
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

U2Fusion: A Unified Unsupervised Image
Fusion Network

Han Xu, Jiayi Ma, Junjun Jiang, Xiaojie Guo, and Haibin Ling

Abstract—This study proposes a novel unified and unsupervised end-to-end image fusion network, termed as U2Fusion, which is
capable of solving different fusion problems, including multi-modal, multi-exposure, and multi-focus cases. Using feature extraction and
information measurement, U2Fusion automatically estimates the importance of corresponding source images and comes up with
adaptive information preservation degrees. Hence, different fusion tasks are unified in the same framework. Based on the adaptive
degrees, a network is trained to preserve the adaptive similarity between the fusion result and source images. Therefore, the stumbling
blocks in applying deep learning for image fusion, e.g., the requirement of ground-truth and specifically designed metrics, are greatly
mitigated. By avoiding the loss of previous fusion capabilities when training a single model for different tasks sequentially, we obtain a
unified model that is applicable to multiple fusion tasks. Moreover, a new aligned infrared and visible image dataset, RoadScene
(available at https://github.com/hanna-xu/RoadScene), is released to provide a new option for benchmark evaluation. Qualitative and
quantitative experimental results on three typical image fusion tasks validate the effectiveness and universality of U2Fusion. Our code
is publicly available at https://github.com/hanna-xu/U2Fusion.

Index Terms—Image fusion, unified model, unsupervised learning, continual learning.
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1 INTRODUCTION

IMAGE fusion has a wide variety of applications, ranging
from security to industrial and civilian fields [1], [2]. With

the limitation of hardware devices or optical imaging, an
image captured with one type of sensor or one single shoot-
ing setting can merely capture a part of the information. For
instance, information of reflected lighting, with brightness
in a limited range and within a predefined depth-of-field,
is a typical representation of incomplete information. The
target of image fusion is to generate a synthesized image by
integrating complementary information from several source
images that are captured with different sensors or optical
settings. A schematic illustration of different image fusion
tasks is shown in Fig. 1. A single fusion image with superior
scene representation and better visual perception is suitable
for subsequent visual tasks, such as video surveillance,
scene understanding, and target recognition, etc. [3], [4].

Typically, image fusion operates on multi-modal, multi-
exposure, or multi-focus images. To solve these problems,
a large number of algorithms have been developed. They
can be roughly divided into two categories: those based on
a traditional fusion framework and those based on end-to-
end models [9]. Although these algorithms have achieved
promising results in their respective fusion tasks, some
problems remain to be solved. In methods based on the
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traditional fusion framework, the finite choices of fusion
rules and the complexity of manual design limit the im-
provement of the performance. In end-to-end models, the
fusion problem is solved by relying on ground truth for
supervised learning or the specifically designed metrics for
unsupervised learning. However, universal ground truth or no-
reference metric for multiple tasks does not exist. These issues
form the major stumbling blocks in the unity of models and
the application of supervised or unsupervised learning.

Meanwhile, different fusion tasks often share the similar
goal, that is, to synthesize an image by integrating vital and
complementary information from several source images. Nev-
ertheless, in different tasks, the vital information to be
integrated varies largely as source images are of different
types (see detailed explanation in Sec. 3.1), thus limiting
the effectiveness of most methods to specific tasks. With the
strong ability of feature representation in neural networks,
the varied information can be represented in a unified way.
It potentially leads to a unified fusion framework, which
will be explored in this study.

Moreover, by solving different fusion problems in a uni-
fied model, these tasks can promote one another. For instance,
given that the unified model has been trained for multi-
exposure image fusion, it is capable of improving the fusion
performance of under/overexposed regions in the multi-
modal or multi-focus images. Thus, by gathering the strengths
of multiple tasks, the unified model can achieve better results for
each single fusion task with stronger generalization than multiple
individually trained models.

To address these issues, we propose a unified unsupervised
image fusion network known as U2Fusion. For information
preservation, a feature extractor is first adopted to extract
abundant and comprehensive features from source images.
Then, the richness of information in features is measured to
define the relative importance of these features, which indi-
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(a) visible and infrared image fusion (b) PET and MRI image fusion (c) multi-exposure image fusion (d) multi-focus image fusion
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Fig. 1. Schematic illustration of different image fusion tasks (first row: source images, second row (from left to right): fusion results of FusionGAN [5],
U2Fusion, NSCT [6], U2Fusion, Deepfuse [7], U2Fusion, GFDF [8] and U2Fusion).

cates the similarity relationship between the source images
and the fusion result. A higher similarity entails that more
information in this source image is preserved in the result,
thus leading to a higher information preservation degree.
On the basis of these strategies, a DenseNet [10] module is
trained to generate the fusion result without the need for
ground truth. The characteristics and contributions of our
work are summarized as follows:

• We propose a unified framework for various image
fusion tasks. More concretely, we solve different fu-
sion problems with a unified model and unified pa-
rameters. Our solution alleviates shortcomings, such
as separate solutions for different problems, storage
and computation issues for training, and catastrophic
forgetting for continual learning.

• We develop a new unsupervised network for image
fusion by constraining the similarity between the
fusion image and source images to overcome the
universal stumbling blocks in most image fusion
problems, i.e., the lack of universal ground truth and
no-reference metric.

• We release a new aligned infrared and visible image
dataset, RoadScene, to provide a new option for image
fusion benchmark evaluation. It is made available at
https://github.com/hanna-xu/RoadScene.

• We test the proposed method on six datasets for
multi-modal, multi-exposure, and multi-focus image
fusions. Qualitative and quantitative results validate
the effectiveness and universality of U2Fusion.

A preliminary version of this paper appears in [11]. The
new contributions are mainly from four aspects. First, the
strategy for information preservation degree assignment is
improved. Instead of the amount and quality of informa-
tion in original source images, the information preserva-
tion degrees are assigned by the information measurement
performed on extracted features. By considering additional
aspects, the modified strategy provides an improved com-
prehensive measurement to capture the essential character-
istics of source images. Second, the loss function is modified.
The removal of the gradient loss alleviates the false edges,
and the added pixel intensity-based loss helps reduce the
luminance deviation in the fusion image. Third, we replace
the first task from visible (VIS) and infrared (IR) image fu-
sion to multi-modal image fusion where VIS-IR and medical
image fusion are included. Lastly, we validate U2Fusion

on additional publicly available datasets. For the ablation
study, to validate the effectiveness of elastic weight consoli-
dation (EWC) for continual learning from new tasks [12], we
analyze the EWC from two additional aspects, namely, the
statistical distributions of the weight for EWC and the in-
termediate results of all the tasks during the training phase.
As for the adaptive information preservation degrees, the
validation of their effectiveness is also performed.

2 RELATED WORK

2.1 Image Fusion Methods

2.1.1 Methods Based on Traditional Fusion Framework

The traditional fusion framework can be roughly summa-
rized as Fig. 2. As reconstruction is usually an inverse
process of extraction, the key to these algorithms lies in two
important factors: feature extraction and feature fusion. By
modifying them, these methods can be designed for solving
multi-modal, multi-exposure, or multi-focus image fusion.

