distribution, and the final predic-
tion Ŷ is sampled from the distribution by the reparameter-
ization trick [25]:

Ŷ = sigmoid(µ̂+ ϵσ̂), ϵ ∼ N (0, I). (2)

3.3. Network Training

The optimization process of UAED contains two kinds
of loss functions: balanced mean squared error (MSE) loss
function for uncertainty estimation and weighted binary
cross-entropy (BCE) loss function.

Balanced MSE loss for uncertainty estimation. In addi-
tion to using a single available ground truth label, we hope
to make full use of the entire candidate label sets. Thanks
to multiple diverse annotations, we can compute the vari-
ance of the label sets (σ2) as the supervision of the predicted
variance (σ̂2), which can further be used to indicate the un-
certainty estimation for the annotated labels. Therefore, we
use L2 loss for estimating the variance defined as:

Lvar =

HW∑
j=1

(σ̂2
j − σ2

j )
2, (3)

where j denotes the j-th pixel in the estimated variance and
ground truth variance map.

However, edge pixels are very sparse for no more than
10% edge pixels in an image, so we use an adaptive weight-
ing scheme to balance the loss, similar to [19, 32]. The
weight α for the positive samples is calculated as:

α = |Y (k)
− |

/
(|Y (k)

− |+ |Y (k)
+ |), (4)

where | · | denotes the number of pixels, and Y
(k)
− and Y

(k)
+

denote the negative and positive samples respectively in
k-th annotated edge map. Since the number of positive pix-
els is much smaller than that of negative ones, the balanced
weight makes the model assign a higher weight to edge pix-
els. Denoting the weight for Yj as Mj , the balanced MSE
loss is utilized to calculate the variance loss:

Lbvar =

HW∑
j=1

Mj(σ̂
2
j − σ2

j )
2, (5)

where
Mj = αYj + (1− α)(1− Yj). (6)

Uncertainty-driven loss for edge detection. Edge detec-
tion is a binary classification task, therefore the BCE loss is
widely used in this task. Due to the imbalanced data, we add



a balance weight similar to the variance loss. The balanced
BCE loss can be denoted as:

Ledge = −
HW∑
j=1

Mj

(
Y

(k)
j log(Ŷj)

+ (1− Y
(k)
j )log(1− Ŷj)

)
,

(7)

where Ŷj and Y
(k)
j are the j-th pixel of the prediction Ŷ and

label Y (k), respectively. The k-th label is randomly selected
from the available label sets as the supervision signal.

Since the estimated variance (σ̂) can be regarded as an
indicator of the uncertainty of each pixel sample, it can be
utilized to further guide the training of edge detector. Natu-
rally, certain samples should be given higher weights while
uncertain ones have low importance for training, which has
been popularly used in many computer vision tasks [64].
Unfortunately, in our experiments, such a strategy can not
boost the performance and, even worse, lead to an obvious
performance drop (see the ablation study in Section 4.5). In
fact, as shown in Fig. 1(d), we can observe that the pixels
with higher uncertainty are usually close to the edges and
boundaries in the estimated uncertainty map, which should
not be neglected. Instead, those pixels should be prioritized
in the training to enforce the model focus on learning from
these difficult edges. Inspired by this observation, we de-
sign a different weighting strategy, where the pixels with
higher uncertainty will be given large weights.

Besides, to prevent the pixels with higher uncertainty
from confusing the model in the early training stage, we
finally propose a progressive uncertainty-driven weighting
strategy, where the pixels with higher uncertainty will be
given larger weights progressively. The corresponding loss
function is defined as:

Luedge =

HW∑
j=1

exp(βtσ̂j)Ledge, (8)

where βt = t/T denotes an adaptive factor, t means the
current epoch and T means the total epochs. The final op-
timization objection is the sum of balanced MSE loss and
weighted BCE loss:

L = Luedge + Lbvar. (9)

4. Experiments
4.1. Datasets

We conduct experiments on two popular edge detection
datasets, i.e., BSDS500 [1] and Multicue [36], which con-
tain multiple annotations for each image.

BSDS500 contains 500 RGB natural images, of which
200 are for training, 100 for validation, and 200 for testing.

Each image is manually annotated by 4-9 annotators. Data
augmentation follows LPCB [9], which rotates each image
at 25 different angles and selects the largest rectangle. Then
each image is flipped (horizontally, vertically, and a combi-
nation of both) at each angle. So the scale of the training
dataset has expanded by 100 times. Moreover, PASCAL
VOC Context Dataset [12] with 10,103 images is used as
the additional training data, whose edge annotations are ob-
tained from the semantic masks by the Laplacian detector.

