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Abstract

Graph neural networks are a promising architecture for learn-
ing and inference with graph-structured data. Yet, how to gen-
erate informative, fixed-dimensional graph-level features for
graphs with varying size and topology can still be challenging.
Typically, this is achieved through graph-pooling, which sum-
marizes a graph by compressing all its nodes into a single vec-
tor after convolutional operations. Is such a “collapsing-style”
graph-pooling the only choice for graph classification? From
complex system’s point of view, properties of a complex sys-
tem arise largely from the interaction among its components.
Therefore, we speculate that preserving the interacting relation
between parts, instead of pooling them together, could benefit
system-level prediction. To verify this, we propose SLIM, a
graph neural network model for Structural Landmarking and
Interaction Modelling. The main idea is to compute a set of
end-to-end optimizable sub-structure landmarks, so that any
input graph can be projected onto these (spatially) local struc-
tural representatives for a faithful, global characterization. By
doing this, explicit interaction between component parts of
a graph can be leveraged directly in generating useful graph-
level representations despite significant topological variations.
Encouraging results are observed on benchmark datasets for
graph classification, demonstrating the value of interaction
modelling in the design of graph neural networks.

Introduction

Complex systems are ubiquitous in natural and scientific dis-
ciplines, and how the relation between component parts gives
rise to global behaviour of a system is a central research topic
in many areas such as system biology (Camacho et al.|[2018),
neural science (Kriegeskorte|2015), and drug and material
discoveries (Stokes et al.|2020; Schmidt et al.[2019)). Recently,
graph neural networks emerge as a promising architecture
for representation learning on graphs — the structural ab-
straction of a complex system. State-of-the-art performances
are observed in various graph mining tasks (Bronstein et al.
2017 |Defferrard, Bresson, and Vandergheynst|2016; [Hamil{
ton, Ying, and Leskovec|[2017; [Xu et al.|2019} [Velickovic
et al.|2017; Morris et al.|[2019; Wu et al.||2020; [Jie et al.
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2018;Zhang, Cui, and Zhu|2020). However, due to the non-
Euclidean and relational nature, important challenges still
exist using graph neural networks for graph-level predictive
tasks, such as graph classification. For example, in order to
generate a fixed-dimensional representation for graphs of ar-
bitrary size, graph-pooling is typically adopted to summarize
the information of a graph. Though detailed choice varies,
majority of the graph-pooling methods end up with “squeez-
ing” all the nodes of a graph into a single vector, blending
structural details for feature (dimension) compatibility.

Is such a “collapsing-style” graph pooling the only choice
for graph classification? Different perspectives may be taken.
From complex system’s view, properties of a complex system
arise largely from the interactions among its components, a
universal law underlying a great diversity of real-world sys-
tems (Hartwell et al.|1999; Debarsy et al.|2017} |Cilliers|1998)).
For example, properties of molecular drugs depend on func-
tional modules and how they organize with each other (Stokes
et al.[2020). Epidemic spreading process in a social network
is affected by its community structures (Pastor-Satorras et al.
2015). In these regards, mixing all the component parts of
a system into one unit, as implemented through collapsing-
style graph pooling, obscures sub-structure identities and
their interactions. We speculate this could affect both system-
level predictive performance, and model interpretability.

Motivated by this observation, we want to explore whether
the explicit modelling of graph parts and their interactions can
benefit graph classification, in contrast to pooling the parts
together. This is an interesting inductive bias to the design of
graph neural networks inspired by complex systems science.
There are two big challenges involved.

