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Figure 1: Stealthy projector-based adversarial attack (SPAA): (a) System setup: the goal is to project a stealthy adversarial pattern
(e.g., (c)), such that the camera-captured scene (e.g., (e)) causes misclassification. (b) Camera-captured scene under normal light
and the classifier output is soccer ball with a probability of p = 0.99. (c) An adversarial pattern created by our SPAA algorithm. (d)
Our SPAA simulated camera-captured adversarial projection (i.e., (c) virtually projected onto (b)). (e) The actual camera-captured
adversarial projection (i.e., (c) actually projected onto (b)). (f) Normalized difference between (b) and (e). It is clear that the
camera-captured adversarial projection is stealthy, meanwhile, successfully fools the classifier such that the output is table lamp
with a probability of p = 0.63. More results are provided in § 4 and supplementary.

ABSTRACT

Light-based adversarial attacks use spatial augmented reality (SAR)
techniques to fool image classifiers by altering the physical light con-
dition with a controllable light source, e.g., a projector. Compared
with physical attacks that place hand-crafted adversarial objects,
projector-based ones obviate modifying the physical entities, and
can be performed transiently and dynamically by altering the projec-
tion pattern. However, subtle light perturbations are insufficient to
fool image classifiers, due to the complex environment and project-
and-capture process. Thus, existing approaches focus on projecting
clearly perceptible adversarial patterns, while the more interesting
yet challenging goal, stealthy projector-based attack, remains open.
In this paper, for the first time, we formulate this problem as an end-
to-end differentiable process and propose a Stealthy Projector-based
Adversarial Attack (SPAA) solution. In SPAA, we approximate the
real Project-and-Capture process using a deep neural network named
PCNet, then we include PCNet in the optimization of projector-based
attacks such that the generated adversarial projection is physically
plausible. Finally, to generate both robust and stealthy adversarial
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projections, we propose an algorithm that uses minimum perturba-
tion and adversarial confidence thresholds to alternate between the
adversarial loss and stealthiness loss optimization. Our experimental
evaluations show that SPAA clearly outperforms other methods by
achieving higher attack success rates and meanwhile being stealthier,
for both targeted and untargeted attacks.

Index Terms: Human-centered computing—Human computer
interaction (HCI)—Interaction paradigms—Mixed / augmented
reality; Security and privacy—Privacy protections; Computing
methodologies—Object recognition

1 INTRODUCTION

Adversarial attacks on deep image classifiers aim to generate ad-
versarial perturbation to the input image (i.e., digital attacks) or the
physical world (physical or projector-based attacks) such that the
perturbed input can fool classifiers. With the rapid advancement of
artificial intelligence, adversarial attacks become particularly impor-
tant as they may be applied to protect user privacy and security from
unauthorized visual recognition. It is worth noting that our work
is different from existing studies in privacy and security of virtual
reality (VR) and augmented reality (AR) [1, 6, 11, 32, 34], because
we aim to use spatial augmented reality (SAR) to protect privacy
and security rather than studying the privacy and security of VR/AR
systems themselves. The most popular type of adversarial attacks are
digital attacks [5, 8, 12, 25–27, 33, 39, 41, 47], which directly perturb
the input images of a classifier. A common requirement for digital
attack is stealthiness, i.e., the perturbation should be relatively small
(usually bounded by Lp norm) yet still successfully fools the classi-



fiers. Another type is physical attack [2, 4, 9, 10, 20, 21, 35, 43, 44],
which assumes no direct access to the classifier input image. In-
stead, the perturbation is made on the physical entities, e.g., placing
adversarial patches, stickers or 3D printed objects. Usually physi-
cal attacks are much harder to achieve stealthiness due to complex
physical environment and image capture process [2,20,44], and they
must be strong enough to fool the classifiers. Another challenge
is for targeted attacks, physical ones must manufacture a different
adversarial pattern for each target.

Light-based (in the rest of the paper, we use projector-based to
better describe our setup) attacks, as shown by our example in Fig-
ure 1, use SAR techniques to modify the environment light without
physically placing adversarial entities to the scene. Thus, the attacks
can be transient and dynamic, e.g., by turning on and off the projec-
tor or changing the projected patterns. However, similar to physical
attacks, projector-based attacks are difficult to fool image classifiers
due to the complex environment and the project-and-capture process.
Thus, existing methods [22, 29, 30] focus on improving attack suc-
cess rates using perceptible patterns, while stealthy projector-based
attack remains an open problem.

Note that simply projecting a digital adversarial example to the
scene may not produce a successful stealthy projector-based attack,
due to the complex geometric and photometric transformations in-
volved in the project-and-capture process. One intuitive solution is
to use a two-step pipeline by first performing digital attacks on the
camera-captured scene image, then using projector compensation
techniques [3, 13, 15] to find the corresponding projector adversarial
pattern. However, this two-step method is problematic, because
digital attacks may generate physically implausible [44] adversarial
examples that cannot be produced by a projector, e.g., perturbations
in shadow regions or luminance beyond the projector’s dynamic
range. As will be shown in our experimental evaluations, such a
two-step method has lower attack success rates and stealthiness
than our SPAA solution. Another idea is the online one-pixel-based
attack [30]. However, this preliminary exploration only allows to
perturb one projector pixel and requires at least hundreds of real
projections and captures to attack a single 32× 32 low resolution
target, making it hardly applicable to higher resolution images in
practice, as shown in our experiments.

