
SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING 1

Parallel Tracking and Verifying
Heng Fan and Haibin Ling

Abstract—Visual object tracking has played a crucial role
in computer vision with many applications. Being intensively
studied in recent decades, visual tracking has witnessed great
advances in either speed (e.g., with correlation filters) or accuracy
(e.g., with deep features). Real-time and high accuracy tracking
algorithms, nevertheless, remain scarce. In this paper we study
the problem from a new perspective and present a novel parallel
tracking and verifying (PTAV) framework, by taking advantage of
the ubiquity of multi-thread techniques and borrowing ideas from
the success of parallel tracking and mapping in visual SLAM. The
proposed PTAV framework typically consists of two components,
a (base) tracker T and a verifier V , working in parallel on two
separate threads. The tracker T aims at providing a super real-
time tracking inference and is expected to perform well most of
the time; by contrast, the verifier V validates the tracking results
and corrects T when needed. The key innovation is that, V does
not work on every frame but only upon the requests from T ;
on the other end, T may adjust the tracking according to the
feedback from V . With such collaboration, PTAV enjoys both
high efficiency provided by T and strong discriminative power
by V . Meanwhile, in order to adapt V to object appearance
changes, we maintain a dynamic target template pool for adaptive
verification, resulting in further improvement. In our extensive
experiments on OTB2015, TC128, UAV20L and VOT2016, PTAV
achieves top tracking accuracy among all real-time trackers, and
in fact even outperforms many deep learning based algorithms.
Moreover, as a general framework, PTAV is very flexible with
great potentials for future improvement and generalization.

Index Terms—Visual tracking, deep learning, correlation filter,
verification, multi-thread, parallel tracking and verifying.

I. INTRODUCTION

AS one of the most important components in computer vi-
sion, visual object tracking has a long list of applications

including robotics, intelligent vehicles, visual surveillance,
human-computer interaction and so forth [1]–[4]. Given an
initial state (usually a bounding box) of a tracking target in
the first frame, visual tracking aims at estimating the unknown
states (e.g., position and scale) of the target object in subse-
quent consecutive frames. Although significant advances have
been made in recent decades, robust visual object tracking still
remains challenging because of large appearance variations
caused by many factors such as object occlusion, deformation,
illumination variations, scale changes, motion blur and so on.

Recently, inspired by the successes in image classification
and recognition (e.g., [5]), deep convolutional neural networks
(CNNs) have been leveraged for visual tracking owing to their
power in feature representation, and achieved state-of-the-
art performance (e.g., [6]–[16]). Despite significant improve-
ments in accuracy, these algorithms often suffer from high
computational burden due to either extracting expensive deep

H. Fan and H. Ling are with the Department of Computer & Information
Science, Temple University, Philadelphia, USA (e-mail: hengfan@temple.edu;
hbling@temple.edu).

real-time

Fig. 1. Speed-accuracy plot of state-of-the-art trackers on OTB2015 [26].
For better illustration, only those trackers with accuracy higher than 0.7 are
reported. Compared with high precision deep learning-based trackers (e.g.,
MDNet, SANet and C-COT) whose speeds are around 1 fps, our PTAV runs in
real-time without serious accuracy degradation. On the other hand, compared
with other real-time trackers (e.g., Staple, LCT and fDSST), PTAV achieves a
much higher accuracy. Moreover, PTAV even outperforms some deep learning-
based trackers (e.g., HCF, HDT, SINT and FCNT).

features (e.g., [6], [7], [12]–[15]) or online network fine-tuning
(e.g., [8]–[11]), and hardly meet the real-time requirement (see
Figure 1 for illustration).

In order to develop real-time trackers, researchers have
been focusing on the correlation filter for visual tracking
(e.g., [17]–[22]). Owing to the highly computational efficiency
of correlation filters in the Fourier domain, these trackers
can easily achieve super real-time tracking inference using
simple hand-crafted features such as raw pixel, HoG [23]
and color names [24]. While running efficiently, these trackers
usually perform less robustly compared to deep learning-based
approaches because of the inferior feature representation (see
again Figure 1).

Despite aforementioned progresses in either speed or accu-
racy, real-time and high accuracy tracking algorithms remain
scarce. A natural way is to seek a trade-off between speed and
accuracy (e.g., [20], [25]). In this paper we work toward this
goal, but from a novel perspective described as the following.

Motivation. Our key idea is to decompose the original track-
ing task into two parallel but collaborative ones, one for fast
tracking and the other for accurate verification. We are mainly
inspired by the following observations or related works:

Motivation 1: When tracking a target from visual input,
most of the time the target object moves smoothly and its
appearance changes slowly or remains the same. Simple but
efficient algorithms usually work fine for such easy cases. By
contrast, hard cases (e.g., drastic object appearance variations)
happen only occasionally, though they can cause serious con-
sequences if not addressed properly. These hard cases usually
require computationally expensive processes or analysis, such
as the verification in our approach. Intuitively, verifications are
needed only occasionally instead of for every frame. Figure 2

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING 2

… …

Frame index

Verification score

10 20 30 40 50 60 70 80 90 200 210

2.356 2.380 2.261 2.226 2.396 1.910 1.466 0.227 2.369 2.025 2.163

1

… …

Frame index

Verification score

10 20 30 40 50 60 70 80 90 200 210

0.785 0.793 0.754 0.742 0.799 0.637 0.489 0.076 0.790 0.675 0.721
#010 #020 #030 #040 #050 #060 #070 #090 #200 #210#080

Fig. 2. Illustration of verification scores on a typical sequence. Verifier validates tracking results every 10 frames. Most of the time the tracking results are
reliable (showing in blue). Occasionally, e.g., frame #080, the verifier finds the original tracking result (showing in blue) unreliable and the tracker is corrected
and resumes tracking based on detection result provided by verifier (showing in red).

shows a typical example with both cases. In the example video,
a simple tracker can efficiently locate the target object most
of the time until its appearance drastically changes in frame
#080. For this situation, the computationally expensive verifier
is employed to detect the tracking failure and return a corrected
result. The tracker is then adjusted and resumes tracking with
the feedback provided by verifier.