* How to manipulate the “parts” of a graph, or sub-
structured? Sub-structures provide a intermediate scale
for characterizing high-order information, and have drawn
considerable interest in motif discovery (Milo et al.[2002}
Alon|2007; |Austin R. Benson|[2016)), graphlets (Sher;
vashidze et al.|2009), graph kernels (Vishwanathan et al.
2010), and GNNs/graph-convolutions (Peng et al.[2020).
However, due to the discrete, combinatorial nature, diver-

!Sub-structure in this paper means a connected subgraph and
will be used interchangably with it.



sified sub-structure instances are typically enumerated in
a greedy manner, hence restricted to small motifs (4 or
5 nodes) with limited scope of structural variations. In
addition, exact matching of sub-structures may not com-
pensate for their similarity, and so the risk of overfitting
may rise (Yanardag and Vishwanathan|2015).

e How to explicitly model the interaction between com-
ponent parts of a graph? Considering that the number
of nodes and their topological connections vary from
graph to graph, and that a natural (or computationally
convenient definition of) correspondence between non-
isomorphic graphs hardly exists, it can be highly nontriv-
ial to transform the interacting relation (i.e., adjacency
matrix) of a graph into a fixed-dimensional representa-
tion. Therefore, despite the effort in exploiting high-order
motifs/sub-structures to better contextualize and improve
graph convolution, a collapsing-style graph pooling is still
the mainstream choice in nowadays GNN architectures in
order to bypass complicated topological varabilities.

In this paper, we propose a simple neural network called
“Structural Landmarking and Interaction Modelling”, or
SLIM, to resolve the above two challenges and demonstrate
the benefit of modelling the inherent interaction in graphs.
As the name suggests, the key idea is to compute a set of
structural landmarks to break the “curse of granularity” in
handling discrete sub-structures. These spatially-localized,
and end-to-end optimizable sub-structure representatives not
only preserve intrinsic similarities in profiling/comparing sub-
structures, but also serve as a common platform so that any
input graph (and even unseen ones) can be projected onto the
landmarks so that identities of graph parts and their interac-
tions are captured explicitly as fixed-dimensional graph-level
features. In other words, the sub-structure landmarking is
the key to solving both of the above two challenges. We
show that, by respecting the structural organization of graphs,
SLIM is empirically attractive, physically more understand-
able and offers new insight in graph representation learning.

In the remainder of the paper, we will first introduce GNNs
and pooling strategies, and discuss why the collapsing-style
graph pooling dominated the literature. Then we discuss the
proposed method, and relate it with a number of important
topics including dictionary learning, graph isomorphism and
graph kernels. Finally, experimental evaluations are reported
and conclusions are made.

Related Work: GNNs and Graph Pooling

Graph neural networks (GNNs) (Kipf and Welling 2017;
Hamilton, Ying, and Leskovec|2017};|Xu et al.|2019)) for the
task of graph classification typically involve two key steps,
namely graph convolution and graph pooling.

The goal of graph convolution is to pass information
among neighboring nodes in the general form of

hy, = AGGREGATE ({h,,u € Ny, }),

where N, is the neighbors of v (Hamilton, Ying, and
Leskovec [2017; [Xu et al.|2019). The convolution aggre-
gates information of the rooted sub-trees growing from each

node, and more convolutional layers can capture lager sub-
structures/sub-trees and may lead to improved discriminative
power (Xu et al[2019). Multiple layers may be even com-
bined together via CONCATENATE function (Hamilton, Ying]
and Leskovec|2017; Xu et al.|2019) for improved modelling.

The goal of graph pooling is to generate compact graph-
level representations with compatible dimension. This is typ-
ically achieved by squeezing all the nodes in a graph G into a
single vector, as

hg = READOUT ({f(hy),Yv € V}),

where V is the vertex set of G, and f a transform on node fea-
tures. The dimension of hg usually equals that of individual
node features h,,’s, meaning that all the nodes in V collapse
into a single one. Readout functions include max (Cangea
et al.[2018)), sum (Xu et al.|[2019)), deep-sets (Zaheer et al.
2017).