In this paper, we approach stealthy projector-based attacks from a
different perspective by approximating the real Project-and-Capture
process using a deep neural network named PCNet. Then, we con-
catenate PCNet with a deep image classifier such that the entire
system is end-to-end differentiable. Thus, PCNet adds additional
constraints such that the projected adversarial patterns are physi-
cally plausible. Finally, to generate robust and stealthy adversarial
patterns, we propose an optimization algorithm that uses minimum
perturbation and adversarial confidence thresholds to alternate be-
tween the minimization of adversarial loss and stealthiness loss.

To validate the effectiveness of the proposed SPAA algorithm, we
conduct thorough experimental evaluations on 13 different projector-
based attack setups with various objects, for both targeted and un-
targeted attacks. In all the comparisons, SPAA significantly outper-
forms other baselines by achieving higher success rates and mean-
while being stealthier.

Our contributions can be summarized as follows:
• For the first time, we formulate the stealthy projector-based

adversarial attack as an end-to-end differentiable process.
• Based on our novel formulation, we propose a deep neural

network named PCNet to approximate the real project-and-
capture process.

• By incorporating the novel PCNet in projector-based adver-
sarial attacks, our method generates physically plausible and
stealthy adversarial projections.

The source code, dataset and experimental results are made publicly
available at https://github.com/BingyaoHuang/SPAA.

In the rest of the paper, we introduce the related work in § 2,
and describe the problem formulation and the proposed SPAA algo-
rithm in § 3. We show our system configurations and experimental
evaluations in § 4, and conclude the paper in § 5.

2 RELATED WORK

In this section we review existing adversarial attacks on deep image
classifiers in three categories: digital attacks, physical ones and
projector-based ones as shown in Figure 2.
Digital attacks directly alter a classifier’s input digital image such
that the classifier’s prediction becomes either (a) a specific target
(targeted attack) or (b) any target as long as it is not the true label
(untargeted attack). The input image perturbation is usually per-
formed by back-propagating the gradient of adversarial loss to the
input image, and can be either single-step, e.g., fast gradient sign
method (FGSM) [12], or iterative, e.g., L-BFGS based [41], iterative
FGSM (I-FGSM) [21], momentum iterative FGSM (MI-FGSM) [8],
projected gradient descent (PGD) [25], C&W [5] and decoupling
direction and norm (DDN) [33].

The gradient-based methods above require access to the classifier
weights and gradients (i.e., white-box attack). To relax such require-
ments, another type of digital attacks use gradient-free optimization,
e.g., one-pixel attack using differential evolution (DE) [39] or black-
box optimization [46]. Another advantage of gradient-free attacks is
that they can be applied to scenarios where the system gradient is
inaccessible or hard to compute (see projector-based attacks below).
However, they are usually less efficient than gradient-based methods,
and this situation deteriorates when image resolution increases.
Physical attacks assume no direct access to the classifier input
image, instead they modify the physical entities in the environ-
ment by placing manufactured adversarial objects or attaching stick-
ers/graffiti. For example, Brown et al. [4] print 2D adversarial
patches such that when placed in real scenes, the camera-captured
images may be misclassified as certain targets. Sharif et al. [35] cre-
ate a pair of adversarial eyeglass frames such that wearers can evade
unauthorized face recognition systems. Similarly, Wu et al. [43] cre-
ate an invisibility cloak to evade object detectors. Li et al. [23] alter
camera-captured scenes by applying a translucent adversarial sticker
to the camera lens. Early approaches often perform attacks in the
digital image space first, and then bring the printed versions to the
physical world. However, Kurarin et al. [20] show that the complex
physical environment and the image capture process significantly
degrade the attack success rates, because image space perturbations
may not be physically meaningful [44] and are sensitive to minor
transformations [2].

To fill the gap between the digital and the physical worlds, and to
improve transferability, some studies focus on robustness of physical
adversarial examples against transformations. For example, Atha-
lye et al. [2] propose Expectation Over Transformation (EOT) to
generate robust physical adversarial examples over synthetic trans-
formations. Then, Eykholt et al. [10] propose Robust Physical
Perturbations (RP2) to produce robust adversarial examples under
both physical and synthetic transformations. Afterwards, Jan et
al. [17] present D2P to capture more complex digital-to-physical
transformations using an image-to-image translation network.