Multicue is composed of 100 scenes captured to study
boundary and edge detection in challenging natural scenes.
Each scene contains a left-view and a right-view short (10-
frame) sequence, and the last frame of each left-view se-
quence is labeled with edges by six annotators and bound-
aries by five annotators. Data is augmented by rotating at
four different angles (0, 90, 180, 270) and flipping. 80 im-
ages are randomly selected for training and the remaining
20 images are for testing. This process is repeated three
times and the average scores of three independent trials are
regarded as the final results.

4.2. Implementation Details

We use Pytorch [38] based image segmentation (SMP)
neural network library [20] as the deep learning framework
to implement UAED. All parameters are updated by Adam
optimizer [24]. Our model is trained with batchsize 4. The
weight decay is set to 5e-4, and the learning rate is 1e-4. To
speed up the training process, we follow LPCB [9] to make
all training samples the same size, so that we can train in
a mini-batch way. For the BSDS dataset, we rotate the im-
ages to keep the same size with 321 × 481. For the Multi-
cue dataset, each image with size 720 × 1280 is randomly
cropped to 512× 512 patches for training.

The experiments are conducted on a single RTX 3090,
and the training time of 15 epochs is about 19 hours for the
BSDS dataset and 3 hours for the Multicue dataset. During
the training process, the edge prediction is supervised by
one randomly sampled annotation from the available label
sets, and the uncertainty is supervised by the variance of the
label sets. In the inference stage, we feed the test image
into our UAED and obtain a predicted label distribution,
and the final predicted edge map is generated by a stochastic
sampling from the predicted distribution.

4.3. Evaluation Metric

In the experiment, we use the widely used metrics for
measuring performance. The first one is referred to the op-
timal dataset scale (ODS) which employs a fixed threshold
for all images in the dataset, which is also called Maximum
F-measure (MF). The second metric is called optimal im-
age scale (OIS) which selects the optimal threshold for each
image. The third one is the Average Precision (AP). Be-
fore evaluation, following previous works [32, 41], the pre-



Table 1. Results on the BSDS500 [1] testing set. SS is the single-scale testing, MS is the multi-scale testing, and VOC means training with
extra PASCAL VOC data. The best two results are denoted as red and blue respectively, and the same for other tables.

Method Backbone Pub.’Year SS MS SS-VOC MS-VOC
ODS OIS AP ODS OIS AP ODS OIS AP ODS OIS AP

Canny [4] - PAMI’86 0.611 0.676 0.520 - - - - - - - - -
gPb-UCM [1] - PAMI’10 0.729 0.755 0.745 - - - - - - - - -

SCG [57] - NeurIPS’12 0.739 0.758 0.773 - - - - - - - - -
SE [10] - PAMI’14 0.743 0.764 0.800 - - - - - - - - -

OEF [15] - CVPR’15 0.746 0.770 0.815 - - - - - - - - -

DeepEdge [3] AlexNet CVPR’15 0.753 0.772 0.807 - - - - - - - - -
DeepContour [47] AlexNet CVPR’15 0.757 0.776 0.790 - - - - - - - - -

HED [59] VGG16 ICCV’15 0.788 0.808 0.840 - - - - - - - - -
Deep Boundary [28] VGG16 ICLR’15 0.789 0.811 0.789 0.803 0.820 0.848 0.809 0.827 0.861 0.813 0.831 0.866

CEDN [62] VGG16 CVPR’16 0.788 0.804 - - - - - - - - - -
RDS [33] VGG16 CVPR’16 0.792 0.810 0.818 - - - - - - - - -
COB [34] VGG16 ECCV’16 0.793 0.820 0.859 - - - - - - - - -

AMH-Net [60] ResNet50 NeurIPS’17 0.798 0.829 0.869 - - - - - - - - -
RCF [32] VGG16 CVPR’17 0.798 0.815 - - - - 0.806 0.823 - 0.811 0.830 0.846
CED [54] VGG16 CVPR’17 0.803 0.820 0.871 - - - 0.815 0.833 0.889 - - -
LPCB [9] VGG16 ECCV’18 0.800 0.816 - - - - 0.808 0.824 - 0.815 0.834 -

BDCN [16] VGG16 CVPR’19 0.806 0.826 0.847 - - - 0.820 0.838 0.888 0.828 0.844 0.890
DSCD [7] VGG16 ACMMM’20 0.802 0.817 - - - - 0.813 0.836 - 0.822 0.859 -
LDC [8] MobileNetV2 ACMMM’21 0.799 0.816 0.837 - - - 0.812 0.826 0.857 0.819 0.834 0.860

PiDiNet [51] PDC ICCV’21 - - - - - - 0.807 0.823 - - - -
FCL-Net [61] VGG16 NN’22 0.807 0.822 - 0.816 0.833 - 0.815 0.834 - 0.826 0.845 -

EDTER [41] Transformer CVPR’22 0.824 0.841 0.880 0.840 0.858 0.896 0.832 0.847 0.886 0.848 0.865 0.903

UAED (Ours) VGG16 - 0.808 0.827 0.872 0.819 0.838 0.881 0.820 0.840 0.889 0.830 0.850 0.895
EfficientNet - 0.829 0.847 0.892 0.837 0.855 0.897 0.838 0.855 0.902 0.844 0.864 0.905

dicted edge maps are processed by non-maximum suppres-
sion, and the localization tolerance is set to 0.0075, which
controls the maximum allowed distance in matches between
the predicted edge results and the ground truth.