Recently, more sophisticated pooling algorithms are de-
veloped, which employ hierarchical (multiple) pooling lay-
ers to fully exploit the non-flat structure of complex real-
world graphs. For example, in hierarchical differential pool-
ing (Ying et al.|2018)), a graph is reduced to a smaller size
in each layer based on a projection matrix through an auxil-
iary GNN model. Hierarchical Graph Pooling with Structure
Learning (Zhang et al.|2019) combines graph pooling with
graph reconstruction. Eigen-Pooling uses sub-graph eigen-
vectors for progressive graph coarsening (Ma et al.|[2019).
Self-attention pooling (Lee, Lee, and Kang|2019) evaluates
GCN-based self-attention scores for layer-wise node down-
sampling. Graph U-Net (Gao and Ji[2019) performs down-
sampling and up-sampling in an encoder-decoder setting.
Sort-pooling (Zhang et al.[|2018) rearranges the nodes into a
linear chain, so that standard 1d-convolution and pooling are
applied to sorted nodes.

While hierarchical pooling is naturally affected by local
and hierarchical topology, the resultant graph-level feature is
in the form of a single, aggregated node vector. How hierar-
chical pooling affects the performance of GNN is still being
actively investigated (Mesquita, Souza, and Kaski|[2020).

As can be noticed, almost all the current graph-pooling
techniques adopt a “collapsing-style” integration, where fea-
tures of all the nodes in a graph are ultimately reduced to a
single vector, despite the choice of the pooling function, the
number of pooling levels, and the pooling criteria.

What motivates the collapsing-style graph pooling? Ap-
parently, it’s the need of fixed-dimensional graph-level rep-
resentations: whereas the number of nodes varies freely, the
dimension of the node feature remains constant and so is
much easier to handle than varying graph sizes. However,
a profound reason behind the choice lies in the difficulty
in performing profiling and identification of sub-structures.
Sub-structures are building blocks of a graph: important rela-
tions like interaction or alignment are all defined on top of
them, and they provide an intermediate scale with better con-
textualization than individual nodes. Unfortunately, current
practices of sub-structure manipulation mainly focus on exact
matching and greedy enumeration (Wernicke|2006; Milo et al.
2002). Such an over-delicate granularity basically requires
remembering potentially an exponential amount of unique



sub-structures, making it infeasible to match and compare
substructure instances; besides, exact matching also brings
the risk of overfitting (Yanardag and Vishwanathan|2015).
Therefore, pooling the graph parts (sub-structures) together
into a single unit emerges as a popular choice, when lacking
convenient global criterion to profile, represent, and compare
(or align) highly diversified sub-structure identities.

One potential downside of this convenience (pooling ev-
erything together) is that it can mix the identity of graph
sub-structures and their interactions. Therefore, although the
pooling can still be injective (Xu et al.|2019), structural de-
tails of the graph may not be recovered, requiring nontrivial
effort to trace the behaviour of subsequent classifiers back
to local and meaningful parts of the graph for interpretation
purposes. Besides, from complex system’s view point, in-
teraction between component parts can also be valuable in
system-level predictive tasks. Therefore, we are interested in
graph-pooling paradigms that are more topology-preserving
and physically understandable (and so potentially more inter-
pretable) by resolving the exact challenge behind collapsing-
style pooling, i.e., sub-structure profiling/manipulation.

The Proposed Algorithm

Graphs are structural abstraction of complex systems, and so
accurate graph classification should depend on how global
properties of a system relate to its structure. Inspired by the
fundamental law of complex systems that emphasizes inter-
action between parts (Debarsy et al.[2017} |Cilliers|[1998), we
introduce “structural landmarking and interaction modelling”,
or SLIM, in the design of GNNs for graph classification.

Problem Setting. Given n labeled graphs {(G;,y;)}’s for
1 = 1,2, ...,n; each graph is defined on the node/edge set
G; = (V;, E;) with adjacency matrix A; € R™*™ where
n; = |V;|, and y; € {£1}. The node attribute matrix for
each graph G; is denoted by X; € R™*¢, Our goal is to train
an inductive model to predict labels of the testing graphs.

The key idea of SLIM is to define the “parts” of graphs
using a feasible granularity, and model their “interactions”
explicitly. We illustrate in Figure[T|and summarize as follows.