To solve the issue of feature extraction, a large number
of traditional methods have been proposed. The theories on
which they are based can be divided into four representative
categories: i) multi-scale transform, such as Laplacian pyra-
mid (LP), ratio of low-pass pyramid (RP), gradient pyramid
(GP), discrete wavelet (DWT), discrete cosine (DCT) [13],
curvelet transform (CVT), shearlet, etc.; ii) sparse representa-
tion [14]; iii) subspace analysis, e.g., independent component
analysis (ICA), principal component analysis (PCA), non-
negative matrix factorization (NMF), etc.; and iv) hybrid
methods. However, these manually designed extraction ap-
proaches make fusion methods increasingly complex, thus
intensifying the difficulty of designing fusion rules. The
extraction methods need to be modified correspondingly
to solve different fusion tasks. Furthermore, much attention
needs to be given to the appropriateness of extraction meth-
ods to ensure the completeness of features. To overcome
these limitations, some methods introduce convolutional
neural networks (CNN) in feature extraction, either as some
subparts [15], [16] or as the entire part [17], [18].

Then, the fusion rules are determined on the basis of
extracted features. The commonly used rules include maxi-
mum, minimum, addition, l1-norm, etc. However, the limit
choices of these manually designed fusion rules produce a
glass ceiling on the performance improvement even in some
CNN-based methods.
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Fig. 2. Traditional image fusion framework.

Notably, there are some methods breaking away from
the framework, such as the method based on gradient
transfer and total variation minimization for VIS-IR image
fusion [19], the multi-exposure image fusion method by
optimizing a structural similarity index [20], and the method
based on dense SIFT for multi-focus image fusion [21], etc.
However, the algorithms or metrics on which these methods
are based are dedicated to specific fusion tasks and may not
generalize well.

2.1.2 End-to-end Models
To avoid designing fusion rules, many deep learning-based
algorithms have been put forward. Unlike the methods in
Sec. 2.1.1, these methods are usually end-to-end models
tailored to specific fusion tasks.
Multi-modal Image Fusion. The end-to-end models for
multi-modal image fusion are typically designed for VIS
and IR image fusion. Ma et al. proposed FusionGAN [5] by
establishing an adversarial game between a generator and
a discriminator to preserve the pixel intensity distribution
in the IR image and details in the VIS image. Later, its
variant [22] was proposed to sharpen the edges of ther-
mal targets by introducing the target-enhancement loss.
DDcGAN [23], [24] enhances the prominence of thermal
targets by introducing the dual-discriminator architecture.
However, the unique issue in VIS and IR image fusion is the
preservation of the pixel intensity distribution and details,
which does not apply to other fusion tasks. In addition,
ground truth is usually not present in this type of task. Thus,
it is the major obstacle in utilizing supervised learning in
multi-modal image fusion.
Multi-exposure Image Fusion. To solve this problem, some
unsupervised methods have been put forward. Prabhakar
et al. proposed Deepfuse [7], where the no-reference metric
MEF-SSIM is adopted as the loss function. However, MEF-
SSIM is especially designed for multi-exposure images by
discarding the luminance component, as it is not significant
in this problem. Nevertheless, it still plays an important role
in other tasks. Thus, MEF-SSIM is not applicable to other
problems. In some multi-exposure datasets, there are no
ground truths for supervised learning.
Multi-focus Image Fusion. For this problem, Liu et al. put
forward a network to generate the focus map [25]. The
predefined labels, which indicate whether they are high-
quality images or Gaussian blurred images, are used for
supervised learning. Then, it was extended to a general
image fusion framework [26]. Depending on the gener-
alization, the model trained on multi-focus image fusion
can be employed to solve other tasks. In addition, Guo et
al. proposed FuseGAN [27] where the generator directly
produces a binary focus mask and the discriminator at-
tempts to distinguish the generated masks from the ground

truths, which are synthesized by utilizing a normalized disk
point spread function and separating the background and
foreground. The focus maps/masks are significant for multi-
focus image fusion, whereas they are not necessary or even
not applicable in other tasks. All these methods are based
on supervised learning.

Our method. By considering the abovementioned limita-
tions, we propose a unified unsupervised image fusion
network, which has the following characteristics. i) It is an
end-to-end model not restricted by the limit of manually
designed fusion rules. ii) It is a unified model for various
fusion tasks instead of specific objectives, e.g., distinctive
issues, the specificity of metrics, the need of binary masks,
etc. iii) It is an unsupervised model without the need of
ground truth. iv) By continuously learning to solve new
tasks without losing old capabilities, it solves multiple tasks
with unified parameters.

2.2 Continual Learning

In a continual learning setting, the learning is considered as
a sequence of tasks to be learned. During the training phase,
the weights are adapted to new tasks without forgetting
the previously learned ones. To avoid storing any training
data from previously learned tasks, many algorithms based
on elastic weight consolidation (EWC) are proposed [28], [29],
which include a regularization term to force parameters to
remain close to those trained for the previous tasks. These
technologies have been widely applied in many practical
problems, such as person reidentification [30], real-time ve-
hicle detection [31], and emotion recognition [32], etc. In this
study, we perform continual learning for solving multiple
fusion tasks.

3 METHODOLOGY

Our system allows signals captured with different sensors
and/or shooting settings from the same camera position.
In this section, we provide the problem formulation, the
design of loss functions, the technology of elastic weight
consolidation, and the network architecture.

3.1 Problem Formulation

Focusing on the primary goal of image fusion, i.e., to pre-
serve the vital information in source images, our model
is based on the measurement to determine the richness of
such information. If the source image contains abundant
information, it is of great importance to the fusion result,
which should show a high similarity with the source image.
Therefore, the key issue of our method is to explore a unified
measurement to determine the information preservation
degrees of source images. Rather than maximizing the sim-
ilarity between the fusion result and the ground truth in
supervised learning, our method depends on such degrees
to preserve the adaptive similarity with source images. And,
as an unsupervised model, it is applicable to multiple fusion
problems where ground truth is hardly available.

For the desired measurement, a major problem is that
the vital information in different types of source images
varies greatly. For example, in IR and positron emission
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Fig. 3. Pipeline of the proposed U2Fusion. Dashed lines represent the
data used in the loss function.

tomography (PET) images, the vital information is the ther-
mal radiation and functional responses that are presented
as the pixel intensity distribution. In VIS and magnetic
resonance imaging (MRI) images, the vital information is the
reflected light and structural content represented by image
gradients [19], [23]. In multi-focus images, the information
to be preserved includes the objects within the depth-of-
field (DoF). In multi-exposure images, the vital information
concerns scene content can be enhanced. The above vari-
ability brings considerable difficulty to designing a unified
information measurement, which are designed for the spe-
cific tasks cease to be effective when facing other problems.
They are based on certain surface-level characteristics or
specific properties while in different tasks, and are difficult
to be predetermined in a unified way. We solve this problem
by taking a comprehensive consideration of multifaceted
properties of source images. To this end, we extract both
shallow-level features (textures, local shapes, etc.) and deep-
level features (content, spatial structures, etc.) for estimating
the information measurement.