4.4. Comparison with State-of-the-art

In this section, we compare the performance of the pro-
posed UAED with existing excellent edge detectors, includ-
ing traditional detectors such as Canny [4], CNN-based de-
tectors such as HED [59] and RCF [32], and transformer-
based detector EDTER [41].

BSDS results. The results are summarized in Table 1.
We can see that our proposed UAED outperforms other pre-
vious CNN-based methods. In the single scale setting, com-
pared with the second best CNN-based method BDCN [16],
we obtain a large performance gain by 2.3%, 2.1% and
4.5% in terms of ODS, OIS and AP. We also achieve
ODS=0.844, OIS=0.864 and AP=0.905 under the MS-VOC
setting, which also surpasses BDCN [16] by a large margin
(1.6%, 2.0% and 1.5%). Compared with transformer-based
EDTER [41], we still achieve the best performance and in-
crease the scores by 0.5%, 0.6%, and 1.2% in ODS, OIS
and AP metrics when testing on a single scale input. The re-
sults are only slightly lower than EDTER under multi-scale
settings. The possible reason is that EDTER is learned in
a patch-based manner, so the results are greatly improved
when testing under the multi-scale setting. To show the re-
sults more intuitively, we give the Precision-Recall curve in

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
re

ci
si

on

[F=.803] Human
[F=.844] UAED-MS (ours)
[F=.838] UAED (ours)
[F=.832] EDTER (2022)
[F=.815] CED-MS (2017)
[F=.814] RCF-ResNet50-MS (2017)
[F=.811] RCF-VGG16-MS (2017)
[F=.810] PiDiNet (2021)
[F=.793] COB (2016)
[F=.788] HED (2015)
[F=.757] DeepContour (2015)
[F=.753] DeepEdge (2015)
[F=.746] OEF (2015)
[F=.743] SE (2014)
[F=.729] gPb-UCM (2010)
[F=.672] Pb (2004)
[F=.611] Canny (1986)
[F=.539] Sobel (1983)

Figure 3. The precision-recall curves on BSDS500.

Fig. 3. The visualization results for some challenging sam-
ples in the BSDS testing set are shown in Fig. 4. It is clear
that our UAED can extract more detailed edges. Moreover,
we conduct experiments based on the VGG16 [49] encoder
since most of the CNN-based methods utilize it. The results
show that we still surpass all CNN-based methods, which
further verifies the effectiveness of UAED.

Multicue results. Similarly, experiments are conducted
on the Multicue edges and boundaries. The results are
shown in Table 2. Our proposed UAED achieves a new
state-of-the-art on the Multicue edge and boundary in three
metrics (ODS=0.895, OIS=0.902, AP=0.949 in edge, and
ODS=0.864, OIS=0.872, AP=0.927 in boundary).



(a) Input (b) Ground truth (c) RCF [32] (d) BDCN [16] (e) EDTER [41] (f) UAED(Ours)

Figure 4. Qualitative comparisons on three challenging samples in the BSDS500 test set.

Table 2. Comparisons on Multicue [36]. All results are obtained
by a single scale input.

Method Pub.’Year ODS OIS AP

E
dg

e

Human [36] VR’16 .750 (0.024) - -
Multicue [36] VR’16 .830 (0.002) - -

HED [59] ICCV’15 .851 (0.014) .864 (0.011) -
RCF [32] CVPR’17 .857 (0.004) .862 (0.004) -

BDCN [16] CVPR’19 .891 (0.001) .898 (0.002) .935(0.002)
DSCD [7] ACMMM’20 .871 (0.007) .876 (0.002) -
LDC [8] ACMMM’21 .881 (0.012) .893 (0.011) -

PiDiNet [51] ICCV’21 .855 (0.007) .860 (0.005) -
FCL-Net [61] NN’22 .875 (0.005) .880 (0.005) -
EDTER [41] CVPR’22 .894 (0.005) .900 (0.003) .944 (0.002)
UAED (Ours) - .895 (0.002) .902 (0.001) .949 (0.002)