Motivation 2: The ubiquity of multi-thread computing has
already benefited computer vision systems, with a notable
example as visual SLAM (simultaneous localization and map-
ping). By splitting tracking and mapping into two parallel
threads, PTAM (parallel tracking and mapping) [27] provides
one of the most popular SLAM frameworks with many im-
portant extensions (e.g., ORB-SLAM [28]). A key observation
in PTAM is that mapping is not needed for every frame
because of extensive redundancies existing in a video. Nor
does verifying in our tracking task since the target appearance
changes slowly most of the time in a video.

Motivation 3: Last but not least, recent advances in either
fast or accurate tracking algorithms provide promising building
blocks and highly encourage us to seek a practical system for
real-time high accuracy visual tracking.

Contribution. With the motivations listed above, we propose
a novel framework towards real-time tracking with high accu-
racy, named parallel tracking and verifying (PTAV). PTAV
typically consists of a fast tracker1 denoted by T and an
accurate verifier denoted by V . The two components work
in parallel on two separate threads while collaborating with
each other. The tracker T aims at providing a super real-time
tracking inference and is expected to perform well most of the
time, e.g., most frames in Figure 2. By contrast, the verifier
V validates tracking results and corrects T when needed, e.g.,
at frame #080 in Figure 2. By running T and V in parallel,
PTAV inherits both the high efficiency of T and the strong
discriminative power of V . Figure 3 illustrates the framework
of PTAV. With this framework, we implement a tracking
solution by combining correlation filter-based tracking (the
Staple algorithm [20]) and deep learning-based verification
(the Siamese network [29]). Extensive experiments on four
large-scale benchmarks, including OTB2015 [26], TC128
[30], UAV20L [31] and VOT2016 [32], demonstrate that the
proposed PTAV algorithm achieves promising performance
among all real-time trackers, and in fact even outperforms
many deep learning-based solutions.

1For conciseness, in the rest of this paper, we refer the fast tracker as a
tracker, whenever no confusion caused.

This paper is an extended version of a preliminary confer-
ence publication [33]. The main new contributions or differ-
ences include: (1) a more robust base tracker (i.e., Staple [20])
for T in implementing PTAV, which brings clear performance
improvement, (2) a dynamic target template pool for adaptive
verification against target appearance variations, (3) various
ablation studies on V and T to analyze PTAV, including two
base verifiers (VGGNet [34] and AlexNet [5]) for V and three
base trackers (KCF [17], fDSST [18] and Staple [20]) for T ,
and (4) more thorough experimental validation and analysis
involving more trackers and benchmarks.

II. RELATED WORK

Visual tracking algorithms. Visual tracking has been exten-
sively studied and it is beyond our scope to review all previous
studies. Instead, we only sample some representative works
and discuss those closely related to ours. Some comprehensive
reviews on visual tracking can be found in [1]–[4].

This paper focuses on model-free single object tracking,
for which existing algorithms are often categorized as either
discriminative or generative. Discriminative algorithms usually
treat tracking as a classification problem that distinguishes
the target from changing background. Various approaches are
proposed to learn the classifier such as multiple instance learn-
ing (MIL) [35], compressive sensing [36], semi-supervised
boosting [37], kernelized structured output support vector
machine (SVM) [38] and so forth. By contrast, generative
algorithms usually formulate tracking as searching for regions
most similar to the target. To this end, numerous object appear-
ance modeling approaches have been proposed, including in-
cremental subspace learning [39], sparse principal component
analysis (SPCA) [40] and sparse representation [41]–[44].

Deep learning-based tracking. Motivated by the power of
deep features in visual recognition (e.g., [5], [34]), some
trackers utilize deep features for object appearance modeling,
and achieve excellent performance, though typically at the cost
of low running speed. Wang et al. [10] introduce a stacked
denoising autoencoder to learn generic image features for vi-
sual tracking. In [14], Wang et al. present a fully convolutional
neural network tracking (FCNT) algorithm by transferring pre-
trained CNN features to improve tracking accuracy. Ma et
al. [6] replace HoG [23] with discriminative convolutional
features for correlation filter tracking, resulting in remarkable
performance gains. A similar idea is presented by Qi et al. [7]
by merging convolutional features from different layers. In
order to address the problem of lack of training samples,

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING 3

Wang et al. [9] employ intermediate features of networks to
learn a robust ensemble tracker. In [8], Nam et al. propose
to impose multiple domain branches on a light architecture of
CNNs to learn generic feature for tracking target, and then
introduce an online tracking algorithm by updating network
weights. In [11], Fan et al. introduce the recurrent neural
networks (RNNs) to capture internal structure of a tracking
target and the generated tracking algorithm achieves promising
results on several tracking benchmarks. Though these methods
have achieved very impressive results, the heavy computation
burden severely limits their practical applications.

Correlation filter-based tracking. Recently, correlation filter
has drawn increasing attention in visual tracking owing partly
to its high computation efficiency. Bolme et al. [19] propose
to use correlation filter for tracking through learning the
minimum output sum of squared error (MOSSE). Benefiting
from the high computation efficiency of correlation filter, this
approach runs amazingly at hundreds of frames per second.
Henriques et al. [21] incorporate kernel space into correlation
filter and propose a circulant structure with kernel (CSK)
method for visual object tracking, and later [17] extends
CSK to the well-known kernelized correlation filters (KCF)
tracker by substituting raw pixel intensities with HoG [23]
for appearance representation. To handle the scale issue, [18]
and [45] suggest an extra scale filter into correlation filter
tracking to adaptively estimate target scale. Later, more efforts
have been made to improve correlation filter tracking, such as
improving feature representation with color attributes [22] or
deep feature [6], [12], [46], adopting part-based strategy [47],
[48] or an additional detector [49] to resist occlusion, decreas-
ing the boundary effect of correlation filter [50] and combining
correlation filter with a complementary tracker [20].