1. Identification and Embedding of Graph Parts. The first
step identifies constituent parts of graphs (local sub-structure),
and embeds them in a metric space. In Figure[I] rooted sub-
trees around each node (shaded circles) are sub-structure
instances, and embedded as points (colored dots). Treating
sub-structures as continuous vectors instead of discrete ob-
jects preserves intrinsic similarity, generalizes to unseen ex-
amples, and facilitates subsequent landmarking.

2. Finding Landmarks of Graph Parts. The second step
is aimed at computing a pre-defined number (K) of land-
marks for embedded sub-structure instances. In Figure [I]
red hexagons denote landmarks. By associating each sub-
structure with its closest landmark, we can systematically
define the “identity” of any sub-structure across different
graphs using the K landmarks. This is a code-book that
breaks the curse of granularity, and also serves as a common
platform for interaction modelling.

3. Projecting Graphs onto the Landmarks. The third step
projects graphs onto the common set of sub-structure land-

marks. Each graph can then be described as pairwise con-
nections among the K (groups of) structural landmarks. This
“projective pooling” can well preserve topological details in
the form of fixed dimensional interaction matrices (R**¥)
for subsequent classification.

Sub-structure Identification and Embedding

The goal of sub-structure embedding is to extract sub-
structure instances and embed in a metric space. Ideal sub-
structures should reflect the functional organization under
proper scales, which may require complicated procedures and
domain knowledge. In this paper, we choose the rooted sub-
trees (k-hop subgraphs) as in (Xu et al.|[2019) because of its
simplicity, so that each sub-structure will then be associated
exactly (or centered around) with one node.

Here we consider representing each sub-structure by vec-
tor form. Since each sub-graph is associated with one node,
the n; sub-graphs extracted from G; can be conveniently
represented as

z;, = AMX, (1)

where Agk) is the k-th order adjacency matrix of the ith graph
such that A¥(p,q) = 1 if node p and q are within k-hops
away in graph G;, and O otherwise. The ;" row of Z; then
summarizes the counts of the c types of nodes in the k-hop
sub-graph centered around the jth node.

We can also refine it to model the node distribution in each
of the £ layers in the k-hop rooted sub-graph (including the
center node), as

z; = [X; AVX;, APx, . APx,), )

where Az(»k) specifies whether two nodes in G; are exactly k-

hops away, namely A,Ek) (p, q) = lif node p and q are exactly
k-hops away in graph G;, and 0 otherwise. Considering that
Az(.k) =1+ AZ(-I) + AEQ)... + Agk), H can be deemed as a
layer-wise decomposition of (I). One may further apply a
weighting factor on each layer (that decays with the depth of
the layer), or compute a weighted mixture of different layers.
We have used (2) in our experiments.

Next we embed sub-structure instances (rows of Z;’s) in a
latent space to promote important relations between these sub-
structures: (1) structural similarity: i.e., two sub-structures
look very similar; and (2) topological proximity: i.e., two sub-
structures frequently connect with each other in the training
graphs. In these two scenarios, the embedding of the two sub-
structures should be close to each other in the Euclidian space,
namely the embedding should reflect (or, be smooth with)
both structural similarities and relational interactions. We
learn a simple, one-layer transform (with ¢5-regularization of
model complexity) to promote the smoothness of embedding
w.r.t. structural similarity, as

f(Zi)=0(Z;-T+B), 3)

where T is transform matrix, B is bias matrix (a bias vector
repeated n; times row-wise) and o (-) is the RELU function.