B
ou

nd
ar

y

Human [36] VR’16 .760 (0.017) - -
Multicue [36] VR’16 .720 (0.014) - -

HED [59] ICCV’15 .814 (0.011) .822 (0.008) .869 (0.015)
RCF [32] CVPR’17 .817 (0.004) .825 (0.005) -

BDCN [16] CVPR’19 .836 (0.001) .846 (0.003) .893 (0.001)
DSCD [7] ACMMM’20 .828 (0.003) .835 (0.004) -
LDC [8] ACMMM’21 .839 (0.012) .853 (0.006) -

PiDiNet [51] ICCV’21 .818 (0.003) .830 (0.005) -
FCL-Net [61] NN’22 .834 (0.016) .840 (0.016) -
EDTER [41] CVPR’22 .861 (0.003) .870 (0.004) .919 (0.003)
UAED (Ours) - .864 (0.004) .872 (0.006) .927 (0.006)

4.5. Ablation Study

There are several strategies influencing the performance,
including adding a variance branch for uncertainty estima-
tion (UE), supervising the estimation of variance by mul-
tiple annotations (Lbvar), and weighting BCE loss by es-
timated uncertainty (Luedge). We conduct ablation stud-
ies on those aspects to explore the role of each part, and
the results are shown in Table 3. All experiments are vali-
dated on the single scale with and without PASCAL VOC
pre-training. Experiments #1 and #5 are used as baseline
methods, which fuse the multiple annotations into one sin-
gle deterministic label according to a fixed threshold (0.3).
The experiments (#2-#4 and #6-#8) are the results of our
proposed UAED by deactivating different strategies which
utilize all available multiple annotations.

The effect of the uncertainty estimation (UE). We first

Table 3. The ablation study on the BSDS500 dataset for the role of
every part plays. The results are obtained on a single scale input.

# Method UE Lbvar Luedge ODS OIS AP

1 Baseline 0.824 0.841 0.875

2
UAED

✓ 0.825 0.843 0.884
3 ✓ ✓ 0.829 0.846 0.892
4 ✓ ✓ ✓ 0.829 0.847 0.892

5 Baseline-VOC 0.831 0.846 0.887

6
UAED-VOC

✓ 0.834 0.852 0.895
7 ✓ ✓ 0.836 0.853 0.901
8 ✓ ✓ ✓ 0.838 0.855 0.902

add a new decoder branch to the edge detector and con-
vert the label space into a learnable distribution, which can
be used to estimate uncertainty. Instead of generating de-
terministic predictions (#1 and #5), experiments (#2 and
#6) regard the prediction as a distribution, and possess two
independent decoders that represent mean and variance re-
spectively. We can observe that experiment #2 obtains
0.1%, 0.2%, and 0.9% in ODS, OIS, and AP than experi-
ment #1. Experiment #6 obtains 0.3%, 0.6%, and 0.8% in
ODS, OIS, and AP than experiment #5. The improvements
clearly show the effectiveness of introducing uncertainty.

The effect of Lbvar. If there is not any explicit supervi-
sion of the uncertainty, the learning process will not be easy.
Fortunately, we can compute the variance from the provided
label sets as the variance supervision (#3 and #7). From
the ablations, we can see that experiment #3 increases the
score by 0.4% (ODS), 0.3% (OIS), and 0.8% (AP) than #2.
Similarly, experiment #7 obtains 0.2% (ODS), 0.1% (OIS),
and 0.6% (AP) than #6. The improvements clearly show
the benefit of this explicit supervision.

The effect of Luedge. The progressive weighting loss
makes the network first learn the variance as uncertainty,
then utilize the learned uncertainty to progressively focus
on the pixels with higher uncertainty. The experiments (#4



Table 4. The experiments of different weighting methods. All
results are obtained by a single scale input.

Method ODS OIS AP

e−σ̂Ledge + 2σ̂ 0.825 0.843 0.884
eσ̂Ledge 0.826 0.846 0.891
eβtσLedge 0.826 0.845 0.890

eβtσ̂Ledge 0.829 0.847 0.892

and #8) show that the weighting strategy can further im-
prove performance.

The effect of different weighting loss. Instead of the
traditional strategy (lower weight for higher uncertainty),
we design a progressive weighting loss to emphasize the
pixels with higher uncertainty. To verify this, we conduct
ablation experiments shown in Table 4. Compared with
other strategies, i.e. the traditional weighting loss (the first
row), the fixed weighting loss (the second row), and the
ground-truth label variance for weighting loss (the third
row), our designed strategy achieves the best performance.

Table 5. The experiments on the BSDS500 dataset for different
uncertainty estimation (UE) strategies. All results are obtained by
a single scale input.