Verification in tracking. The idea of verification is not
new for tracking. A notable example is the tracking-learning-
detection (TLD) algorithm [51], in which tracking results are
validated per frame to decide how learning/detection shall
progress. Similar ideas have been explored in other trackers
such as [49], [52]. Unlike in previous studies, the verification
in PTAV runs only on sampled frames. This mechanism allows
PTAV to use strong verification algorithms without worrying
much about running time efficiency. In fact, we utilize the
Siamese network [29] that is designed for verification tasks.

Interestingly, tracking by itself can be also formulated as
a verification problem that finds the best candidate similar to
the tracking target [13], [25]. Bertinetto et al. [25] propose
a fully-convolutional Siamese network for visual tracking
by searching the tracking target within a local region. Tao
et al. [13] formulate tracking problem as a task of object
matching in each frame and develop a matching function
based on the Siamese network. Despite obtaining excellent
performance, the application of such trackers is limited by the
heavy computation for extracting deep features in each frame.
Compared with these studies, our solution treats verification
only as a way to validate and correct the fast tracker, and does
not run verification per frame.

Ensemble tracking. In order to achieve robustness in tracking,
a natural solution is to leverage multiple different components

to determine tracking result. For example, Kwon et al. [40]
combine multiple observation and motion models to handle
large appearance changes in tracking. Yoon et al. [53] propose
an adaptive tracker by selecting reliable ones from multiple
trackers. The TLD [51] tracker combines a tracker and a detec-
tor to achieve long-term tracking, and a similar idea is adopted
in [49]. In [54], Wang et al. propose a probabilistic model
for tracking by jointly learning the reliability of each tracker.
Zhang et al. [55] propose to store the intermediate statuses for
robust tracking. The method of [56] combines a stable template
based model and an adaptive motion based model for tracking.
In [20], Bertinetto et al. propose a complementary tracking
approach based on correlation filters and color histograms.
Hong et al. [57] present a multi-store tracker (MUSTer) which
contains short- and long-term memory stores to process target
appearance. The final result is jointly determined by short-
and long-term memories. Different from these studies, PTAV
consists of two components, which run on two parallel threads
asynchronously while collaborating with each other.

Though other ensemble approaches (e.g., [20], [40], [49],
[53]–[57]) can be implemented using multiple threads as well,
the proposed PTAV fundamentally differs from them. In these
existing algorithms, different components are simultaneously
used to determine tracking result in each frame, thus their
multi-thread implementations are synchronous. By contrast, in
PTAV, T and V function in different ways and run indepen-
dently except for necessary interactions, and thus the multi-
thread implementation is asynchronous.

III. PARALLEL TRACKING AND VERIFYING (PTAV)

A. Framework

A typical implementation of PTAV consists of two compo-
nents: a (fast) tracker T and a (reliable) verifier V . The two
components work together toward real-time and high accuracy
tracking.
• The tracker T is responsible of the real-time require-

ment of PTAV, and needs to locate the target in each
frame. Meanwhile, T sends verification request to V from
time to time (though not every frame), and responds
to feedback from V by adjusting tracking or updating
models. To avoid heavy computation, T maintains a
buffer of tracking information (e.g., intermediate status)
in recent frames to facilitate fast tracing back when
needed.

• The verifier V is employed to pursue the high accuracy
requirement of PTAV. Up on receiving a request from
T , V tries the best to first validate the tracking result
(e.g., comparing it with the template), and then provide
feedback to T . To adapt V to object appearance variations
over time, the tracking target template is not fixed.
Instead, V collects a number of reliable tracking results,
and then uses k-means to cluster these results to obtain
a target template pool for subsequent verification.

In PTAV, T and V run in parallel on two different threads
with necessary interactions, as illustrated in Figure 3. The
tracker T and verifier V are initialized in the first frame. After
that, T starts to process each arriving frame and generates the

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING 4

R
e
q
u
e
st ve

rificatio
n

Tracker

Frame 1

𝒯

Verifier 𝒱

#010 #030 #060 #380 #390
#410

#390 #410

Old trace drifted

New trace

: tracking result in each frame : passing verification : failing verification

Blue rectangles represent tracking results

Red rectangle (e.g., frame #380) represents detection result

Fig. 3. Illustration of the PTAV framework in which tracking and verifying are processed asynchronously in two parallel threads. On receiving feedback
(including detection result and frame index) from the verifier V , the tracker T will trace back to the frame where failure occurs using frame index and leverage
the target detection result to resume tracking at the position where tracker fails.

Algorithm 1: Parallel Tracking and Verifying (PTAV)

1 Initialize the tracking thread for tracker T ;
2 Initialize the verifying thread for verifier V;
3 Initialize current frame as the second frame;
4 Run T (Alg. 2) and V (Alg. 3) till the end of tracking;

result (pink solid dot in Figure 3). In the meantime, V validates
the tracking result every several frames. Because tracking is
much faster than verifying, T and V work asynchronously.
Such mechanism allows PTAV to tolerate temporary tracking
drift (e.g., at frame 380 in Figure 3), which will be corrected
later by V . When V finds a tracking result unreliable, it
searches the correct answer in a local region and sends it to T .
Upon the receipt of such feedback, T stops current tracking
job and traces back to resume tracking with the correction
provided by V .