On the other hand, to maintain the smoothness of embed-
ding w.r.t. the topological interaction, we borrow ideas from
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Figure 1: Three main steps of SLIM. (1) Sub-structure embedding: extract local sub-graphs and embed them in a metric
space. (2) sub-structure landmarking: compute sub-structure representatives through unsupervised clustering across graphs. (3)
Identity-preserving graph pooling: project each graph on the common set of sub-structure landmarks for final prediction.

node2vec (Grover and Leskovec|2016). Let H; = f(Z;) €
R" %4 be the embedding of the n; sub-graph instances from
G;. We maximize the log-likelihood of the co-occurrence of
sub-structure instances in each graph as

exp(H;(J,:), H;(l,:)) )
max Io ( @
;?;;; 5 exp (G, ), (1, )
Here H;(j,:) is the j*" row of Hj, (,) is inner product,

and ./\/jZ are the neighbors of node ¢ in graph G;. This is
a parametric node2vec loss and can encourage strongly inter-
connecting sub-structures to be embedded close to each other.

Sub-structure Landmarking

The goal of structural landmarking is to identify a set of
informative structural representatives in the latent space of
embedded sub-structures. It then serves as a dictionary that
breaks the curse of granularity in manipulating a potentially
exponential amount of sub-structure instances.

Let U = {p;, pto, ..., ¢ } be structural landmarks in the
latent space of embedded sub-structures. To fully represent
diverse sub-structures, each sub-graph instance should be
faithfully approximated by the closest landmark. We use
a soft assignment matrix W; € R"** for each graph G;,
whose jk!" entry is the probability that the j** sub-structure
from G; belongs to the k*" landmark . Inspired by the deep
embedding clustering (Junyuan, Ross, and Ali2016), W is
parameterized by a Student’s t-distribution

(M) = plP/e) ™5
(L HL(5, )

— b [P /)™

Here we use o = 1, and H;(j, :) denotes the 5" row (sub-
structure) from graph G,. We then perform the clustering
by minimizing the following KL-divergence as in (Junyuan|
Ross, and Ali|2016)

min KL (WZ7 WZ)
UH/s

W20,/ 55 Wi |
S W20, )/ 5 Will, ¥)]

st Wi(j k) = ©)

Here, W is a self-sharpening version of W, and minimiz-
ing the KL-distance in () forces each sub-structure instance
to be assigned to only a few landmarks/clusters

The goal of deep clustering (6) is to favor “frequent” sub-
structure patterns (or cluster centers) as landmarks p;.’s; oth-
erwise, if rare (low-density) sub-structures are used as land-
marks to generate graph-level feature, they are very likely
absent from testing graphs, leading to poor generalization.
In other words, deep clustering serves an unsupervised regu-
larization to stabilize the learning process; another benefit is
that p;.’s can be examined by looking into the sub-structures
assigned to it, making the interpretation highly practical.

Interaction Preserving Graph Projection

The goal of this step is to project structural details of each
graph (G;’s) onto the K sub-structure landmarks, via indi-
cator matrix W;’s (5). Regardless of the size/topology, any
input graph can then be transformed into a standardized “land-
mark graph”, which always has K nodes corresponding to
the K landmarks, with varying landmark weights, landmark
features, and landmark interaction.

Landmark weight. The density of the K sub-structure land-



marks in graph G; can be computed as
pi =W, 1,1 (7N

Intuitively, it quantifies the probability that the K structural
landmarks can be found in graph G;. Unlike counting dis-
crete sub-graphs in graph kernels, the density p; is a soft
probability and learned in an end-to-end fashion due to the
optimizable structural landmarks z¢;,’s.

Landmark feature. The mean of the sub-structure instances
mapped to each of the K landmarks in graph G; is

M,; =X, - W, P! ®)

with P; = diag(p;), and the kth column of M is the mean
of structures mapped to the kth landmark.

Landmark Interaction. The adjacency matrix A; can be
projected onto the K landmarks by

C, =W, A, - W, ©)

which quantifies how the K types of sub-structures interact
with each other in graph G;. We can further normalize it using
the density of the K landmarks as C; = P;lcinl.

These features can be used together for final classification.
For simplicity, we will use the (normalized) sub-structure in-
teraction matrix C; as graph-level feature, in order to clearly
demonstrate the value of interaction modelling. Namely, C;
is vectorized and fed to an FC-layer for final classification.