Despite these efforts, how to make adversarial patterns stealthy
remains challenging. Unlike digital attacks where perturbations can
be easily made stealthy, subtle physical perturbations are hard to
capture using digital cameras and can be easily polluted by sensor
noise, lens distortion and camera internal image processing pipeline.
Thus, to improve robustness against these factors, most existing
physical adversarial examples are designed with strong artificial
patterns.
Projector-based attacks modify only the environment light condi-
tion using a projector instead of changing the physical entities (e.g.,
placing manufactured adversarial objects in the scene), and very
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Figure 2: Adversarial attack types. Digital attacks directly perturb the
camera-captured image Is. Physical attacks perturb the scene s by
adding physical entities, e.g., an adversarial patch δs. Projector-based
attacks perturb the environment light l by δl.

few studies have been dedicated to this direction. A preliminary
exploration done by Nichols and Jasper [30] uses a low resolution
projector-camera pair (both set to 32× 32) to perturb scene illumi-
nations and capture projections. Because the image resolutions are
relatively small, a differential evolution [38] (DE)-based one-pixel
attack framework [39] can be applied to solve this problem. In partic-
ular, by perturbing only one projector pixel, only five variables need
to be optimized, i.e., the pixel’s 2D location and its RGB value. Even
so, it still requires hundreds of real projections and captures for each
targeted attack. Moreover, including the real project-and-capture
process in the DE optimization may not only cause efficiency bot-
tlenecks but also makes it hard to run in parallel. Thus, this method
is impractical for high resolution cases due to the exponentially
increased number of real project-and-capture processes.

Other studies focus on attacking face recognition systems [22, 29,
36, 48]. Special hardware settings are proposed to achieve stealth-
iness, e.g., Zhou et al. [48] use infrared LEDs to project human
imperceptible patterns and Shen et al. [36] leverage persistence
of vision and the chromatic addition rule to control camera shut-
ter speed, such that the camera can capture human imperceptible
adversarial patterns.
Stealthiness is a common requirement for adversarial attacks, i.e.,
perturbations should be (nearly) imperceptible to human eyes while
still successfully causing misclassification. Usually stealthiness is
measured using Lp norm [5, 12, 20, 27, 41] and used as an addi-
tional constraint when optimizing the adversarial attack objective.
Recently, Zhao et al. [47] show that optimizing perceptual color
distance ∆E (i.e., CIEDE2000 [24]) instead of Lp norm may lead
to more robust attacks yet still being stealthy. Besides pixel-level
color losses, neural style similarity constraints can also improve
stealthiness, e.g., Duan et al. [9] propose an adversarial camouflage
algorithm named AdvCam to make physical adversarial patterns look
natural. Although it looks less artificial than previous work [4, 10],
there is still room for improvement, especially the texture and color.
The proposed SPAA belongs to projector-based attacks, and is most
related to the preliminary exploration in [30], with the following
main differences: (1) We formulate projector-based adversarial at-
tack as an end-to-end differentiable process, and simulate the real
project-and-capture process with a deep neural network. (2) With
such a formulation and implementation, our method can perform
projector-based attacks using gradient descent, which is more ef-
ficient than one-pixel differential evolution [30]. (3) Because the
real project-and-capture process is excluded from the gradient de-
scent optimization, our method is more efficient and parallelizable,

and multi-classifier and multi-targeted adversarial attacks can be
performed simultaneously in batch mode. (4) Our SPAA achieves
much higher attack success rates, yet remains stealthy.

3 METHODS

3.1 Problem formulation
Denote f as an image classifier that maps a camera-captured image
I to a vector of class probabilities f(I) ∈ [0, 1]N , for N classes,
and denote fi(I) ∈ [0, 1] as the probability of the i-th class. Typi-
cally, targeted digital adversarial attacks aim to perturb I by a small
disturbance δ whose magnitude is bounded by a small number ε > 0,
such that a certain target t (other than the true label ttrue) has the
highest probability. Similarly, untargeted attacks are successful as
long as the classifier’s output label is not the true class ttrue:

argmax
i

fi(I + δ)

{
= t targeted
6= ttrue untargeted

subject to D(I, I + δ) < ε, (1)

where D is a distance metric measuring the similarity between two
images, e.g., Lp norm, which also measures the perturbation stealth-
iness.

We extend Eqn. 1 to physical world (Figure 2) and denote the
camera capture function as πc, which maps the physical scene s (i.e.,
including all geometries and materials in the scene) and lighting l to
a camera-captured image I by:

I = πc(l, s) (2)

Physical adversarial attacks aim to perturb the physical entities s
such that the classifier misclassifies the camera-captured image I
as a certain target label t (or any label other than ttrue for untar-
geted attacks). By contrast, projector-based attacks aim to perturb
the lighting l by δl such that the camera-captured image causes
misclassification, i.e.:

argmax
i

fi(πc(l + δl, s))

{
= t, targeted
6= ttrue untargeted

subject to D (πc(l + δl, s), πc(l, s)) < ε (3)