UE Type UE Method ODS OIS AP

- Baseline 0.824 0.841 0.875

Epistemic
(Model)

MC Dropout 0.825 0.842 0.882
RBUE 0.825 0.843 0.882

Aleatoric
(Data)

CVAE-based 0.821 0.844 0.880
EBM-based 0.824 0.842 0.884

Probabilistic Embedding 0.823 0.839 0.885

Data UAED (Ours) 0.829 0.847 0.892

4.6. Further Analysis

Comparison with different uncertainty estimation
methods. Uncertainty estimation is the most vital part
of UAED, so we explore the influence of different meth-
ods. The popular uncertainty estimation methods in-
clude MC dropout [13], RBUE [56], CVAE-based [65],
EBM-based [11], and probabilistic embedding [48]. MC
Dropout [13] and RBUE [56] model epistemic (model) un-
certainty, and both of them usually require hundreds of for-
wards to obtain excellent results. Generative model based
methods, including CVAE-based and EBM-based models,
learn low-level latent space, which captures randomness
caused by the data. Probabilistic embedding builds distri-
bution in the feature space while the proposed UAED dif-
fers in the label distribution, and both model aleatoric (data)
uncertainty. The details of different uncertainty estimation
methods can be found in the supplementary material.

Table 5 presents the comparison. MC dropout and RBUE
only bring minor improvement and other methods are even

Table 6. The experiments about different encoder and decoder
structures. All results are obtained by a single scale input.

Encoder / Decoder ODS OIS AP

VGG [49] / UNet++ [67] 0.801 0.820 0.862
+UAED 0.808(+.007) 0.827(+.007) 0.872(+.010)

EfficientNet [52]/UNet [45] 0.821 0.836 0.878
+UAED 0.824(+.003) 0.843(+.007) 0.886(+.008)

SegFormer [58] / UNet [45] 0.822 0.838 0.873
+UAED 0.828(+.006) 0.845(+.007) 0.888(+.015)

inferior to baseline. By introducing the uncertainty to the
label space, UAED obtains the best improvement.

The improvement for different backbones. Our pro-
posed UAED is a play-and-plug module, so we combine it
with diverse encoder-decoder architectures to verify its ef-
fectiveness. Specifically, the encoder contains CNN-based
VGG [49], EfficientNet [52], and transformer-based Seg-
Former [58]. The decoder includes popular UNet [45] and
UNet++ [67]. All encoders are pre-trained on the Ima-
geNet [6] dataset. The results in Table 6 show a consis-
tent performance gain of the proposed UAED, validating
that UAED can be easily combined with the existing frame-
works to boost performance consistently.

Computational cost. Our experiments are conducted on
a single RTX 3090, which consume 12G GPU memory for
the BSDS dataset with a batch size of 4. We also compute
the inference time. The speed of our proposed UAED is 17
FPS, which increases not too much (19 FPS for the encoder-
decoder baseline model). By comparison, the transformer-
based EDTER [41] consumes 15G GPU (stage I) and 14G
(stage II) with batchsize of 1 for training and runs at 5
FPS for inference. The statistics indicate that our proposed
UAED obtains a comparable performance only using rela-
tively less time and resources.

5. Conclusion
We are the first work to employ uncertainty into the

edge detector to model the inherent ambiguity underlying
multiple annotations. The uncertainty-aware edge detector
(UAED) regards the label space as the distribution and adds
a branch to estimate the variance, which can be further uti-
lized to progressively weight the optimized loss function.
We conduct experiments on BSDS and Multicue datasets.
The results demonstrate that our proposed UAED can bring
consistent improvement by exploring the uncertainty be-
neath the multiple annotations.
Limitation. This method still needs labor-consuming pixel-
level annotations. How to utilize fewer annotations to
achieve competitive results remains an open issue.
Acknowledgements. This work is supported by National
Natural Science Foundation of China (62271042) and Bei-
jing Natural Science Foundation (M22022, L211015).



References
[1] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Ji-

tendra Malik. Contour detection and hierarchical image
segmentation. IEEE Trans. Pattern Anal. Mach. Intell.,
33(5):898–916, 2010. 1, 2, 5, 6

[2] Christian F Baumgartner, Kerem C Tezcan, Krishna Chai-
tanya, Andreas M Hötker, Urs J Muehlematter, Khoschy
Schawkat, Anton S Becker, Olivio Donati, and Ender
Konukoglu. Phiseg: Capturing uncertainty in medical image
segmentation. In International Conference on Medical Im-
age Computing and Computer-Assisted Intervention, pages
119–127. Springer, 2019. 3

[3] Gedas Bertasius, Jianbo Shi, and Lorenzo Torresani.
Deepedge: A multi-scale bifurcated deep network for top-
down contour detection. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 4380–4389, 2015. 2, 6

[4] John Canny. A computational approach to edge detection.
IEEE Trans. Pattern Anal. Mach. Intell., (6):679–698, 1986.
1, 2, 6

[5] Jie Chang, Zhonghao Lan, Changmao Cheng, and Yichen
Wei. Data uncertainty learning in face recognition. In IEEE
Conf. Comput. Vis. Pattern Recog., pages 5710–5719, 2020.
3