The pipeline of U2Fusion is summarized as Fig. 3. With
source images denoted as I1 and I2, a DenseNet is trained
to generate the fusion image If . The outputs of feature
extraction are the feature maps φC1(I1), · · · , φC5(I1) and
φC1(I2), · · · , φC5(I2). Then the information measurement is
performed on these feature maps, producing two measure-
ments denoted by gI1 and gI2 . With subsequent processing,
the final information preservation degrees are denoted as
ω1 and ω2. I1, I2, If , ω1 and ω2 are used in the loss function
without the need for ground truth. In the training phase, ω1

and ω2 are measured and applied in defining the loss func-
tion. Then, a DenseNet module is optimized to minimize
the loss function. In the testing phase, ω1 and ω2 do not
need to be measured, as the DenseNet has been optimized.
The detailed definitions or descriptions are given in the
following subsections.

3.1.1 Feature Extraction
Compared with models trained in fusion tasks, models for
other computer vision tasks are usually trained with larger
and more diversified datasets. Thus, features extracted by
such models are abundant and comprehensive [33], [34].
Inspired by the perceptual loss [35], [36], we adopt the
pretrained VGG-16 network [37] for feature extraction, as
shown in Fig. 4. The input I has been unified in a single
channel in our model (we will discuss this transformation
in Sec. 3.5), and we duplicate it into three channels and then

Convolution ReLU Maxpooling

[B, 224, 224, 64]

Feature maps

[B, 112, 112, 128] [B, 56, 56, 256] [B, 28, 28, 512] [B, 14, 14, 512]

…

Fig. 4. Perceptual feature maps extracted by VGG-16 for input image I,
and φCj

(I) represents the feature map extracted by the convolutional
layer before the j-th max-pooling layer. The last row is the shape of
extracted feature maps in the form of [batchsize, height, width, channel].

feeding them into VGG-16. The outputs of the convolutional
layers before max-pooling layers are feature maps for the
subsequent information measurement, which are shown in
Fig. 4 as φC1

(I), · · · , φC5
(I) with their shapes shown below.

For intuitive analysis, some feature maps of a multi-
exposure image pair are shown in Fig. 5. In the original
source images, the overexposed image contains much more
texture details or larger gradients than the underexposed
image, as the latter suffers from much lower luminance.
In Fig. 5, features in φC1

(I) and φC2
(I) are based on

shallow features, such as textures and shape details. In
these layers, feature maps of the overexposed image still
shows more information than the underexposed one. By
comparison, feature maps of higher layers, e.g., φC4

(I) and
φC5

(I), mainly preserve deep-level features, such as the
content or spatial structures. In these layers, comparable
and additional information are present in the feature maps
of the underexposed image. Therefore, the combination of
shallow- and deep-level features forms a comprehensive
representation of the essential information that may not be
easily perceived by the human visual perception system.

3.1.2 Information Measurement
To measure the information contained in the extracted fea-
ture maps, their gradients are used for evaluation. Com-
pared with entities derived from general information theory,
image gradient is a metric based on local spatial struc-
tures with small receptive fields. When used in the deep
learning framework, gradients are much more efficient in
both computation and storage. Thus, they are more suitable
for application in CNN for information measurement. The
information measurement is defined as follows:

gI =
1

5

5∑
j=1

1

HjWjDj

Dj∑
k=1

∥∥∇φCk
j
(I)
∥∥2
F
, (1)

where φCj (I) is the feature map by the convolutional layer
before the j-th max-pooling layer in Fig. 4. k denotes the fea-
ture map in the k-th channel of Dj channels. ‖ · ‖F denotes
the Frobenius norm, and ∇ is the Laplacian operator.

3.1.3 Information Preservation Degree
To preserve the information in source images, two adaptive
weights are assigned as the information preservation de-
grees, which define the weights of similarities between the
fusion image and the source images. The higher the weight,
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Fig. 5. Illustration of feature maps extracted by VGGNet for overexposed
and underexposed images.

the higher the similarity is expected to be, and the higher
the information preservation degree of the corresponding
source image is.

These adaptive weights, denoted as ω1 and ω2, are
estimated according to the information measurement results
gI1 and gI2 obtained by Eq. (1). Given that the difference
between gI1 and gI2 is the absolute value instead of the
relative one, it may be too small compared with themselves
to reflect their difference. Thus, to enhance and embody the
difference in weights, a predefined positive constant c is
used to scale values for better weight assignments. Thus,
ω1 and ω2 are defined as:

[ω1, ω2] = softmax
([gI1

c
,
gI2
c

])
, (2)

where we use the softmax function to map gI1
c ,

gI2
c to real

numbers between 0 and 1, and guarantee that the sum of
ω1 and ω2 is 1. Then, ω1 and ω2 are employed in the loss
function to control the information preservation degrees of
specific source images.

3.2 Loss Function

The loss function is mainly designed for preserving vital
information and for training a single model, which is appli-
cable for multiple tasks. It consists of two parts defined as
follows:

L(θ,D) = Lsim(θ,D) + λLewc(θ,D), (3)

where θ denotes the parameters in DenseNet, and D is the
training dataset. Lsim(θ,D) is the similarity loss between the
result and source images. Lewc(θ,D) is the item designed
for continual learning, as described in next subsection. λ is
a hyperparameter to control the trade-off.

We realize the similarity constraint from two aspects, i.e.,
the structure similarity and the intensity distribution. Given
that the structural similarity index measure (SSIM) is the
most widely used metric that models the distortion accord-
ing to similarities in the information on light, contrast, and

data1 data2 data3

Task1: Task2: Task3:

DenseNet

……

more data

(a) joint training (b) sequential training

data1 data2 data3

Task1: Task2: Task3:

DenseNet DenseNet DenseNet ……

……

Fig. 6. Illustration of joint training and sequential training. The dashed
arrow between DenseNets means that it is kept and set as the initial pa-
rameters of the next task. On this basis, these parameters are optimized
according to the new objective.

structure [38], we use it to constrain the structural similarity
between I1, I2, and If . Thus, with ω1 and ω2 to control the
information degree, the first item of Lsim(θ,D) is formulated
as:

Lssim(θ,D) = E[ω1 · (1− SIf ,I1) + ω2 · (1− SIf ,I2)], (4)

where Sx,y denotes the SSIM value between two images.
While SSIM focuses on the changes of contrast and

structure, it shows weaker constraints on the difference of
the intensity distribution. We supplement Lssim(θ,D) with
the second item, which is defined by the mean square error
(MSE) between two images:

Lmse(θ,D) = E[ω1 ·MSEIf ,I1 + ω2 ·MSEIf ,I2 ]. (5)

Meanwhile, the results obtained by constraining MSE
suffer from relatively blurred appearance by averaging all
plausible outputs, whereas SSIM can make up for this issue.
Thus, these two items compensate for each other. With α
controlling the trade-off, Lsim(θ,D) is formulated as:

Lsim(θ,D) = Lssim(θ,D) + αLmse(θ,D). (6)

3.3 Single Model for Multi-fusion Tasks with Elastic
Weight Consolidation (EWC)
Various fusion tasks usually lead to differences in feature
extraction and/or fusion, as directly reflected in diverse
values of DenseNet parameters. It leads to training multiple
models with the same architecture but diverse parameters.
However, as some parameters are redundant, the utilization
of these models can be greatly improved. It motivates us to
train a single model with unified parameters that integrates
these models and thus become applicable for multiple tasks.