In this paper, δl is illumination perturbation from a projector. Denote
the projector’s projection function and input image as πp and x, re-
spectively. Then, the illumination generated by the projector is given
by δl = πp(x), and the camera-captured scene under superimposed
projection is given by Ix = πc(l+πp(x), s). Denote the composite
project-and-capture process above (i.e., πc and πp) as π : x 7→ Ix,
then the camera-captured scene under superimposed projection is:

Ix = π(x, l, s) (4)

Finally, projector-based adversarial attack is to find a projector input
adversarial image x′ such that:

argmax
i

fi
(
Ix′ = π(x′, l, s)

){= t, targeted
6= ttrue untargeted

subject to D (Ix′ , Ix0) < ε, (5)

where x0 is a null projector input image.
This optimization problem involves the real project-and-capture

process π, and it has no analytical gradient. Theoretically, we can
compute numerical gradient instead, but it is extremely inefficient,
e.g., for a 256×256 projector resolution, 256×256×3 real project-
and-capture processes are required to compute the Jacobian matrix
for a single gradient descent step. To avoid gradient computation
and reduce project-and-capture processes, Nichols and Jasper [30]
include π in a gradient-free optimization (e.g., differential evolution)
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Figure 3: PCNet π̂ architecture and training. PCNet approximates the real project-and-capture process π using a deep neural network (WarpingNet
+ ShadingNet). The inputs are a projector input image x, a camera-capture scene image (under normal light) Is, and a projector direct light mask
Im. The output Îx is an inferred camera-captured scene (under superimposed projection). WarpingNet consists of a learnable affine matrix θaff,
thin-plate-spline (TPS) parameters θTPS and a grid refinement networkWθr . This coarse-to-fine pipeline allows WarpingNet to learn a fine-grained
image sampling grid Ω to warp the projector input image x to the camera’s canonical frontal view by φ(x,Ω), where φ(·; ·) is a differentiable
image interpolator [16] denoted as ⊗. Then, we use the input projector direct light mask Im to exclude occluded pixels by φ(x,Ω)� Im, where
� is element-wise multiplication. Afterwards, this warped projector image is further used to compute an intermediate rough shading image
φ(x,Ω)� Im � Is to enforce the occlusion constraint. ShadingNet has a two-branch encoder-decoder structure to capture complex photometric
transformations. In particular, it concatenates Is and φ(x,Ω)� Im � Is and feeds them to the middle encoder branch. Similarly, φ(x,Ω)� Im is
fed to the backbone encoder branch. The skip connections between the two branches model photometric interactions between the three inputs at
different levels. In addition, we pass Is to the output layer through three convolutional layers. Finally, the feature maps are fused into one inferred
camera-captured scene (under superimposed projection) Îx by the backbone decoder.

and only perturb one projector pixel. However, even for a low
resolution image (e.g., 32×32), hundreds of real project-and-capture
processes are required for a single targeted attack, let alone for
higher resolutions. Moreover, because only one-pixel perturbation
is allowed, this method also suffers from low attack success rates
when image resolution increases.

Another intuitive solution is to digitally attack the camera-
captured scene image under normal light first, i.e., Ix0 + δ (Eqn. 1),
then use a projector compensation method, e.g., CompenNet++ [15],
to find its corresponding projector input image by: x′ = π†(Ix0 +δ),
where π† : Ix 7→ x (named CompenNet++) is the pseudo-inverse of
π. However, digital attacks are unaware of the physical constraints
of the projector-camera system (e.g., dynamic ranges and occlu-
sions), thus the generated digital adversarial image Ix0 + δ may
contain physically implausible perturbations. Therefore, even if π†

is a perfect approximation of π’s inverse, the real camera-captured
scene under superimposed projection may not match the generated
digital version. Moreover, CompenNet++ cannot address occlusions
and those regions may become blurry after compensation.

In this paper, we propose a more practical and accurate solution
by first approximating the real project-and-capture process π with a
deep neural network, named PCNet π̂θ parameterized by θ. Then,
we substitute the real project-and-capture process π with PCNet π̂
in Eqn. 5. Finally, fixing the weights of the classifier f and PCNet
π̂, the projector adversarial image x′ can be solved by optimizing
Eqn. 5 using gradient descent. Our approach brings three advantages:
(a) because PCNet π̂ is differentiable, we can use analytical gradient
to improve adversarial attack optimization efficiency; (b) Compared
with two-step methods, e.g., digital attack with projector compensa-
tion, PCNet can model physical constraints of the projector-camera
system, thus it can produce more robust and stealthy adversarial
attacks; (c) Because PCNet can be trained offline, it requires only
one online project-and-capture process for stealthy projector-based
attacks.