Notably, PTAV is a very flexible framework, and some
important designing choices are following. (1) The base al-
gorithms for T and V may depend on specific applications
and available computational resources. In addition, in practice
one may use more than one verifiers or even base trackers. (2)
The response of T to the feedback from V , either positive
or negative, can be largely designed to adjust to specific
requests. (3) The correction of unreliable tracking results
can be implemented in various ways, and it can even be
conducted purely by T (i.e., including target detection). (4)
T has numerous methods to use pre-computed and archived
information for speeding up. Algorithms 1-3 summarize the
general PTAV framework. It is worth noting that the whole
system forms a loop during tracking since the tracker T may
trace back and then resume tracking. However, the verifier
provides new correct results for the tracker to resume, and
therefore the system will not repeat the same loop and typically
move forward with better results. Owing to the high efficiency
of T , the whole system still runs efficiently. Details about the
tracing back process is illustrated in Section III B.

Algorithm 2: Tracking Thread T
1 while current frame is valid do
2 if received a message from V then
3 if verification passed then
4 Update tracking model (optional);
5 else
6 Correct tracking;
7 Trace back and reset current frame;
8 end
9 end

10 Tracking on the current frame;
11 if time for verification according to Nint then
12 Send the current result to V to verify;
13 end
14 current frame ← next frame;
15 end

Algorithm 3: Verifying Thread V
1 while not ended do
2 if received request from T then
3 Verifying the tracking result;
4 Collect tracking result and perform k-means

clustering if needed;
5 if verification failed then
6 Provide correction information in s;
7 Adjust Nint if needed;
8 end
9 Send verification result s to T ;

10 end
11 end

B. PTAV Implementation

1) Tracking: We choose the Staple tracker [20] for T in
PTAV. The main idea of Staple is to combine two complemen-
tary cues, i.e., template and histogram, for tracking. To such

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING 5

end, given an image patch z, a linear combination of tracking
scores from template and histogram is proposed

y(z) = (1− α)ytmpl(z) + αyhist(z) (1)

where α denotes a trade-off parameter, and ytmpl(z) and
yhist(z) represent the tracking responses based on template
and on histogram information, respectively.

The tracking response on template is derived by learning the
optimal correlation filter model w, which is efficiently solved
in frequency domain through the fast Fourier transformation
(FFT). At time t, the FFT of the filter responses is first
calculated using w and an inverse FFT is then conducted
to derive the final response ytmpl(z). The model w is online
updated in each frame.

The tracking response on histogram is based on a learned
color statistic model h, which is robust in resisting deforma-
tion. At time t, h is utilized to calculate yhist(z), and then
dynamically updated. To adapt the tracker to scale changes, a
scale filter is adopted to estimate the target scale. More details
about the Staple tracker can be found in [20].

To efficiently leverage Staple as T in PTAV, in addition
to the tracking results of the original Staple algorithm, T
stores all intermediate results (e.g., w and h) for each frame
after sending out the last verification request. Let W =
{wξ−4, · · · ,wξ} and H = {hξ−4, · · · ,hξ} represent the
collections of w and h, where ξ is the index of the last frame
processed by T , and 4 denotes a fixed size for temporal
sliding window to store tracking models. These intermediate
results in W and H allow T for fast tracing back.

In particular, when V detects unreliable tracking result in
frame k while T starts working on frame j (j > k), a
feedback consisting of correct target position and frame index
information is sent to T . Once receiving this feedback from V ,
T stops processing frame j and then utilizes the archived target
position and tracking model (i.e., wk−1 and hk−1) retrieved
from W and H to resume subsequent tracking from frame
k. Meanwhile, useless intermediate results in W (i.e., wk to
wj−1) and H (i.e., hk to hj−1) are discarded.

Note that we do not assume the correctness of wk−1 and
hk−1 in the above strategy. In fact, one way is to trace
backward from k − 1 to locate a reliable frame to resume
tracking, at additional expense of more verification operations.
In practice, however, we find that wk−1 and hk−1 typically
provide sufficiently good initial guess for frame k and rely
on the detection part to correct the incorrect tracking result.
More details are given the following sections on verifying and
detection.

To validate the tracking result, T sends the verification
requests every Nint frames, where Nint denotes the verification
interval as described later.

2) Verifying: The goal of verifying is to measure the
similarity between a given sample and the target object.
Inspired by [29], we use the Siamese network to develop the
verifier V (similar to [13]) in PTAV, as depicted in Figure
4. The Siamese network contains two branches of CNNs,
and processes two inputs separately. In this work, we borrow
the architecture from VGGNet [34] for CNNs, but with an
additional region of interest (RoI) pooling layer [58]. This is

Conv3 block

Conv4 block

Conv5 block

ROI

pooling 2

Conv2 block

Conv1 block

Max pooling 1

Max pooling 2

ROI

pooling 1

ROI

pooling 3

Fc6

L2 normalization

Margin Contrastive Loss

Conv3 block

Conv4 block

Conv5 block

ROI

pooling 2

Conv2 block

Conv1 block

Max pooling 1

Max pooling 2

ROI

pooling 1

ROI

pooling 3

Fc6

L2 normalization

weight sharing

Conv3 block

Conv4 block

Conv5 block

ROI

pooling 2

Conv2 block

Conv1 block

Max pooling 1

Max pooling 2

ROI

pooling 1

ROI

pooling 3

Fc6

L2 normalization

Margin Contrastive Loss

Conv3 block

Conv4 block

Conv5 block

ROI

pooling 2

Conv2 block

Conv1 block

Max pooling 1

Max pooling 2

ROI

pooling 1

ROI

pooling 3

Fc6

L2 normalization

weight sharing

Fig. 4. Illustration of the architecture of the Siamese network for verifier.

because, for detection, V needs to process multiple regions in
an image, from them the candidate most similar to the target
object is selected as the final result. For efficiency, RoI pooling
is used for simultaneously processing a set of regions.