This purpose can be achieved in two ways, i.e., joint
training and sequential training, as shown in Fig. 6. Joint
training is a simple method where all the training data
are kept throughout the training process. In each batch,
data from multiple tasks are randomly selected for training.
Nevertheless, as the number of tasks increases, two urgent
issues become difficult to solve: i) the storage issue caused
by always keeping the data of previous tasks and ii) the
computation issue caused by using all the data for training,
in terms of both the difficulty of computation and time cost.

In sequential training, we need to change the training
data for different tasks, as shown in Fig. 6(b). Thus, only
the data of the current task needs to be stored in the
training process, which solves storage and computation
issues. However, a new problem arises when we train the
model on another task for a new capability: the previous
training data are unavailable [39]. As the training process
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Fig. 7. Intuitive description of data flow during the process of EWC. Thin
lines indicate that only a small subset of data are kept, which are merely
used to calculate µi and not applied to train DenseNet.

continues, the parameters are optimized to solve the new
problems while losing the capacity learned from previous
tasks. This problem is called catastrophic forgetting. To
avoid this drawback, we apply the elastic weight consolidation
(EWC) algorithm [12] to safeguard against it.

In EWC, the squared distance between the parameter
values of the current task θ and those of the previous
task θ∗ are weighted according to their importance to θ∗.
Those important parameters are given higher weights to
prevent forgetting what has been learned from old tasks,
while the parameters with less importance can be modified
to a greater extent to learn from the new task. In this
way, the model is capable of continual learning with elastic
weight consolidation. Thus, the loss for continual learning,
termed as Lewc(θ,D), is included in the total loss function
in Eq. (3). With these importance-related weights defined as
µi, Lewc(θ,D) is formulated as:

Lewc(θ,D) =
1

2

∑
i

µi(θi − θ∗i )2, (7)

where i represents the i-th parameter in the network and µi

represents the weight of corresponding squared distance.
To evaluate the importance, µi is assigned as the diag-

onal terms of the Fisher information matrix and approxi-
mated by computing the square of gradients with the data
in previous tasks as defined below:

µi = E
[
(
∂

∂θ∗i
log p(D∗|θ∗))2|θ∗

]
, (8)

whereD∗ represents the data of previous tasks. log p(D∗|θ∗)
can be approximately replaced by −L(θ∗, D∗) [12]. Thus,
Eq. (8) is converted to:

µi = E
[(
− ∂

∂θ∗i
L(θ∗, D∗)

)2∣∣θ∗] . (9)

Given that the Fisher information matrix can be computed
before throwing away the old data D∗, the model does not
require D∗ for training the current task.

If several previous tasks exist, Lewc(θ,D) is adapted
according to specific tasks and corresponding data. Then,
the squares of these gradients are averaged for the final
µi. The training process and the data flow are illustrated
in Fig. 7.

In multi-task image fusion, θ is the parameters of the
DenseNet. First, the DenseNet is trained to solve Task1, i.e.,
the multi-modal image fusion problem by minimizing the
similarity loss defined in Eq. (6). When adding the capacity

of solving Task2, i.e., the multi-exposure image fusion prob-
lem, the importance-related weights µi are first computed.
In particular, µi indicates the importance of each parameter
in the DenseNet to multi-modal image fusion. Then, the
important parameters are consolidated to avoid catastrophic
forgetting by minimizing the item Lewc in Eq. (3); while
the parameters of little significance are updated to solve
the multi-exposure image fusion by minimizing the simi-
larity loss Lsim correspondingly. Lastly, when we train the
DenseNet on multi-focus image fusion, µi is computed
according to the previous two tasks. The subsequent elastic
weight consolidation strategy is the same as before. In this
way, EWC can be customized to the scenario of multi-task
adaptive image fusion.

3.4 Network Architecture
In our method, DenseNet is employed to generate the fusion
result If , of which the input is the concatenation of I1 and
I2. Thus, it is an end-to-end model without the need for
designing fusion rules. As shown in Fig. 8, the architecture
of DenseNet in U2Fusion consists of 10 layers, each with a
convolution followed by an activation function. The kernel
size of all convolutional layers is set to 3 × 3 and the stride
to 1. Reflection padding is employed before the convolution
to reduce boundary artifacts. No pooling layer is used to
avoid information loss. The activation functions in the first
nine layers are LeakyReLU with the slope set to 0.2, while
that of the last layer is tanh.

Moreover, research has proven that CNNs can be signif-
icantly deeper and trained efficiently if shorter connections
are built between layers close to the input and those close to
the output. Therefore, in the first seven layers, the densely
connected blocks from densely connected CNNs [10] are
employed to improve the information flow and perfor-
mance. In these layers, shortcut direct connections are built
between each layer and all layers in a feed-forward fashion,
as shown in the concatenation operation in Fig. 8. This
way, the problem of vanishing gradients can be reduced.
Meanwhile, feature propagation can be further strengthened
while reducing the number of parameters [40]. The channels
of feature maps are all set to 44. The subsequent four
layers reduce the channels of feature maps gradually until
reaching a single-channel fusion result, as shown in Fig. 8.

3.5 Dealing with RGB Input
RGB inputs are first converted into the YCbCr color space.
Then, the Y (luminance) channel is used for fusion, as struc-
tural details are mainly in this channel and the brightness
variation in this channel is more prominent than chromi-
nance channels. Data in the Cb and Cr (chrominance) chan-
nels are fused traditionally as:

Cf =
C1(|C1 − τ |) + C2(|C2 − τ |)
|C1 − τ |+ |C2 − τ |

, (10)

where C1 and C2 are the Cb/Cr channel values of the first
and second source image, respectively. Cf is the correspond-
ing channel of the fusion result. τ is set as 128. Then, through
the inverse conversion, the fusion images can be converted
into the RGB space. Thus, all the problems are unified into
the single-channel image fusion problem.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

264

concat

Convolution tanh

c c c c c
44 88 132 176 220

128 64 32 1
If

LeakyReLU c Concatenation

Fig. 8. Architecture of DenseNet used in our model. Numbers shown after concatenation/LeakyReLU/tanh functions are the channels of
corresponding feature maps.
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of (a), (b) and (c)

Fig. 9. U2Fusion to fuse multi-exposure image sequence.

source image sequence

(a) (b) (c)

U2Fusion

fusion result of (a) and (b)

U2Fusion

final fusion result of 

(a), (b) and (c)

Fig. 10. U2Fusion to fuse multi-focus image sequence.