[6] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In IEEE Conf. Comput. Vis. Pattern Recog., pages
248–255. Ieee, 2009. 8

[7] Ruoxi Deng and Shengjun Liu. Deep structural contour
detection. In ACM Int. Conf. Multimedia, pages 304–312,
2020. 3, 6, 7

[8] Ruoxi Deng, Shengjun Liu, Jinxin Wang, Huibing Wang,
Hanli Zhao, and Xiaoqin Zhang. Learning to decode con-
textual information for efficient contour detection. In ACM
Int. Conf. Multimedia, pages 4435–4443, 2021. 2, 3, 6, 7

[9] Ruoxi Deng, Chunhua Shen, Shengjun Liu, Huibing Wang,
and Xinru Liu. Learning to predict crisp boundaries. In Eur.
Conf. Comput. Vis., pages 562–578, 2018. 2, 3, 5, 6

[10] Piotr Dollár and C Lawrence Zitnick. Fast edge detection
using structured forests. IEEE Trans. Pattern Anal. Mach.
Intell., 37(8):1558–1570, 2014. 6

[11] Yilun Du and Igor Mordatch. Implicit generation and
generalization in energy-based models. arXiv preprint
arXiv:1903.08689, 2019. 8

[12] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. Int. J. Comput. Vis., 88(2):303–338,
2010. 5

[13] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian
approximation: Representing model uncertainty in deep
learning. In international conference on machine learning,
pages 1050–1059. PMLR, 2016. 3, 8

[14] Fredrik K Gustafsson, Martin Danelljan, Goutam Bhat, and
Thomas B Schön. Energy-based models for deep probabilis-
tic regression. In Eur. Conf. Comput. Vis., pages 325–343.
Springer, 2020. 3

[15] Sam Hallman and Charless C Fowlkes. Oriented edge forests
for boundary detection. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 1732–1740, 2015. 6

[16] Jianzhong He, Shiliang Zhang, Ming Yang, Yanhu Shan, and
Tiejun Huang. Bi-directional cascade network for perceptual
edge detection. In IEEE Conf. Comput. Vis. Pattern Recog.,
pages 3828–3837, 2019. 1, 2, 6, 7

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 770–778, 2016. 2

[18] Andrew Howard, Andrey Zhmoginov, Liang-Chieh Chen,
Mark Sandler, and Menglong Zhu. Inverted residuals and
linear bottlenecks: Mobile networks for classification, de-
tection and segmentation. 2018. 3

[19] Jyh-Jing Hwang and Tyng-Luh Liu. Contour detection using
cost-sensitive convolutional neural networks. arXiv preprint
arXiv:1412.6857, 2014. 4

[20] Pavel Iakubovskii. Segmentation models pytorch. https:
//github.com/qubvel/segmentation_models.
pytorch, 2019. 5

[21] Forrest N Iandola, Song Han, Matthew W Moskewicz,
Khalid Ashraf, William J Dally, and Kurt Keutzer.
Squeezenet: Alexnet-level accuracy with 50x fewer pa-
rameters and¡ 0.5 mb model size. arXiv preprint
arXiv:1602.07360, 2016. 3

[22] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In International conference on machine learn-
ing, pages 448–456. PMLR, 2015. 4

[23] Alex Kendall and Yarin Gal. What uncertainties do we need
in bayesian deep learning for computer vision? Adv. Neural
Inform. Process. Syst., 30, 2017. 3

[24] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 5

[25] Durk P Kingma, Tim Salimans, and Max Welling. Varia-
tional dropout and the local reparameterization trick. Adv.
Neural Inform. Process. Syst., 28, 2015. 4

[26] Josef Kittler. On the accuracy of the sobel edge detector.
Image and Vision Computing, 1(1):37–42, 1983. 1, 2

[27] Simon Kohl, Bernardino Romera-Paredes, Clemens Meyer,
Jeffrey De Fauw, Joseph R Ledsam, Klaus Maier-Hein, SM
Eslami, Danilo Jimenez Rezende, and Olaf Ronneberger. A
probabilistic u-net for segmentation of ambiguous images.
Adv. Neural Inform. Process. Syst., 31, 2018. 3

[28] Iasonas Kokkinos. Pushing the boundaries of boundary de-
tection using deep learning. Int. Conf. Learn. Represent.,
2016. 6

[29] Manoj Kumar, Mohammad Babaeizadeh, Dumitru Er-
han, Chelsea Finn, Sergey Levine, Laurent Dinh, and
Durk Kingma. Videoflow: A conditional flow-based
model for stochastic video generation. arXiv preprint
arXiv:1903.01434, 2019. 3