In the Siamese network, the two CNN branches are con-
nected with a single contrastive loss layer

L(xi, xj , rij) =
1

2
rijD

2 +
1

2
(1− rij)max(0, ε−D2) (2)

where D = ‖ψ(xi)− ψ(xj)‖2 is the Euclidean metric in
which ψ(·) represents feature transformation via the Siamese
network, rij ∈ {0, 1} indicates whether xi and xj are the same
object or not, and ε represents the minimum distance margin.

Once training is finished2, one can use the learned verifying
function ν to compute verification score for each tracking
result x′ via

ν(xobj, x′) = ψ(xobj)
Tψ(x′) (3)

where xobj represents a fixed target template in the first
frame. This strategy, as used in our preliminary work [33],
may meet problems when the target object undergoes large
appearance variations or deformations. As a result, using a
fixed target template for verification may be unreliable for
distant subsequent tracking results.

To alleviate this issue, we propose to employ a dynamic
target template set S for adaptive verification using k-means
clustering. More specifically, S is comprised of two compo-
nents Sf and Sd. The Sf = {xobj} contains only the target
template xobj in the first frame and is fixed during tracking.
The set Sd is initially empty. During tracking, it is dynamically
updated by collecting tracking results with high verification
scores, as described later.

With the dynamic set S, we can compute the verification
score for each tracking result x′ as follows

ν(S, x′) = ωoψ(xobj)
Tψ(x′)+ωc

NC∑
i=1

∑
xj∈Ci

ψ(xj)Tψ(x′) (4)

2In this work we adopt the same strategy as in [13] to train the verifier.
We refer readers to [13] for detailed training process.

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING 6

Verifier𝐱𝑜𝑏𝑗

𝐱′

𝐱′

𝒮𝑓

… …

… …

…

𝒮𝑑

𝒮

𝜐(𝐱𝑜𝑏𝑗, 𝐱
′)

Verifier 𝜐(𝒮, 𝐱′)

…

𝒮𝑡

|𝒮𝑡| = 𝐿if 𝒮𝑑 = 𝒮𝑑 ∪ 𝒮𝑡,

perform k-means
clustering on 𝒮𝑑

cluster cluster

cluster cluster

fixed

dynamic

1

Fig. 5. Illustration of verification using a dynamic target template set.

where ωo denotes the weight for Sf , ωc represents the weight
for each cluster Ci obtained by performing k-means clustering
on Sd, and NC = |Sd|/L is the number of clusters (L is
roughly a pre-defined size of each cluster, and |Sd| denotes
the size of Sd). The weights ωo and ωc are calculated as

ωo =
exp(0.5)

exp(0.5) +NC × exp(0.5/NC)
(5)

ωc =
1

NC
(1− ωo) (6)

The set Sd is updated as follows. For each tracking result
x′, we use Equ. 4 to calculate its verification score ν(S, x′). If
ν(S, x′) is greater than a threshold τ0, we treat x′ as a reliable
template and add it into a temporal set St. This process is
repeated until the number of elements in St is equal to L. We
then move all elements in St to Sd and thus leave St empty. If
the number of elements in Sd is greater than L×NCmax

, where
NCmax

denotes the maximum number of clusters, the oldest
L elements will be removed from Sd. Afterwards, k-means
clustering [59] is applied on Sd to obtain new clusters

{Ci}NC
i=1 = k-means(Sd, NC) (7)

Note that when performing k-means clustering, the elements
in Sd are represented with HoG features [23] for the sake of
efficiency. After obtaining new clusters, we employ Equ. 5
and 6 to calculate weights ωo and ωc. Figure 5 illustrates the
process of adaptive verification.

With the dynamic target template set S, V can make smarter
decisions than when only a fixed template is used (i.e., Equ. 3),
and hence reduces the number of unnecessary verifications
to speed up the entire system. Besides, now that verification
is more precise, the verification-based detection (see Section
III-B3) is improved as well.

3) Verification-based detection: Given a tracking result
from T , we use Equ. 4 to compute its verification score. If
the verification score is lower than a predefined threshold τ1,
V will treat it as a tracking failure. In this case, V needs to
detect the target, again using the Siamese network. Unlike
for verification, detection requires to verify multiple image
patches from a local region3 and finds the best one. Thanks to

3The local region is a square of size γ(w2+h2)
1
2 centered at the location

of the tracking result in this validation frame, where w and h denote the width
and height of the tracking result, and γ controls the scale and is dynamically
adjusted based on detection result.

(c)(a) (b)

Fig. 6. Verification-based detection. When an unreliable tracking result is
found (showing in blue in (a)), the verifier V searches/detects the target in
a local region (shown in (b)). The dashed red rectangles in (b) represent
object candidates generated by sliding window. The red rectangle in (c) is the
detection result.

the RoI pooling layer, these candidates can be simultaneously
processed in just one pass, resulting in significant reduction in
computation. Let {ci}Ni=1 denote the candidate set generated
by sliding window, and the detection result ĉ is determined by

ĉ = argmax
ci

ν(S, ci), i = 1, 2, · · · , N (8)

where ν(S, ci) returns the verification score between the target
template set S and candidate ci.

After obtaining the detection result ĉ, we determine whether
or not to take it to be an alternative for tracking result
according to its verification score. If ν(S, ĉ) is less than a
predefined threshold τ2, ĉ is considered to be unreliable, and
we do not replace tracking result with ĉ. Instead, we decrease
the verifying interval Nint to 1, and enlarge the local searching
region for target detection. Until detection result ĉ passes
verification (i.e., ν(S, ĉ) ≥ τ2), we then restore Nint and
the size of local searching region to initial settings. Figure
6 describes the detection process.