3.2 PCNet π̂
Formulation. In Eqn. 5, the real project-and-capture process π
takes three inputs, i.e., a projector input image x, the environment
light l and the physical scene s. For each setup, l and s remain static,
and only the projector input image x is varied, thus we can approxi-
mate l and s with a camera-captured image Is = Ix0 = π(x0, l, s).
In practice, the camera may suffer from large sensor noise under
low light, thus we set x0 to a plain gray image to provide some
illumination, i.e., x0 = [128, 128, 128]256×256. Another practical
issue is occlusion, which may jeopardize PCNet training and adver-
sarial attack if not properly modeled. Thus, we explicitly extract
a projector direct light mask Im using the method in [28]. Then,
the camera-captured scene under superimposed projection can be
approximated by:

Îx = π̂(x, Is, Im) (6)

Apparently π̂ implicitly encodes both geometric and photometric
transformations between the projector input and camera-captured im-
ages, and may be learned using a general image-to-image translation
network. However, previous work (e.g., [15]) shows that explic-
itly disentangling geometry and photometry significantly improves
network convergence, especially for limited training data and time.

Network design. As shown in Figure 3, PCNet consists of two
subnets: WarpingNet (for geometry) and ShadingNet (for photom-
etry), and this architecture is inspired by CompenNet++ [15], which
uses a CNN for projector compensation by learning the backward
mapping π† : Ix 7→ x. By contrast, our PCNet learns the forward
mapping (i.e., π : x 7→ Ix) from a projector input image x to the
camera-captured scene under superimposed projection. In addition,
CompenNet++ is designed for smooth surfaces, and it assumes no
occlusions in camera-captured images, thus it may not work well if
directly applied to stealthy projector-based attacks where occlusions
exist. As shown in our experiments, CompenNet++ produces strong
artifacts on our setups (Figure 4), while our PCNet addresses this



Algorithm 1: SPAA: Stealthy Projector-based Adversarial At-
tack.
Input:
x0: projector plain gray image
Is: camera-captured scene under x0 projection
Im: projector direct light mask
t: target class
K: number of iterations
pthr: threshold for adversarial confidence
dthr: threshold for L2 perturbation size
β1: step size in minimizing adversarial loss
β2: step size in minimizing stealthiness loss
Output : x′: projector adversarial image

Initialize x′0 ← x0
for k ← 1 to K do

Îx′ ← π̂(x′k−1, Is, Im)

d← ‖Îx′ − Is‖2
if ft(Îx′) < pthr or d < dthr then

g1 ← α∇x′ft(Îx′) // minimize adversarial loss
x′k ← x′k−1 + β1 ∗ g1

‖g1‖2
else

g2 ← −∇x′d // minimize stealthiness loss
x′k ← x′k−1 + β2 ∗ g2

‖g2‖2
end if
x′k ← clip(x′k, 0, 1)

end for
return x′ ← x′k that is adversarial and has smallest d

issue by inputting an additional projector direct light mask Im to
exclude occluded pixels. Moreover, we compute a rough shading
image φ(x,Ω) � Im � Is as an additional input for ShadingNet,
and it brings improved performance compared with CompenNet++’s
photometry part (i.e., CompenNet).

Finally, for each scene s under lighting l, given a camera-capture
scene image Is, a projector direct light mask Im and projected and
captured image pairs {(xi, Ixi)}Mi=1, PCNet parameters θ (i.e., pink
blocks in Figure 3) can be trained using image reconstruction loss L
(e.g., pixel-wise L1+SSIM loss [45]) below:

θ = argmin
θ′

∑
i

L
(
Îxi = π̂θ′(xi, Is, Im), Ixi

)
(7)

We implement PCNet using PyTorch [31] and optimize it using
Adam optimizer [18] for 2,000 iterations with a batch size of 24, and
it takes about 6.5 minutes to finish training on three Nvidia GeForce
1080Ti GPUs.

3.3 Stealthy projector-based adversarial attack
Once PCNet π̂ is trained, we replace the real project-and-capture
process π in Eqn. 5 by π̂ using Eqn. 6, then stealthy projector-based
adversarial attacks are to find an image x′ such that

argmax
i

fi
(
Ix′ = π̂(x′, Is, Im)

){= t, targeted
6= ttrue untargeted

subject to D (Ix′ , Is) < ε (8)

Here, we choose L2 norm as our image distance/stealthiness metric
D, results on other image distance metrics such as ∆E and ∆E+L2

can be found in the supplementary. Then, we propose to solve Eqn. 8
by minimizing the following loss function with gradient descent:

x′ = argmin
x′

αft(Ix′)︸ ︷︷ ︸
adversarial loss

+ ‖Ix′ − Is‖2︸ ︷︷ ︸
stealthiness loss

(9)

where α = −1 for targeted attacks and α = 1 for untargeted attacks.
To get higher attack success rates while remaining stealthy, we

develop an optimization algorithm (Algorithm 1) that alternates
between the adversarial loss and stealthiness loss in Eqn. 9. Note that
our method is inspired by digital attack algorithms PerC-AL [47] and
DDN [33] with the following differences: (a) PerC-AL and DDN
are digital attacks while our algorithm is designed for projector-
based attacks by including a deep neural network approximated
project-and-capture process π̂; (b) We add two hyperparameters,
perturbation size threshold dthr and adversarial confidence threshold
pthr to improve transferability from π̂ to π. It is worth noting that we
have tried simply optimizing the weighted sum of adversarial and
stealthiness losses, and it led to an inferior performance compared
with the alternating algorithm.