3.6 Dealing with Multiple Inputs
In multi-exposure and multi-focus fusion, we need to fuse
a source image sequence, i.e., more than two source images
are available. In this case, these source images can be fused
sequentially. As shown in Figs. 9 and 10, we initially fuse
two of these source images. Then, the intermediate result is
fused with another source image. In this way, U2Fusion is
capable of fusing any number of inputs in theory.

4 EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we compare U2Fusion with several state-of-
the-art methods on multiple tasks with multiple datasets by

qualitative and quantitative comparisons.

4.1 Training Details

We perform U2Fusion on three types of fusion tasks: i)
multi-modal image fusion, including VIS-IR and medical
image (PET-MRI) fusion; ii) multi-exposure image fusion;
and iii) multi-focus image fusion. Given that VIS-IR and
PET-MRI fusion are similar in nature (see detailed explana-
tion in Sec. 3.1), they are jointly seen as multi-modal image
fusion (task 1). The training datasets are from four publicly
available datasets: RoadScene1 (VIS-IR) and Harvard2 (PET-
MRI) for task 1, the dataset in [41]3 for task 2, and Lytro4

for task 3. To validate the universality, the test datasets also
contain two additional ones: TNO5 for VIS-IR image fusion
and EMPA HDR6 for multi-exposure image fusion.

On the basis of the FLIR video7, we have released the
RoadScene, which is a new aligned VIS-IR image dataset
used to remedy shortcomings in existing ones. First, we
select image pairs with highly repetitive scenes from the
video. Second, the thermal noise in original IR images is
reduced. Third, to align the image pairs accurately, we
select feature points carefully and align each image pair
with homography and bi-cubic interpolation. Moreover,
given that some regions cannot be exactly aligned with
homography because of camera distortion or imaging time
elapse, we cut out the exact registration regions. RoadScene
has 221 aligned image pairs containing rich scenes, such as
roads, vehicles, and pedestrians. It solves the problems in
benchmark datasets, such as few image pairs, low spatial
resolution, and lack of detailed information in IR images.

Source images in all the datasets are cropped to patches
of size 64×64. For multi-focus images, images are enlarged
and flipped for additional training data because of the
insufficient aligned image pairs. We set α = 20 and λ = 8e4.
c is set as 3e3, 3.5e3, and 1e2, and the epoches are set as 3,
2, and 2 correspondingly. The parameters are updated by
RMSPropOptimizer with a learning rate 1e-4. The batch size
is 18. Experiments are performed on a NVIDIA Geforce GTX
Titan X GPU and 3.4 GHz Intel Core i5-7500 CPU.

1. https://github.com/hanna-xu/RoadScene
2. http://www.med.harvard.edu/AANLIB/home.html
3. https://github.com/csjcai/SICE
4. https://mansournejati.ece.iut.ac.ir/content/

lytro-multi-focus-dataset
5. https://figshare.com/articles/TNOImageFusionDataset/1008029
6. http://www.empamedia.ethz.ch/hdrdatabase/index.php
7. https://www.flir.com/oem/adas/adas-dataset-form/
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gray VIS and IR image pair HMSD GTF DenseFuse FusionGAN DDcGAN U2Fusion

Fig. 11. Qualitative comparison of our U2Fusion with 5 state-of-the-art methods on 4 typical VIS and IR image pairs in the TNO dataset.
ours

gray VIS and IR image pair HMSD GTF DenseFuse FusionGAN DDcGAN U2Fusion

Fig. 12. Qualitative comparison of U2Fusion with 5 state-of-the-art methods on 5 typical VIS and IR image pairs in the RoadScene dataset.

4.2 Multi-modal Image Fusion

4.2.1 Visible and Infrared Image Fusion

We compare U2Fusion with five state-of-the-art methods:
HMSD [42], GTF [19], DenseFuse [17], FusionGAN [5],
and DDcGAN [24]. The qualitative results on the TNO
and RoadScene datasets are shown respectively in Figs. 11
and 12. Overall, U2Fusion exhibits a sharper appearance
than its competitors. As shown in the highlighted regions,
the competitors lose some details, e.g., cars, the logo, and
the license plate. In comparison, U2Fusion alleviates this
problem by presenting more details. Moreover, in the ex-
treme case where little information is available in one of
the source images, U2Fusion preserves the information in
the other source image more completely in the fusion result,
as shown in the last row in Fig. 11 and the first row in
Fig. 12. Furthermore, U2Fusion is also applied to fuse VIS
(RGB) and gray IR images in the RoadScene. As shown in
Fig. 13, fusion results are more like VIS images enhanced
by IR images for better scene representation because the
fusion process is performed only on the Y channel and the

chromatic information all come from VIS images.
Quantitative comparisons are performed on the remain-

ing 20 and 45 image pairs in TNO and RoadScene. Four met-
rics, namely, correlation coefficient (CC), SSIM, peak signal-
to-noise ratio (PSNR), and the sum of the correlations of
differences (SCD) [43], are used for evaluation. CC measures
the linear correlation degree between source images and the
result. PSNR evaluates the distortion caused by the fusion
process. SCD quantifies the quality of fusion images. As
shown in Tab. 1, U2Fusion ranks first on CC, SSIM, and
PSNR on both datasets. Although it ranks second on SCD,
it achieves comparable results. The promising results show
that U2Fusion achieves high fidelity with source images and
less distortion, noise, or artifacts.

4.2.2 Medical Image Fusion
We compare U2Fusion with RPCNN [44], CNN [16], PA-
PCNN [45], and NSCT [6] on the Harvard dataset. As
shown in Fig. 14, our results have more structural (texture)
information under the premise of little loss of functional
(color) information. The quantitative evaluation of four
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TABLE 1
Mean and standard deviation of four metrics on VIS-IR image fusion on the TNO and RoadScene datasets (red: the best, blue: the second best).