[30] Balaji Lakshminarayanan, Alexander Pritzel, and Charles
Blundell. Simple and scalable predictive uncertainty esti-
mation using deep ensembles. Adv. Neural Inform. Process.
Syst., 30, 2017. 3

https://github.com/qubvel/segmentation_models.pytorch
https://github.com/qubvel/segmentation_models.pytorch
https://github.com/qubvel/segmentation_models.pytorch


[31] Jiang-Jiang Liu, Qibin Hou, and Ming-Ming Cheng. Dy-
namic feature integration for simultaneous detection of
salient object, edge, and skeleton. IEEE Trans. Image Pro-
cess., 29:8652–8667, 2020. 1

[32] Yun Liu, Ming-Ming Cheng, Xiaowei Hu, Kai Wang, and
Xiang Bai. Richer convolutional features for edge detection.
In IEEE Conf. Comput. Vis. Pattern Recog., pages 3000–
3009, 2017. 1, 2, 4, 5, 6, 7

[33] Yu Liu and Michael S Lew. Learning relaxed deep supervi-
sion for better edge detection. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 231–240, 2016. 6

[34] Kevis-Kokitsi Maninis, Jordi Pont-Tuset, Pablo Arbeláez,
and Luc Van Gool. Convolutional oriented boundaries. In
Eur. Conf. Comput. Vis., pages 580–596. Springer, 2016. 6

[35] David R Martin, Charless C Fowlkes, and Jitendra Ma-
lik. Learning to detect natural image boundaries using lo-
cal brightness, color, and texture cues. IEEE Trans. Pattern
Anal. Mach. Intell., 26(5):530–549, 2004. 1, 2

[36] David A Mély, Junkyung Kim, Mason McGill, Yuliang Guo,
and Thomas Serre. A systematic comparison between visual
cues for boundary detection. Vision research, 120:93–107,
2016. 2, 5, 7

[37] Kamyar Nazeri, Eric Ng, Tony Joseph, Faisal Qureshi, and
Mehran Ebrahimi. Edgeconnect: Structure guided image in-
painting using edge prediction. In IEEE Conf. Comput. Vis.
Pattern Recog. Worksh., pages 0–0, 2019. 1

[38] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. 2017. 5

[39] Badri N Patro, Mayank Lunayach, Shivansh Patel, and
Vinay P Namboodiri. U-cam: Visual explanation using un-
certainty based class activation maps. In Int. Conf. Comput.
Vis., pages 7444–7453, 2019. 3

[40] Mengyang Pu, Yaping Huang, Qingji Guan, and Haibin
Ling. Rindnet: Edge detection for discontinuity in re-
flectance, illumination, normal and depth. In Int. Conf. Com-
put. Vis., pages 6879–6888, 2021. 2

[41] Mengyang Pu, Yaping Huang, Yuming Liu, Qingji Guan,
and Haibin Ling. Edter: Edge detection with transformer. In
IEEE Conf. Comput. Vis. Pattern Recog., pages 1402–1412,
2022. 1, 2, 5, 6, 7, 8

[42] Xuebin Qin, Zichen Zhang, Chenyang Huang, Chao Gao,
Masood Dehghan, and Martin Jagersand. Basnet: Boundary-
aware salient object detection. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 7479–7489, 2019. 1

[43] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick,
Kaiming He, and Piotr Dollár. Designing network design
spaces. In IEEE Conf. Comput. Vis. Pattern Recog., pages
10428–10436, 2020. 3

[44] Prajit Ramachandran, Barret Zoph, and Quoc V Le.
Swish: a self-gated activation function. arXiv preprint
arXiv:1710.05941, 7(1):5, 2017. 4

[45] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In International Conference on Medical image com-
puting and computer-assisted intervention, pages 234–241.
Springer, 2015. 8

[46] Raghavendra Selvan, Frederik Faye, Jon Middleton, and Ak-
shay Pai. Uncertainty quantification in medical image seg-
mentation with normalizing flows. In International Work-
shop on Machine Learning in Medical Imaging, pages 80–
90. Springer, 2020. 3

[47] Wei Shen, Xinggang Wang, Yan Wang, Xiang Bai, and Zhi-
jiang Zhang. Deepcontour: A deep convolutional feature
learned by positive-sharing loss for contour detection. In
IEEE Conf. Comput. Vis. Pattern Recog., pages 3982–3991,
2015. 2, 6

[48] Yichun Shi and Anil K Jain. Probabilistic face embeddings.
In Int. Conf. Comput. Vis., pages 6902–6911, 2019. 8

[49] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 2, 6, 8

[50] Xiao Song, Xu Zhao, Hanwen Hu, and Liangji Fang.
Edgestereo: A context integrated residual pyramid network
for stereo matching. In ACCV, pages 20–35. Springer, 2018.
1