C. Implementation Details
Our PTAV is implemented in C++ and its verifier uses

Caffe [60] on a single NVIDIA GTX TITAN Z GPU with
6GB memory. The merging factor α in Eq. (1) is set to 0.3.
Other parameters for tracking remain the same as in [20].
The Siamese network for verification is initialized with the
VGGNet [34] and trained based on the approach in [13]. The
clustering interval L is empirically set to 5 and the maximum
number of clusters NCmax

to 10. The verification interval Nint

is initially set to 10. The thresholds τ0, τ1 and τ2 are set to
0.6, 0.33 and 0.53, respectively. The parameter γ is initialized
to 1.5, and is adaptively adjusted based on the detection result.
If the detection result with γ = 1.5 is not reliable, the verifier
will increase γ for a larger searching region. Meanwhile, the
verification interval Nint is decreased to 1. When the new de-
tection result becomes faithful, γ and Nint are then restored to
1.5 and 10. The source code and tracking results are available
at http://www.dabi.temple.edu/∼hbling/code/PTAV/ptav.htm.

IV. EXPERIMENTS

A. Experiment on OTB2015
Dataset and evaluation metric. The OTB2015 [26] contains
100 fully annotated challenging video sequences. These se-
quences are labeled based on 11 attributes, including defor-
mation (DEF), occlusion (OCC), scale variation (SV), illumi-
nation variations (IV), motion blur (MB), fast motion (FM),

http://www.dabi.temple.edu/~hbling/code/PTAV/ptav.htm

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING 7

background clutter (BC), out-of-view (OV), low resolution
(LR), in-plane rotation (IPR) and out-of-plane rotation (OPR).

Following [26], we use three metrics, distance precision rate
(DPR), overlap success rate (OSR) and center location error
(CLE), for tracker evaluation. DPR demonstrates the percent-
age of frames whose estimated average center location errors
are within the given threshold distance (e.g., 20 pixels) to
groundtruth. OSR shows the percentage of successful frames
at the threshold ranging from 0 to 1, and can be defined as the
overlap score larger than a fixed value (e.g., 0.5), where the
overlap ratio is defined as score=(area(RGT∩RT)/area(RGT∪
RT)) with the groundtruth RGT and the tracking result RT .
CLE is the Euclid distance between centers of RT and RGT .

Overall performance. We evaluate PTAV on OTB2015 [26]
and compare it with thirteen trackers from three typical cat-
egories: (i) deep feature-based tracking algorithms, including
SINT [13], HCF [6], SiamFC [25], HDT [7] and CFNet [46];
(ii) correlation filter based trackers, including fDSST [18],
LCT [49], KCF [17], SCT [61] and Staple [20]; and (iii)
other representative tracking methods, including TLD [51],
MEEM [55] and Struck [38]. We also note that there are
other state-of-the-art trackers such as MDNet [8], SANet [11]
and C-COT [12] (see Figure 1). However, the speeds of these
trackers are around 1 frames per second (fps). Since this work
is focused on real-time object tracking, we compare PTAV
with trackers whose speeds are no less than 10 fps, except for
SINT [13] since it can be viewed as the baseline for tracking
by verification. In particular, for SINT [13], we use its tracking
results without optical flow because no optical flow part is
provided from the released source code. Another baseline for
PTAV is the Staple tracker [20], which provides the (fast)
tracking part of PTAV. Note that other tracking algorithms
may also be used for the tracking part in PTAV.

We report the results in one-pass evaluation (OPE) using
DPR and OSR as shown in Figure 7. Overall, PTAV performs
favorably against other tracking algorithms. In addition, we
present quantitative comparison of DPR at 20 pixels, OSR
at 0.5, center location error (CLE) in pixels and tracking
speed (fps) in Table I. It demonstrates that PTAV outperforms
other trackers in all three metrics. Among the trackers under
comparison, HCF [6] uses deep features to represent object
appearance and obtains the DPR of 83.7% and OSR of 65.6%.
Likewise, HDT [7] exploits all layers in VGGNet [34] for
tracking and achieves the DPR of 84.8% and OSR of 64.8%.
Compared to these two deep feature-based approaches, PTAV
achieves better performance with DPR of 86.2% and OSR of
77.9%. Besides, owing to the adoption of parallel framework,
PTAV (27 fps) is more than twice faster than the HCF [6] (10
fps) and HDT [7] (10 fps). Compared with SINT [13], which
uses similar Siamese network for tracking, PTAV improves
DPR from 77.3% to 86.2% and OSR from 70.3% to 77.6%. In
addition, PTAV runs at real-time while SINT [13] needs large
improvement in speed. Compared to the baseline Staple [20],
PTAV achieves significant improvements on DPR (by 7.8%)
and OSR (by 7.0%). Compared to representative MEEM [55]
with DPR of 78.1% and OSR of 62.2%, PTAV obtains
performance gains by DPR of 8.1% and OSR of 15.7%.

Fig. 7. Comparison with pseudo real-time trackers on OTB2015 [26] using
distance precision rate (DPR) and overlap success rate (OSR).

TABLE I
COMPARISONS WITH PSEUDO REAL-TIME TRACKING METHODS ON

OTB2015 [26] IN DPR (%) AT A THRESHOLD OF 20 PIXELS, OSR (%) AT
AN OVERLAP THRESHOLD OF 0.5, CLE IN PIXELS AND SPEED (FPS). THE

BEST TWO RESULTS ARE SHOWN IN RED AND BLUE FONTS, RESPECTIVELY.

Algorithms DPR OSR CLE Speed

PTAV (Ours) 86.2 77.9 18.9 27

(i
)

HCF [6] 83.7 65.6 22.8 10
HDT [7] 84.8 64.9 20.6 10

SINT [13] 77.3 70.3 26.3 2
SiamFC [25] 75.7 70.9 37.1 58

CFNet [46] 77.7 73.2 35.2 43

(i
i)

Staple [20] 78.4 70.9 31.9 43
LCT [49] 76.2 70.1 67.1 25
SCT [61] 76.8 62.1 38.0 40

fDSST [18] 72.0 67.6 51.1 51
KCF [17] 69.2 54.8 45.0 243

(i
ii)

MEEM [55] 78.1 62.2 27.7 21
TLD [51] 59.2 48.3 35.0 20

Struck [38] 63.9 51.6 47.1 10

Attribute-based evaluation. We further analyze PTAV under
the eleven different attributes on OTB2015 in terms of DPR
and OSR, as summarized in Tables II and III.