Method TNO RoadScene
CC SSIM PSNR SCD CC SSIM PSNR SCD

HMSD 0.464±0.13 1.9889±0.007 62.687±2.67 1.666±0.15 0.600±0.20 1.9904±0.005 63.146±2.58 1.508±0.27
GTF 0.352±0.12 1.9860±0.007 61.782±3.02 0.977±0.20 0.499±0.26 1.9863±0.009 62.013±3.26 1.007±0.17
DenseFuse 0.533±0.10 1.9797±0.010 59.953±1.99 1.635±0.16 0.565±0.21 1.9873±0.005 61.126±1.73 1.310±0.30
FusionGAN 0.458±0.10 1.9824±0.008 60.535±1.98 1.403±0.31 0.494±0.26 1.9850±0.009 61.341±2.59 0.844±0.52
DDcGAN 0.414±0.11 1.9824±0.006 60.248±1.49 1.269±0.18 0.506±0.20 1.9805±0.009 60.051±2.32 1.187±0.26
FusionDN 0.499±0.12 1.9875±0.004 61.691±1.29 1.805±0.12 0.627±0.21 1.9866±0.007 61.684±2.43 1.778±0.17
U2Fusion 0.537±0.11 1.9909±0.005 62.914±2.07 1.780±0.11 0.635±0.20 1.9909±0.005 63.305±2.35 1.635±0.24
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Fig. 13. Qualitative results on 3 typical VIS (RGB) and IR image pairs in
the RoadScene dataset.

TABLE 2
Mean and standard deviation of four metrics on medical image fusion

on the Harvard dataset.

Method SCD CC SSIM PSNR

RPCNN 1.429±0.08 0.785±0.09 1.9865±0.004 61.213±1.28
CNN 1.272±0.23 0.798±0.09 1.9885±0.005 62.137±1.79
PAPCNN 1.289±0.12 0.784±0.09 1.9872±0.005 61.565±1.41
NSCT 0.969±0.20 0.769±0.09 1.9875±0.005 61.695±1.49
FusionDN 0.742±0.23 0.805±0.09 1.9769±0.008 59.178±1.34
U2Fusion 1.312±0.04 0.834±0.08 1.9921±0.002 63.458±1.15

metrics in Sec. 4.2.1 is performed on the remaining 10 test
image pairs, as reported in Tab. 2. The best results on CC,
SSIM, and PSNR indicate that U2Fusion achieves higher
correlation and similarity with source images and produces
less distortion/noise. The suboptimal result on SCD shows
that U2Fusion achieves comparable correlation between the
difference and source images.

4.3 Multi-exposure Image Fusion
We compare U2Fusion with GFF [46], DSIFT [47], GBM
[48], Deepfuse [7], and FLER [49] on the more challenging
problem where source images have a large exposure ratio
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Fig. 14. Qualitative comparison of U2Fusion with 4 state-of-the-art meth-
ods on 4 typical PET and MRI image pairs in Harvard medical dataset.

and thus contain little information. Qualitative results on
the dataset in [41] and the EMPA HDR dataset are respec-
tively reported in Figs. 15 and 16. Given the inappropriate
exposure settings in source images, the representations of
the scene are weakened with poor visual perception. In



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

under and overexposed image pair GFF DSIFT GBM Deepfuse FLER U2Fusion

Fig. 15. Qualitative comparison of U2Fusion with 5 state-of-the-art methods on 5 typical multi-exposure image pairs in the dataset in [41].

under and overexposed image pair GFF DSIFT GBM Deepfuse FLER U2Fusion

Fig. 16. Qualitative comparison of U2Fusion with 5 state-of-the-art methods on 3 typical multi-exposure image pairs in the EMPA HDR dataset.

our result, these representations are further enhanced with
appropriate exposure. The local dark regions in GFF, DSIFT,
and FLER are improved in U2Fusion. Moreover, compared
with GBM and Deepfuse, our results are enriched with
clearer details or higher contrast to provide better detail
representation, as shown in the red boxes.

Quantitative comparisons are performed on 30 and 15
image pairs in the dataset in [41] and the EMPA HDR
dataset, respectively. In addition to SSIM, PSNR, and CC, an
additional metric, edge intensity (EI), is used for evaluation.
EI reflects the gradient amplitude of edge point. The mean
and standard deviation are shown in Tab. 3. On the dataset
in [41], U2Fusion achieves the optimal mean on SSIM and
PSNR. The results on EI and CC follow behind FusionDN
and Deepfuse by 0.02 and 0.011, respectively. On the EMPA
HDR dataset, our mean on SSIM is the best one. For other
metrics, U2Fusion achieves 0.037, 0.064, and 0.009, which are
close to the best values. These results show that in U2Fusion,
the similarity and correlation between the fusion image and
source images are higher and have less distortion and larger
gradient amplitude.

4.4 Multi-focus Image Fusion
We compare our method with DSIFT [50], GBM [48], CNN
[25], GFDF [8], and SESF-Fuse [18] with qualitative results

shown in Fig. 17. Although U2Fusion does not use the
ground truth for supervision nor does it extract and fill
focused regions in fusion images, it still achieves compa-
rable results. As shown in the first row, edges blurred at the
boundary of focused and defocused regions are fused into
results in the competitors. In U2Fusion, this phenomenon
has been alleviated as it attempts to reconstruct the focused
regions after judging their relative blurring relationship. The
other difference is shown in the last two rows, in DSIFT,
CNN, GFDF, and SESF-Fuse, at the boundary of focused and
defocused regions. Some details in the far-focused images
are lost, e.g., the golf and the edge of the ear. Although
GBM retains these details, noticeable brightness and color
deviations can be observed in the results. By comparison,
U2Fusion preserves these details to a greater extent.

Metrics for evaluation include EI, CC, visual information
fidelity (VIF) [51], and mean gradient (MG). VIF measures
the information fidelity by computing the distortion be-
tween source images and the fusion result. The larger MG,
the more gradients the image contains and the better fusion
performance. As shown in Tab. 4, U2Fusion achieves the
optimal results on EI and CC. The best result on EI and
the suboptimal result on MG indicate more gradients in our
results for sharper appearance. The results are consistent
with the qualitative results shown in Fig. 17. Moreover,
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TABLE 3
Mean and standard deviation of four metrics on multi-exposure image fusion on the dataset in [41] and the EMPA HDR dataset.

Method
dataset in [41] EMPA HDR

SSIM EI PSNR CC SSIM EI PSNR CC

GFF 1.937±0.01 0.218±0.07 54.604±0.95 0.065±0.35 1.954±0.03 0.242±0.11 57.108±3.59 0.423±0.36
DSIFT 1.940±0.01 0.193±0.06 54.856±0.83 0.088±0.35 1.958±0.02 0.222±0.11 57.415±3.49 0.524±0.29
GBM 1.953±0.01 0.230±0.07 55.965±0.97 0.793±0.05 1.966±0.02 0.237±0.12 58.145±2.87 0.782±0.12
Deepfuse 1.953±0.01 0.194±0.07 55.992±1.09 0.848±0.05 1.967±0.02 0.181±0.10 58.518±3.20 0.840±0.10
FLER 1.947±0.01 0.212±0.07 55.425±0.81 0.337±0.31 1.961±0.02 0.235±0.11 57.770±3.41 0.518±0.34
FusionDN 1.943±0.01 0.285±0.12 54.969±0.85 0.817±0.056 1.965±0.02 0.277±0.12 57.780±2.44 0.801±0.12
U2Fusion 1.954±0.01 0.265±0.09 56.074±0.96 0.837±0.05 1.968±0.02 0.240±0.13 58.454±3.07 0.831±0.10

far-focused near-focused DSIFT GBM CNN GFDF SESF-Fuse ours

far- and near-focused image pair DSIFT GBM CNN GFDF SESF-Fuse U2Fusion

Fig. 17. Qualitative comparison of U2Fusion with 5 state-of-the-art methods on 3 typical far-/near-focused image pairs in the Lytro dataset.