For Algorithm 1, we initialize x′ with a projector plain gray image
x0 and run optimization for K = 50 iterations. After experiments
on different settings, we set the step sizes to β1 = 2, β2 = 1.
The adversarial confidence threshold is set to pthr = 0.9 and the
perturbation size threshold dthr is varied from 5 to 11 (§ 4.3). Note
that Algorithm 1 is highly parallelizable and multi-classifier and
multi-targeted attacks can simultaneously run in batch mode.

4 EXPERIMENTAL EVALUATIONS

4.1 System configurations
Our setup consists of a Canon EOS 6D camera and a ViewSonic
PA503S DLP projector, as shown in Figure 1. Their resolutions
are set to 320 × 240 and 800 × 600, respectively. The projector
input image resolution is set to 256 × 256. The distance between
the projector-camera pair and the target object is around 1.5 meters.

Note that PCNet is trained/tested individually for each setup. We
capture 13 different setups with various objects (see supplementary).
For each setup, we first capture a scene image Is and two shifted
checkerboard patterns to extract the scene direct illumination com-
ponent using the method in [28], and obtain the projector direct light
mask Im by thresholding the direct illumination component. Then,
we capture M = 500 sampling image pairs {(xi, Ixi)}Mi=1 (took 3
minutes) for training PCNet π̂. Afterwards, for each setup we apply
Algorithm 1 to ten projector-based targeted attacks and one untar-
geted attack on three classifiers i.e., ResNet-18 [14], VGG-16 [37]
and Inception v3 [40]. In total, it takes 34 seconds to generate the
adversarial projection patterns and another 17 seconds to project and
capture all of them.

4.2 Evaluation benchmark
We evaluate stealthy projector-based attack methods by targeted
and untargeted attack success rates and stealthiness measured by
similarities between the camera-capture scene Is and the camera-
captured scene under adversarial projection Ix′ using L2 norm, L∞
norm, perceptual color distance ∆E [24] and SSIM [42].

We first compare with the gradient-free differential evolution
(DE)-based baseline [30], named One-pixel DE, which only alters
one projector pixel. Originally, it was designed for attacking clas-
sifiers trained on 32 × 32 CIFAR-10 [19] images, with both the
projector and camera resolutions set to 32× 32 as well. However,
as shown in the last three rows of Table 1, the top-1 targeted attack
success rates are 0, meaning that in our higher resolution setups, this
method failed to fool the three classifiers (ResNet-18 [14], VGG-
16 [37] and Inception v3 [40]) trained on ImageNet [7]. To increase
its attack success rates, we increase the original perturbed projector
pixel size from 1× 1 to 41× 41, and then we see a few successful
untargeted attacks. In terms of efficiency, we use the same DE pa-
rameters as [30], and it takes one minute to attack a single image and
33 minutes to attack three classifiers in total, while our method only
takes 10 minutes including PCNet training, adversarial attack and
real project-and-capture. Note that our method can simultaneously
attack multiple classifiers and targets while One-pixel DE involves a



Table 1: Quantitative comparison of projector-based adversarial attacks on Inception v3 [40], ResNet-18 [14] and VGG-16 [37]. Results are
averaged on 13 setups. The top section shows our SPAA results with different thresholds for L2 perturbation size dthr as mentioned in Algorithm 1.
The bottom section shows two baselines i.e., PerC-AL+CompenNet++ [15,47] and One-pixel DE [30]. The 4th to 6th columns are targeted (T) and
untargeted (U) attack success rates, and the last four columns are stealthiness metrics. Please see supplementary for more results.

Classifier T. top-1 (%) T. top-5 (%) U. top-1 (%) L2 ↓ L∞ ↓ ∆E↓ SSIM↑

dthr = 5 Inception v3 41.54 67.69 84.62 6.273 5.101 2.588 0.937
ResNet-18 73.08 90.00 100.00 6.304 5.158 2.701 0.940

VGG-16 69.23 83.85 100.00 6.629 5.428 2.824 0.934

O
ur

m
et

ho
d

dthr = 7 Inception v3 67.69 84.62 100.00 7.603 6.199 3.135 0.904
ResNet-18 92.31 94.62 100.00 7.786 6.396 3.349 0.907

VGG-16 83.08 97.69 100.00 8.117 6.668 3.435 0.899

dthr = 9 Inception v3 76.15 90.00 100.00 9.336 7.620 3.766 0.872
ResNet-18 95.38 98.46 100.00 9.640 7.923 4.066 0.874

VGG-16 90.00 99.23 100.00 9.978 8.211 4.156 0.864

dthr = 11 Inception v3 76.92 92.31 100.00 11.190 9.156 4.386 0.843
ResNet-18 97.69 100.00 100.00 11.605 9.545 4.785 0.846