For DPR, PTAV achieves the best results under 7 out of 11
attributes including IV (84.7%), OPR (83.5%), SV (82.5%),
OCC (81.4%), MB (80.5%), OV (79.0%) and BC (87.6%).
For sequences with deformation, HDT [7] performs the best
with average DPR of 82.1% owing to the use of richer deep
features. Our tracker uses Staple [20] as the tracking part,
which leverages color information to handle object deforma-
tion. Accompanied by an accurate verifier, PTAV achieves
competitive performance and ranks the second in the case
of deformation with average DPR of 81.2%. Furthermore,
compared to the baseline Staple [20], we obtain large gain
on DPR by 6.4% under deformation. For low resolution
sequences, CFNet [46] obtains the best result with average
DPR of 86.1% by taking advantage of deep features. PTAV
ranks the second with competitive average DPR of 84.0%.

For sequences with fast motion and in-plane rotation,
HDT [7] and HCF [6] perform better than ours, because in
these two situations deep features are more efficacious than
hand-crafted features to represent object appearance. In PTAV,
we utilize simple HoG [23] features and RGB histograms to
model object appearance in tracking, which are sensitive to
in-plane rotation and fast motion (we can see that from the
performance of Staple [20]). Nevertheless, with the help of
useful feedbacks from a robust and accurate verifier, PTAV
still achieves competitive performance with average DPRs of
78.1% and 82.8% under these two challenges, respectively.

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING 8

TABLE II
AVERAGE DPR (%) OF INDIVIDUAL ATTRIBUTES ON OTB2015 [26]. THE
BEST TWO RESULTS ARE SHOWN IN RED AND BLUE FONTS, RESPECTIVELY.

Att. PTAV
HDT
[7]

HCF
[6]

Staple
[20]

MEEM
[55]

CFNet
[46]

SINT
[13]

SiamFC
[25]

LCT
[49]

fDSST
[18]

KCF
[17]

Struck
[38]

TLD
[51]

SCT
[61]

IV 84.7 82.0 81.7 79.1 74.0 75.7 80.9 73.5 74.6 72.8 70.8 54.9 55.9 76.0
OPR 83.5 80.8 81.0 74.2 79.8 75.3 79.4 74.5 75.0 66.4 67.5 59.9 57.1 75.1
SV 82.5 81.1 80.2 73.1 74.0 74.8 74.2 74.3 68.6 66.9 63.9 60.4 56.4 69.3

OCC 81.4 77.4 76.7 72.6 74.1 71.3 73.1 69.6 68.2 62.6 62.2 53.3 52.4 70.7
DEF 81.2 82.1 79.1 74.8 75.4 66.9 75.0 67.6 68.9 59.9 61.7 52.7 48.4 72.3
MB 80.5 79.4 79.7 72.6 72.1 76.1 72.8 69.8 67.3 68.4 61.7 59.4 53.6 70.0
FM 78.1 80.6 79.7 70.3 73.4 74.1 72.5 73.0 67.5 69.3 62.8 62.0 54.8 71.9
IPR 82.8 84.4 85.4 77.0 79.3 80.3 81.1 74.8 78.2 72.5 69.3 63.4 60.3 76.8
OV 79.0 66.3 67.7 66.1 68.3 65.0 72.5 67.8 59.2 57.7 49.8 49.1 45.2 53.8
BC 87.6 84.7 84.7 77.0 75.1 73.7 75.1 69.4 74.0 78.4 71.6 57.3 46.1 77.8
LR 84.0 76.6 78.7 60.9 60.5 86.1 78.8 83.4 49.0 61.7 54.5 62.8 55.2 55.4

Avg. 86.2 84.8 83.7 78.4 78.1 77.7 77.3 75.7 76.2 72.0 69.2 63.9 59.2 76.8

For OSR, on the other hand, PTAV achieves the best results
under 10 of 11 attributes including IV (64.2%), OPR (60.4%),
SV (59.1%), OCC (60.6%), DEF (59.9%), MB (61.2%), FM
(58.3%), IPR (59.0%), OV (56.9%) and BC (64.1%). Low
resolution (LR) is the only attribute for which PTAV does not
rank the best, while CFNet [46] and SiamFC [25] obtain better
results. Specifically, PTAV achieves an OSR of 54.6%, higher
than all other trackers including its two baselines.

Qualitative evaluation. To further analyze and demonstrate
the performance of PTAV, we conduct rich qualitative evalua-
tion described as following.

Occlusions: Figure 8(a) shows tracking results on sequences
Box, Lemming, Girl2 and Jogging-1, all involving heavy target
occlusions. From Figure 8(a) we can see that PTAV handles
well the occlusion in these sequences. Though the tracking part
may lose the target temporally due to occlusions, it can quickly
be corrected by the verifier and resumes tracking. Compared
to deep trackers (HCF [6], HDT [7] and CFNet [46]), which
lose the tracking target when occlusions happen (e.g., #342
in Girl2 and #489 in Lemming), PTAV performs more ro-
bustly. Since correlation filter is sensitive to occlusion and
no re-detection module is adopted, KCF [17], fDSST [18]
and Staple [20] lose the tracking target in all sequences.
LCT [49] uses an additional detector to re-localize the target
after occlusion. However, it still fails when occlusions are
accompanied with background clutters (e.g., #476 in Box).
MEEM [55] stores multiple statuses during tracking, and re-
detects the target using old memories (e.g., Lemming, Girl2
and Jogging-1). However, it meets problems in presence of
background clutters (e.g., #476 in Box). SiamFC [25] and
SINT [13] deal with occlusion by searching in a local region
when the target recovers from occlusions. Other trackers such
as TLD [51], SCT [61] and Struck [38] do not well handle
the occlusion and drift to background (e.g., #342 in Girl2).