TABLE 4
Mean and standard deviation of four metrics on multi-focus image

fusion on the Lytro dataset.

Method EI CC VIF MG (×10−3)

DSIFT 0.300±0.11 0.969±0.01 1.140±0.05 34.636±13.59
GBM 0.294±0.09 0.927±0.02 1.203±0.26 33.575±12.25
CNN 0.297±0.11 0.970±0.01 1.130±0.05 34.294±13.56
GFDF 0.299±0.11 0.969±0.01 1.136±0.06 34.436±13.57
SESF-Fuse 0.300±0.11 0.969±0.01 1.145±0.06 34.568±13.58
FusionDN 0.315±0.11 0.969±0.01 1.505±0.34 35.080±12.79
U2Fusion 0.316±0.11 0.972±0.01 1.466±0.20 34.767±12.67

the best result on CC and the optimal result on VIF show
that U2Fusion maintains the highest linear correlation with
source images and achieves comparable information fidelity.

5 ABLATION EXPERIMENTS

5.1 Ablation Study about EWC

In U2Fusion, we use EWC to train a single model for three
fusion tasks to overcome catastrophic forgetting. To vali-

date its effectiveness, we perform a comparison experiment
where tasks are sequentially trained without EWC. The
effectiveness is analyzed from three aspects: i) the similarity
loss, ii) statistical distributions of µi, and iii) intermediate
fusion results during the training phase.

Changes in the similarity loss, Lsim(θ,D) in Eq. (3), are
shown in Fig. 18. The first plot is the similarity loss of
each task without applying EWC, and the second plot is
that with EWC. The difference is not evident between the
losses of tasks 1 and 2. However, when training DenseNet
on task 3 without EWC, the loss on the validation dataset of
task 2 increases evidently. It indicates that the performance
of the current network on multi-exposure image fusion is
declining. With EWC, the similarity losses of previous tasks
are basically the same as those when they were trained.
Thus, by applying EWC, we can obtain a single model
applicable to these tasks.

We also compare the statistical distributions of µi

with/without EWC, as shown in Fig. 19. µi is computed
by the similarity loss and corresponding datasets after each
task has been trained. For example, the distribution after
training task 3 is the statistical distribution of the mean
µi obtained by averaging µi computed by the similarity
loss and dataset of task 1 and those of task 2. Without
EWC, not much difference is observed among the three
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Fig. 18. Changes of the similarity loss without EWC (the first plot) or with EWC (the second plot).
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Fig. 19. Changes of statistical distributions of µi without EWC (the first plot) or with EWC (the second plot).

distributions of µi obtained after three tasks, as shown in
the first plot. The parameters are only related to the current
task, as µi only shows the importance of parameters to the
current task. However, with EWC, the proportion of larger
µi has increased significantly. This increase shows that more
important parameters are present in the network. These
parameters are significant not only to the current task but
also to previous ones. Meanwhile, the decreased proportion
of small values also shows that the redundancy of the
network is decreasing. An increasing number of parameters
play an import role in improving the fusion performance.

The intuitive qualitative comparisons of results
with/without EWC are given in Fig. 20. After training the
model on tasks 1 and 2, the models with and without
EWC achieve satisfactory results on multi-modal and multi-
exposure image fusion. Given that it has not been trained
on task 3, the results of multi-focus image fusion show
blurred edges, as shown in the results of task 3 in Figs. 20
(a), (b), and (d). However, by training the model on task 3,
the results exhibit a sharper appearance, as shown in the
results of task 3 in Figs. 20 (d) and (e). When the model is
trained without EWC, the performance on task 2 declines,
e.g., the lower luminance of the whole image. Moreover,
evident difference is observed between the results of task
1 in Figs. 20 (b) and (c). With EWC, these two problems
have been alleviated, as shown in Figs. 20 (d) and (e).

5.2 A Unified Model for Mutual Promotion between Dif-
ferent Tasks

In U2Fusion, we employ EWC to learn from new tasks
continuously. In this way, the unified model is capable of
fusing multiple types of source images. Thus, with unified
parameters, the information learned by U2Fusion from a

single task can promote other tasks. For verification, we
train an individual model for each task. Thus, no interaction
occurs among different tasks. The fusion results are shown
in Fig. 21. Although multi-modal and multi-focus image
fusions are different from multi-exposure image fusion,
multi-modal and multi-focus images also have overexposed
regions, which can be evidently seen from the visible images
in the first three columns and the far-focused image in the
last column. With a unified model that has been trained
for multi-exposure image fusion, U2Fusion shows better
performance for these overexposed regions with clearer
representation than individual models. Another instance is
shown in the results of multi-exposure image fusion, i.e.,
the sixth column. The highlighted regions in the source
images are similar to multi-focus images. Given that the
model has learned from multi-focus image fusion, the result
of U2Fusion exhibits clearer and sharper edges than that
of the individually trained model. Thus, by gathering the
strengths of multiple tasks, U2Fusion obtains the strong
generalization not only for multiple types of source images
but also for multiple types of regions in the same type of
source images. Therefore, a unified model can realize the
mutual promotion of different fusion tasks.

5.3 Ablation Study about Adaptive Information Preser-
vation Degrees
To validate the effectiveness of adaptive information preser-
vation degrees, we perform the experiments where ω1 and
ω2 are directly set to 0.5. The comparative results on the six
datasets are shown in Fig. 22. The results in the first row
are obtained when ω1 and ω2 are fixed to 0.5, and those
in the second row are the results of U2Fusion. In multi-
modal image fusion, the results without adaptive informa-
tion preservation degrees show worse detail representation,
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Fig. 20. Intermediate fusion results. From left to right: (a) fusion results after training the model on task 1; (b) and (c): fusion results after training
the model on task 2 and task 3 without EWC; (d) and (e): fusion results after training the model on task 2 and task 3 with EWC.

Fig. 21. Illustration of mutual promotion between different tasks in a unified model. From top to bottom: source images, fusion results by training
individual models for each fusion task and fusion results of U2Fusion. From left to right: images from the TNO, RoadScene (the second and third
columns), Harvard, the dataset in [41], EMPA HDR and Lytro datasets.

as shown in the edges of the cloud, textures of the jeep,
details of the net, and the structural information. In multi-
exposure image fusion, the difference is clearly seen in the
overexposed regions. Without the adaptive degrees, these
regions still look overexposed, such as the flower, window,
and the sun. The phenomenon is most noticeable in the
results of multi-focus image fusion. When ω1 and ω2 are
directly set to 0.5, the network fails to distinguish between
focused and defocused regions. Therefore, the results suf-
fer from blurred edges, while U2Fusion generates a much
sharper appearance.