VGG-16 94.62 99.23 100.00 11.750 9.671 4.784 0.835

B
as

el
in

es

PerC-AL+CompenNet++ Inception v3 20.00 42.31 84.62 7.430 6.006 2.690 0.949
[15, 47] ResNet-18 40.77 52.31 100.00 7.713 6.249 2.823 0.943

VGG-16 33.85 49.23 100.00 7.526 6.099 2.753 0.946

One-pixel DE [30] Inception v3 0.00 1.54 15.38 8.388 6.550 2.460 0.973
ResNet-18 0.00 0.00 7.69 8.034 6.276 2.401 0.976

VGG-16 0.00 1.54 23.08 8.233 6.410 2.473 0.975

non-parallelizable real project-and-capture process, and this advan-
tage may become more significant when the numbers of adversarial
targets and classifiers increase.

We then compare with a two-step baseline that first performs
digital attacks on the camera-captured image by Îx = Is + δ.
For this step, we adapt the state-of-the-art PerC-AL [47] to our
projector-based attack problem. The original PerC-AL assumes a
just sufficient adversarial effect, i.e., the generated digital adversarial
examples just successfully fool the classifiers without pursuing a
higher adversarial confidence. However, in our task, these examples
failed to fool the classifiers after real project-and-capture processes,
due to the complex physical environment and the image capture pro-
cess of projector-based attacks. Thus, similar to our SPAA, we add
an adversarial confidence threshold pthr to PerC-AL’s optimization to
allow this algorithm to pursue a more robust adversarial attack, i.e.,
a digital adversarial example is adversarial only when its probability
is greater than pptr. Then we use CompenNet++ [15] to find the cor-
responding projector adversarial image x′ = π†(Îx, Is). In practice,
CompenNet++ is trained using the same sampling image pairs as
PCNet, but with the network input and output swapped. Moreover,
unlike PCNet, CompenNet++ does not use occlusion mask Im or
compute a rough shading image. We name this method PerC-AL +
CompenNet++. Note that we do not compare with [36, 48] because
they are specifically designed for faces only.
Quantitative comparisons. As shown in Table 1, the proposed
SPAA significantly outperforms One-pixel DE [30] and the two-
step PerC-AL + CompenNet++ [15, 47] by having higher attack
success rates (the 4th to 6th columns of Table 1) and stealthiness.
Note that One-pixel DE has very low targeted attack success rates,
because it only perturbs a 41× 41 projector image block, and such
camera-captured images have strong square patterns (see the 3rd

row of Figure 4) that are clearly far from the adversarial target
image distributions, they are also less stealthy. In our experiments,
we find this method can reduce the confidence of the true label
(untargeted attacks) but can rarely increase the probability of a
specific adversarial target. Moreover, digital targeted attacks on

classifiers trained on ImageNet (224×224, 1,000 classes) are already
much harder than those trained on CIFAR-10 (32× 32, 10 classes),
due to higher image resolutions and 100 times more classes, let alone
applying it to the more challenging stealthy projector-based attacks.
By contrast, our SPAA and PerC-AL + CompenNet++ have higher
success rates and stealthiness than One-pixel DE. These results are
also shown in qualitative comparisons below.
Qualitative comparisons. Exemplar projector-based targeted and
untargeted adversarial attack results are shown in Figure 4 and Fig-
ure 5, respectively. In Figure 4, clearly our method can achieve
successful attacks while remaining stealthy. PerC-AL + Compen-
Net++ failed this targeted attack, and we see two particular problems:
(1) it produces a blurry bucket-like projection pattern (2nd row, 2nd

column), because CompenNet++ cannot learn compensation well
under occlusions. Thus, when the adversarial pattern is projected
to the scene, we see large dark artifacts on the bucket (2nd row,
4th-5th columns). By contrast, our SPAA addresses occlusions by
computing a projector direct light mask, then explicitly generates a
rough shading image to enforce the occlusion constraint. Clearly,
our generated adversarial projections (1st row, 2nd column) show
much weaker artifacts. (2) We also see strong adversarial patterns
in the bucket shadow (2nd row, 3rd column), however, the projector
is unable to project to this occluded region. This is caused by the
first step that performs a digital attack by Îx = Is + δ. Without
any prior knowledge about the real project-and-capture process, this
step may generate physically implausible adversarial patterns like
this. By contrast, our SPAA uses an end-to-end differentiable for-
mulation, with which we include a neural network approximated
project-and-capture process, i.e., PCNet in the projector-based attack
optimization. Then, physical constraints are explicitly applied, such
that the generated adversarial pattern is physically plausible. Thus,
we do not see undesired adversarial patterns in the bucket shadow of
the 1st row, 3rd column.