[51] Zhuo Su, Wenzhe Liu, Zitong Yu, Dewen Hu, Qing Liao,
Qi Tian, Matti Pietikäinen, and Li Liu. Pixel difference net-
works for efficient edge detection. pages 5117–5127, 2021.
2, 6, 7

[52] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
conference on machine learning, pages 6105–6114. PMLR,
2019. 3, 4, 8

[53] MM Valiuddin, Christiaan GA Viviers, Ruud JG van Sloun,
Fons van der Sommen, et al. Improving aleatoric uncertainty
quantification in multi-annotated medical image segmenta-
tion with normalizing flows. In Uncertainty for Safe Utiliza-
tion of Machine Learning in Medical Imaging, and Perinatal
Imaging, Placental and Preterm Image Analysis, pages 75–
88. Springer, 2021. 3

[54] Yupei Wang, Xin Zhao, and Kaiqi Huang. Deep crisp bound-
aries. In IEEE Conf. Comput. Vis. Pattern Recog., pages
3892–3900, 2017. 6

[55] Tom Wehrbein, Marco Rudolph, Bodo Rosenhahn, and Bas-
tian Wandt. Probabilistic monocular 3d human pose estima-
tion with normalizing flows. In Int. Conf. Comput. Vis., pages
11199–11208, 2021. 3

[56] Yufeng Xia, Jun Zhang, Zhiqiang Gong, Tingsong Jiang, and
Wen Yao. Rbue: A relu-based uncertainty estimation method
of deep neural networks. arXiv preprint arXiv:2107.07197,
2021. 8

[57] Ren Xiaofeng and Liefeng Bo. Discriminatively trained
sparse code gradients for contour detection. Adv. Neural In-
form. Process. Syst., 25, 2012. 6

[58] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,
Jose M Alvarez, and Ping Luo. Segformer: Simple and ef-
ficient design for semantic segmentation with transformers.
Adv. Neural Inform. Process. Syst., 34:12077–12090, 2021.
8

[59] Saining Xie and Zhuowen Tu. Holistically-nested edge de-
tection. In Int. Conf. Comput. Vis., pages 1395–1403, 2015.
1, 2, 6, 7



[60] Dan Xu, Wanli Ouyang, Xavier Alameda-Pineda, Elisa
Ricci, Xiaogang Wang, and Nicu Sebe. Learning deep struc-
tured multi-scale features using attention-gated crfs for con-
tour prediction. In Adv. Neural Inform. Process. Syst., pages
3961–3970, 2017. 6

[61] Wenjie Xuan, Shaoli Huang, Juhua Liu, and Bo Du. Fcl-
net: Towards accurate edge detection via fine-scale correc-
tive learning. Neural Networks, 145:248–259, 2022. 6, 7

[62] Jimei Yang, Brian Price, Scott Cohen, Honglak Lee, and
Ming-Hsuan Yang. Object contour detection with a fully
convolutional encoder-decoder network. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 193–202, 2016. 6

[63] Zhiding Yu, Rui Huang, Wonmin Byeon, Sifei Liu, Guilin
Liu, Thomas Breuel, Anima Anandkumar, and Jan Kautz.
Coupled segmentation and edge learning via dynamic graph
propagation. Adv. Neural Inform. Process. Syst., 34:4919–
4932, 2021. 1

[64] Jing Zhang, Yuchao Dai, Mochu Xiang, Deng-Ping Fan,
Peyman Moghadam, Mingyi He, Christian Walder, Kaihao
Zhang, Mehrtash Harandi, and Nick Barnes. Dense uncer-
tainty estimation. arXiv preprint arXiv:2110.06427, 2021.
3, 5

[65] Jing Zhang, Deng-Ping Fan, Yuchao Dai, Saeed Anwar,
Fatemeh Sadat Saleh, Tong Zhang, and Nick Barnes. Uc-
net: Uncertainty inspired rgb-d saliency detection via condi-
tional variational autoencoders. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 8582–8591, 2020. 3, 8

[66] Jing Zhang, Jianwen Xie, Nick Barnes, and Ping Li. Learn-
ing generative vision transformer with energy-based latent
space for saliency prediction. Adv. Neural Inform. Process.
Syst., 34:15448–15463, 2021. 3

[67] Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima
Tajbakhsh, and Jianming Liang. Unet++: A nested u-net
architecture for medical image segmentation. In Deep learn-
ing in medical image analysis and multimodal learning for
clinical decision support, pages 3–11. Springer, 2018. 3, 4,
8


	. Introduction
	. Related Work
	. Edge Detection
	. Uncertainty in Deep Learning

	. Uncertainty-aware Edge Detection
	. Edge Detection Network
	. Uncertainty Estimation
	. Network Training

	. Experiments
	. Datasets
	. Implementation Details
	. Evaluation Metric
	. Comparison with State-of-the-art
	. Ablation Study
	. Further Analysis

	. Conclusion