5.4 Effect of Training Order

In the three fusion tasks, multi-focus image fusion is a
little different from multi-modal and multi-exposure image
fusion. For multi-modal and multi-exposure image patches,
the fusion patch can be seen as the combination of two
source images. However, for multi-focus image patches, the
fusion process can be seen as the selection of the focused

regions in the source images. Thus, the fusion result is
expected to exhibit a high similarity with source images in
the focused region. Therefore, we perform two comparison
experiments in this section. For quantitative comparison,
we use the correlation coefficient (CC) to measure the cor-
relation between the result and source images and mean
gradient (MG) to measure the performance of the fusion
results.

On the one hand, we change the order of multi-modal
and multi-exposure image fusion. The training order is
reset as multi-exposure→multi-modal→multi-focus image
fusion. The qualitative results are shown in Fig. 23, and the
quantitative results are shown in Tab. 5. As shown in the
results, the exchange of the training orders of multi-modal
and multi-exposure image fusion has little effect on fusing
multi-focus images. For these two tasks, the results exhibit
higher brightness and mean gradient. However, the results
of the original training order maintain a higher correlation
with the source images.

On the other hand, considering the difference between
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Fig. 22. Comparative qualitative results of our method without (the first row) and with (the second row) adaptive information preservation degrees.
From left to right: fusion images of image pairs from the TNO, RoadScene, Harvard, the dataset in [41], EMPA HDR and Lytro datasets.

multi-exposure →

multi-modal →

multi-focus

multi-modal →

multi-exposure →

multi-focus

multi-focus →

multi-modal →

multi-exposure

Fig. 23. Fusion results of different training orders. From left to right: results of image pairs from the TNO, RoadScene, Harvard, the dataset in [41],
EMPA HDR and Lytro datasets.

TABLE 5
Mean of two metrics (correlation coefficient/mean gradient) of different training orders on different datasets.

Training Order
multi-modal dataset multi-exposure dataset multi-focus dataset

TNO RoadScene Harvard dataset in [41] EMPA HDR Lytro

modal→exposure
→focus 0.5370/0.0467 0.6347/0.0594 0.8442/0.0933 0.8378/0.0647 0.8158/0.0597 0.9723/0.0677

exposure→modal
→focus 0.5359/0.0480 0.6242/0.0592 0.8335/0.0950 0.8191/0.0672 0.8065/0.0639 0.9724/0.0700

focus→modal
→exposure 0.5319/0.0383 0.6613/0.0516 0.8406/0.0873 0.8322/0.0611 0.8081/0.0572 0.9803/0.0563

the multi-focus image fusion and the two other fusion tasks,
we set multi-focus image fusion as the first task. Then, the
training order is reset as multi-focus→multi-modal→multi-
exposure image fusion. Evidently, the result of multi-focus
image fusion is more blurred than those of other orders,
which can be seen from the rightmost column in Fig. 23.
This phenomenon is also reflected by the substantially re-
duced mean gradient in Tab. 5, which drops from 0.0677
or 0.0700 to 0.0563. The ability of U2Fusion for continual
learning benefits from Lewc(θ,D) is defined in Eq. (7).
Some unimportant parameters are updated to learn from
new tasks, resulting in a slight performance degradation on
the previous tasks. Given the particularity of multi-focus

image fusion, the performance degradation is more evident,
especially reflecting in the blurring of shape edges.

Therefore, the training orders of multi-modal and multi-
exposure image fusion have little effect on the fusion results,
while that of multi-focus has a relatively significant effect.
Comparing the quantitative results in Tab. 5, the order of
multi-modal→multi-exposure→multi-focus shows the best
performance. Thus, we adopt it in U2Fusion.

5.5 U2Fusion vs. FusionDN

The preliminary version of the proposed method is Fu-
sionDN [11], and the improvements are described in Sec. 1.
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Fig. 24. Comparative results of our U2Fusion with the previous version FusionDN. From top to bottom: source images, result of FusionDN and
U2Fusion. From left to right: image pairs from the TNO, RoadScene, Harvard, the dataset in [41], EMPA HDR and Lytro datasets.

To validate the effectiveness of these improvements, we
compare the results of FusionDN and U2Fusion, as shown
in Fig. 24.

First, we improve the strategy for information preser-
vation degree assignment by modifying the amount and
quality of information in source images. The effect of this
improvement is shown in the first and second columns in
Fig. 24. Relying on the amount and quality information
in original source images, FusionDN preserves the high
contrast in VIS regions, such as that between the smoke
and the background. Nevertheless, a considerable amount
of details in the corresponding IR regions have been lost.
In U2Fusion, by considering the information in abundant
extracted features, the information preservation degrees are
changed, and more details in source images are preserved.

Second, we modify the loss function by removing the
gradient loss and adding the MSE loss. In FusionDN, the
gradient loss is introduced to preserve more gradients.
However, it causes some false edges, as in the results of
FusionDN in the fourth and fifth columns. By removing it,
we rely on SSIM and the improved information preserva-
tion degree assignment strategy to preserve the structural
information. The results still show sharp appearance and
alleviate false edges. Moreover, given that the intensity
distribution is preserved solely by SSIM, the luminance
component of the result shows slight deviation from source
images, as shown in the result of FusionDN in the last
column. In U2Fusion, to overcome the luminance deviation,
we add the MSE loss. As in the last column, the intensity of
U2Fusion is more similar to that of source images.

Lastly, we replace the first fusion task from VIS-IR image
fusion to multi-modal image fusion. In this task, VIS-IR
and PET-MRI image fusion are included. As the model in
FusionDN has not been trained on the medical dataset,

the result seems unsatisfactory with weak edges and gray
background, as shown in the third column.

6 CONCLUSION

In this study, we propose a novel unified and unsupervised
end-to-end image fusion network, termed as U2Fusion, to
solve multiple fusion problems. First, adaptive information
preservation degrees are obtained as the measurement of
the amount of information contained in source images.
Thus, different tasks are solved under a unified framework.
In particular, the adaptive degrees allows the network to
be trained to preserve the adaptive similarity between the
fusion result and source images. Consequently, the ground
truth is not required. Moreover, we solve the catastrophic
forgetting problem as well as the storage and computa-
tion issues to train a single model applicable to multiple
problems. This single model is capable of solving multi-
modal, multi-exposure, and multi-focus image fusion prob-
lems with high-quality results. The qualitative and quan-
titative results validate the effectiveness and universality
of U2Fusion. Moreover, we release a new aligned infrared
and visible image dataset RoadScene on the basis of FLIR
video to provide a new option for image fusion benchmark
evaluation.
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