We illustrate the architecture in Figure [2] The objec-
tive function includes the classification part (cross-entropy
loss), and two regularization terms (parametric node2vec
loss Lpn2y reflecting sub-structure interaction inside each
graph, and deep clustering loss Edeepclust”mg@ reflecting
the sub-structure similarity across graphs).

L= _)\1 . ‘cpn2v + A2 . £deep—clustering + ‘Ccross—entropy

regularization—terms classification—loss

Discussions
Dictionary Learning View

The structural landmarks g s can be considered as basis of
a “structural dictionary” to define and reconstruct diversified
sub-structure instances, and K controls dictionary size. In
general, neither too small nor too large dictionary is desir-
able. On the one hand, too few basis fails to recover basic
structures and underfits the data. On the other hand, too many
basis may leads to overfitting (Marsousi et al.|2014). In the lit-
erature of sparse dictionary learning, researchers have studied
the condition under which a faithful sparse recovery can be
achieved by the so-called “self-coherence”, which measures
the redundancy (correlation) of basis vectors. In particular, a
higher coherence indicates a higher redundancy among the
basis vectors, in which case dictionary learning can become
unidentifiable (Donoho and Huo/2001)). Similar observations
apply to supervised learning scenario (Mehta and Gray|2013)).

These insights explain why exact sub-graph matching can
overfit (Yanardag and Vishwanathan|2015): it corresponds
to a maximal (in fact, exponential) dictionary size due to the
combinitorial nature of graph sub-structures, in this case, the

redundancy (or coherence) between the landmarks can be
quite large and violates the recovery condition, and so the
learning process becomes unstable.

In practice, the optimal choice of K can be non-trivial.
One may pick an empirical value (e.g. K = 100), or use
validation set to choose K from pre-determined grid values.

Related Work and Comparisons

Graph Isomorphism. GNNs such as Graph Isomorphism Net-
work (GIN) (Xu et al.[2019) can have great potential in graph
isomorphism test by generating injective maps (Xu et al.
2019} Morris et al.[2019). This is achieved by choosing a
representation that can capture all the differences between
sub-structures (e.g. sum-pooling operator), so that different
graphs will have different embeddings (i.e., injective map).
However, an ideal classification is not injective, since two
graphs with different structures may have the same label.
In this regard, SLIM tries to find a tradeoff in handling the
similarity/difference among sub-structures. Instead of trying
to capture even the slightest difference of sub-structures as
in GIN, it first groups sufficiently close sub-structures into
the same cluster and treat them as the same entity, with a
tunable granularity controlled by the landmark set size K.
The biggest advantage of doing this is that it endows con-
venient, cluster-level identity to the sub-structures, so that a
graph can then be projected onto these clusters/landmarks
to generate a relational description of the graph with fixed
dimension (R¥* ). In comparison, GIN adopted a continu-
ous description of sub-structures (without further quantiza-
tion into cluster-level identities), and so a fixed-dimensional,
graph-level representation can only be obtained by squeezing
all the nodes (or rooted-subtrees) into a single one.

Graph Pooling/Coarsening. Our approach has significant
differences with existing methods. First, these methods shrink
a graph through the pooling layer either by node sampling
(Lee, Lee, and Kang|[2019} |Gao and Ji|[2019) or grouping
(Ying et al.|2018}Ma et al.|2015)), and so the coarsening is lo-
cal (inside each graph) and the number of clusters is bounded
by the the size of the graph. In contrast, we use a global
clustering on sub-structures collected from across different
graphs to generate landmarks and model sub-structures on
a global basis, and so the number of clusters is much larger.
Such a global clustering also contributes to algorithm stabil-
ity. Second, existing methods mostly generate single-vector
representation whose dimension depends on that of the node
features, while ours is a & x K interaction feature matrix
quantifying the interaction between the K landmarks. This
helps better preserve understandable topological information.