For untargeted attacks, as shown in the 4th column of Figure 5,
all three methods successfully fooled Inception v3 [40], as the clas-
sifier predicted labels are NOT lotion. In addition, compared with



Figure 4: Targeted projector-based adversarial attack on VGG-16. The goal is to use adversarial projections to cause VGG-16 to misclassify
the camera-captured scene as mushroom. The 1st to the 3rd rows are our SPAA, PerC-AL + CompenNet++ [15, 47] and One-pixel DE [30],
respectively. The 1st column shows the camera-capture scene under plain gray illumination. The 2nd column shows inferred projector input
adversarial patterns. The 3rd column plots model inferred camera-captured images. The 4th column presents real captured scene under adversarial
projection i.e., the 2nd column projected onto the 1st column. The last column provides normalized differences between the 4th and 1st columns.
On the top of each camera-captured image, we show the classifier’s predicted labels and probabilities. For the 2nd to 4th columns, we also show
the L2 norm of perturbations. Note that for One-pixel DE, the 3rd column is blank because it is an online method and no inference is available.
Note that both baselines fail in this targeted attack. Please see supplementary for more results.

the two baselines, our method has the smallest perturbation size
(L2 norm is 4.33), and the projected adversarial image (the 2nd col-
umn) and camera-captured adversarial projection (the 4th column)
are also stealthier. More untargeted attack results can be found in
supplementary Figures 14-26, where One-pixel DE [30] shows
successful untargeted attacks in Figures 14 and 16. For other scenes,
although One-pixel DE [30] failed untargeted attacks, it decreases
the classifiers’ confidence of the true labels.

4.3 Ablation study
In this section, we study the proposed SPAA’s success rates with
different perturbation size thresholds (dthr) and the effectiveness of
PCNet’s direct light mask and rough shading image.
Perturbation size threshold dthr is the minimum perturbations of
the PCNet π̂ inferred camera-captured scene under adversarial pro-
jection. As shown in Algorithm 1, a higher dthr can lead to a stronger
adversary and higher projector-based attack success rates. In Table 1,
we show different dthr ranging from 5 to 11. Clearly, attack success
rates and real camera-captured perturbation sizes (i.e., L2, L∞, ∆E
and SSIM) increase as dthr increases. Thus, it controls the trade-off

between projector-based attack success rates and stealthiness.
PCNet direct light mask and rough shading image. For each
setup, we project and capture 200 colorful and textured images x,
then we compare the similarities between the real camera-captured

Table 2: Quantitative comparisons between PCNet and PCNet without
the direct light mask and rough shading image (PCNet w/o mask and
rough). The image similarity metrics below are calculated between
the real camera-captured scene under adversarial projection Ix (GT)
and the model inferred camera-captured scene under adversarial
projection Îx. Results are averaged on 13 setups.

Model name L2 ↓ L∞ ↓ ∆E ↓ SSIM↑

PCNet 10.461 8.408 3.066 0.947
PCNet w/o mask and rough 11.952 9.567 3.385 0.932
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Figure 5: Untargeted projector-based adversarial attack on Inception v3. The goal is to use adversarial projections to cause Inception v3 to
misclassify the camera-captured scene as any label other than lotion. The 1st to the 3rd rows are our SPAA, PerC-AL + CompenNet++ [15,47]
and One-pixel DE [30]. On the top of each camera-captured image, we show the classifier’s predicted labels and probabilities. For the 2nd to 4th

columns, we also show the L2 norm of perturbations. Note that for One-pixel DE, the 3rd column is blank because it is an online method and no
inference is available. See supplementary for more results.

scene under adversarial projection Ix and PCNet inferred camera-
captured scene under adversarial projection Îx using L2 norm, L∞
norm, ∆E and SSIM. The results are shown in Table 2 and PCNet
outperforms the degraded version that is without direct light mask
and rough shading image, demonstrating that we need to model the
essential factors, i.e., direct light mask and rough shading image
for better project-and-capture approximation. Ablation study on
different stealthiness loss functions can be found in supplementary.

5 CONCLUSION

In this paper, for the first time, we formulate stealthy projector-based
adversarial attack as an end-to-end differentiable process, and pro-
pose a solution named SPAA (Stealthy Projector-based Adversarial
Attack). In SPAA, we approximate the real project-and-capture
process using a deep neural network named PCNet (Project-And-
Capture Network) that provides additional constraints for adversarial
attack optimization, such that the generated adversarial projection

is physically plausible. In addition, we propose an algorithm to
alternate between the adversarial loss and stealthiness loss using
minimum perturbation and adversarial confidence thresholds. In
our thorough experiments, SPAA significantly outperforms other
methods by significantly higher attack success rates and stealthiness,
for both targeted and untargeted attacks.

Limitations and future work. Although our PCNet can better
model the project-and-capture process than CompenNet++ [15],
it is not perfect, and we can see some discrepancies between the
simulated and the real attacks in Figure 1 (d) and (e). In future
work, we can improve PCNet by incorporating physically based
rendering domain knowledge in network design. Another limitation
of our SPAA is its sensitivity to environment light, and improving
its robustness under different light conditions is also an interesting
direction to explore in the future.
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