Graphlets and Graph Kernels. Graphlets and Graph ker-
nels both exploit sub-structures, but they need to sample from
pre-defined sub-structure candidates. In contrast, we allow
sub-structure landmarks that are end-to-end optimizable
to generate discriminative, graph-level interacting pattern.
Second, graph kernels measure similarity between all possi-
ble pairs of sub-structures across two graphs; while SLIM
models interaction between sub-structures in the same graph.
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Figure 2: End-to-end training architecture of the SLIM network.

Table 1: Classification on benchmark data-sets (cheminformatics, bioinformatics & social networks).

ALG. MUTAG PTC NCI1 Protein D&D IMDB-B IMDB-M COLLAB
GK 81.38+1.74  55.65+0.46 62.494+0.27 71.3940.31 74.38+0.69  65.874+0.98 43.894+0.38 72.8440.28
PK 76.004+2.69  59.504+2.44 82.544+0.47 73.684+0.68  78.2540.51 — — —

WLGK  84.11£1.91 57.974+2.49 84.46+0.45 74.684+0.49  78.34+0.62  73.40+4.63 49.33+4.75 79.02+1.77
PC-SAN  92.63+4.21 60.00+4.82 78.59+1.89 75.89+2.76  77.12+2.41 71.00+£2.29  45.2342.84 72.60+2.15
DGCNN  85.83£1.66 58.594+2.47 7446047 75.544+0.94  79.37+£1.03  70.03+0.86 47.83+0.85 73.761+0.49
DiffPool  90.52+3.98 — 76.53+2.23  75.8243.56  78.9542.40  73.584+3.24 52.13+£2.71 79.70+1.84

GNTK  90.12+8.58 67.924+6.98 75.20+1.53 75.61£4.24  79.42+2.18  75.934+3.61 52.82+4.65 83.60+1.22

SAG 73.53+9.68 69.67+3.12 74.18+1.29 71.86+£0.97 769142.12  72.614+2.23 51.80+£2.08 79.884+1.02
GIN 90.03+8.82  64.60£7.00 79.84+4.57 75.28£2.65  77.58+£2.94  75.1545.08 52.33+£2.84 80.21+1.92

StrPool  82.21+3.13  71.464+2.21 71.31+1.14 76.89+1.67 79.72+1.98  73.7742.01 50.17+£1.28 79.1440.88

SLIM 93.28+3.36 72.41+6.92 80.53+2.01 77.47+4.34 79.61£2.66  77.23+2.12 53.38+4.02 78.2242.02

Experiments split for testing, 90% of the rest 9 splits for training, and 10%

Benchmark data. We have used 8 benchmark data sets, in-
cluding 5 cheminformatics/bioinformatics datasets MUTAG
(chemical compound), PROTEINS (protein molecules), NCI1
(chemical compounds for cancer cell lines), PTC (chem-
ical compounds for toxicology prediction) and D&D (en-
zyme classification), and 3 social network datasets IMDB-B,
IMDB-M (movie collaboration), and COLLAB (scientific
collaboration network).

Competing methods. We considered following compet-
ing methods: (1) Graph neural tangent kernel (GNTK) (Du
et al.[2019); (2) Graph Isomorphism Network (GIN) (Xu
et al.|2019); (3) End-to-end graph classification (DGCNN)
(Zhang et al.|[2018)); (4) Hierarchical differential pooling
(DiffPool) (Ying et al.|2018); (5) Self-attention Pooling
(SAG) (Lee, Lee, and Kang|2019); (6) Convolutional net-
work for graphs (PATCHY-SAN) (Niepert, Ahmed, and
Kutzkov|2016); (7) Graphlet kernel (GK) (Shervashidze et al.
2009); (8) Weisfeiler-Lehman Graph Kernels (WLGK) (Sher}
vashidze et al.|2011); (9) Propagation kernel (PK) (Neumann
et al|2016);(10) Structured graph pooling (Str-Pool) (Yuan
and Ji2020).

Experimental setting. Our codes are written in Pytorch
and run on a server with dualcore CPU @2.10GHz and
Nvidia GTX1080Ti graphics card. All the datasets and their
10 even splits are downloaded from (https://1s11-www.cs.tu-
dortmund.de/staff/morris/graphkerneldatasets). For each
dataset we have 10 rounds, and in each rounds we use 1

of the rest 9 splits for model selection. The validation set
will be “recycled” after model selection, namely, combined
with the training set together to re-train the model for final
testing. Results from the 10 rounds will be averaged and
reported. The sub-structure instances are chosen as 3-hop
rooted subgraphs around each node. The landmark set size K
is chosen from {50, 100, 150, 200, 300}.The RX*X interac-
tion feature (9) is re-shaped into a vector and then fed into a
fully connected layer for class label prediction. No drop-out
or batch-normalization is used considering the size of the
benchmark data. Hyper-parameters include: (1) the number
of hidden units in the nonlinear transform (3) is chosen from
{d,d/2,2d,8,16,32} where d is the input dimension of the
encoder; (2) the optimizer is chosen from SGD and Adagrad,
with learning rate {le —2,5e —2, le —3,5e — 3, le —4}; (3)
The regularization parameters A\; and Ao for the unsupervised
loss terms are selected from {0.01,0.1,1, 10, 100}.

Classification performance. We report the classification
performance in Table[I] As can be seen in Table [[, GNN-
based approaches are more competitive than graph kernels,
except that the WL-graph kernel performs the best on the
NCII1 dataset. For social networks, the SLIM network gains a
competitive score on IMDB-B and IMDB-M, but is inferior
on COLLAB. We speculate that social networks do not have
node features so our method becomes less advantageous.

Algorithm stability. In Figure 3] we plot the evolution
of the testing accuracy v.s. training epochs. Our approach
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converges faster, and in a more stable manner. This signifies
small variance of the training process, and makes it practi-
cally easy to determine when to stop training. We speculate
that such stability arises from the modelling of sub-structure
distribution globally (across graphs).

Different Parameters and Graph-level Features. In
Fig. [ we illustrate performance of SLIM wrt choice of differ-
ent parameters and graph level features on MUTAG dataset.

In Figure [@{a), we compare performance of SLIM when
using the weights (or density) of the landmark p; (7), or the
interaction matrix C; (9), as graph-level features. The in-
teraction feature consistently generates better accuracy than
distribution-based features, validating the importance of mod-
eling the interacting relation in graph classification tasks.

In Figure f{b), we examine the accuracy of SLIM versus
landmark set size K. The accuracy is inferior when K is
either too small (underfitting) or too large (overfitting). The
best performance is obtained for a median K value.

In Figure Ekc), we examine different sub-structure scales
by varying size (hops) of rooted sub-trees. The 3-hop sub-
graphs seem a good choice for all data sets, which could
be consistent with meaningful sub-structure scales. Choos-
ing sub-structure size is similar to choosing the number of
convolutional layers (size of receptive field) in GNNs. The
subtle difference is that in GNN, the convolutional layers are
cascaded layerwise, while in our model, different layers of
the k-hop sub-graph are modelled concurrently.

Conclusion

GNNgs are state-of-the-art model for learning on graphs, but
the design can still benefit from concepts of complex systems,
in particular its core idea on the origin of system complexity:
the interaction between components. We proposed the SLIM
network to verify the importance of interaction modelling,
and obtained encouraging results in graph classification.

We have a number of interesting future directions under
investigation. First, we will explore new ways of obtaining
sub-structure instances, and in particular irregular shaped
sub-structures and how to incorporate domain knowledge
in extracting sub-structure instances. Second, we will study
how to select the number of landmarks more adaptively, and
combine it with a feature selection module. Third, we will
pursue a theoretic delineation on how the design of structural
landmarks affects the generalization capacity in graph classi-
fication. Finally, we will collaborate with domain experts on
interpretation of the model in cheminformatics applications.
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