Background clutters: Figure 8(b) displays the results on
sequences Coke, Deer, Football and Bolt2 with background
clutter. We observe that SiamFC [25], SINT [13], KCF [17],
Struck [38] and Staple [20] drift to background in Football
(e.g., #360). CFNet [46] and fDSST [18] localize well the
target in Football, but still fail in Coke (e.g., #291) where
background clutters are accompanied with occlusions and
illumination changes. MEEM [55] and SCT [61] handle nicely
occlusion and motion blur, but fail in presence of deformations
in Bolt2 (e.g., #40). LCT [49] and TLD [51] are robust
against background clutters since they use an extra detector

TABLE III
AVERAGE OSR (%) OF INDIVIDUAL ATTRIBUTES ON OTB2015 [26]. THE
BEST TWO RESULTS ARE SHOWN IN RED AND BLUE FONTS, RESPECTIVELY.

Att. PTAV
HDT
[7]

HCF
[6]

Staple
[20]

MEEM
[55]

CFNet
[46]

SINT
[13]

SiamFC
[25]

LCT
[49]

fDSST
[18]

KCF
[17]

Struck
[38]

TLD
[51]

SCT
[61]

IV 64.2 53.5 54.0 59.8 51.7 57.4 61.8 54.9 56.6 55.6 47.4 42.0 41.4 52.3
OPR 60.4 53.6 53.7 53.8 52.8 55.3 58.6 54.4 54.1 50.1 45.4 42.7 39.0 51.6
SV 59.1 48.9 48.8 52.9 47.3 55.5 55.8 55.5 49.2 51.0 39.9 40.7 38.8 44.2

OCC 60.6 52.8 52.5 54.8 50.3 53.6 55.8 52.3 50.7 47.8 43.8 39.3 36.3 50.2
DEF 59.9 54.3 53.0 55.4 48.9 49.2 55.5 49.0 49.9 46.1 43.6 38.3 34.1 50.6
MB 61.2 56.3 57.3 55.8 54.3 59.3 57.4 55.5 53.2 54.8 45.6 46.1 42.6 52.1
FM 58.3 55.4 55.5 54.1 52.8 57.0 55.7 56.4 52.7 55.4 45.5 46.1 41.8 52.5
IPR 59.0 55.5 55.9 55.2 52.8 59.0 58.5 55.7 55.7 54.5 46.5 45.2 42.5 52.2
OV 56.9 47.2 47.4 48.1 48.4 48.0 55.9 51.1 45.2 45.7 39.3 37.8 33.5 43.4
BC 64.1 58.0 58.7 57.4 52.1 54.5 56.7 50.4 55.3 58.5 49.8 44.2 35.2 55.2
LR 54.6 42.0 42.4 41.1 35.5 61.9 53.9 60.4 33.0 44.6 30.6 34.7 37.2 31.0

Avg. 63.2 56.4 56.2 58.1 52.9 58.6 58.0 56.5 56.2 55.1 47.5 46.2 42.3 53.3

to seek for the target after it moves away from the cluttering
region. However, they lose the target when heavy deformation
happens in Bolt2 (e.g., #271). HCF [6] and HDT [7] perform
robustly in these sequences because of the powerful deep
features. Likewise, PTAV is able to handle these cases owing
to the verifier. Besides, the cooperation between tracking and
verifying allows PTAV to run in real-time.

Illumination variations: Figure 8(c) shows sampled results
of sequences Shaking, David, Singer2 and Sylvester. We can
see that deep feature-based trackers SiamFC [25], CFNet [46],
HCF [6] and HDT [7] lose the target in Singer2 (e.g., #345)
where background clutters happen. MEEM [55] can handle
rotations but still fails in Singer2 (e.g., #345). Staple [20] and
KCF [17] are sensitive to rotation and fail in Shaking (e.g.,
#363) and Sylvester (e.g., #1339). LCT [49] and SCT [61]
work well in Shaking, David and Singer2, yet have problems
when rotation occurs in Sylvester (e.g., #1339).PTAV per-
forms well on these sequences. Though its tracking part may
drift to background due to rotation (e.g., #1161 in Sylvester),
this situation is found and immediately corrected by its verifier
(e.g., #1339 in Sylvester).

Other challenges: Figure 8(d) demonstrates the results of
sequences BlurOwl, Bird2, Panda and Bolt2 with other chal-
lenges including motion blur, rotation, scale change, deforma-
tion and so on. In BlurOwl, the camera moves quickly, causing
serious motion blur (e.g., #622). KCF [17] and Staple [20]
lose the target, while PTAV well localizes the object thanks
to its verifier which corrects tracker. In Bolt2, TLD [51],
Struck [38], CFNet [46] and fDSST [18] drift to background
due to deformation. On Panda, LCT [49], fDSST [18], Sta-
ple [20], SCT [61] and KCF [17] lose tracking target owing to
scale change and rotation. By contrast, MEEM [55], HCF [6],
HDT [7], SiamFC [25], SINT [13] and our PTAV perform
favorably owing to powerful feature representation.

B. Experiment on TC128

The TC128 benchmark [30] consists of 128 fully annotated
color sequences. On TC128 [30], PTAV runs at 24 fps and
is compared with eleven state-of-the-art trackers including
MEEM [55], HCF [6], HDT [7], Staple [20], SiamFC [25],
SRDCF [50], DeepSRDCF [62], fDSST [18], KCF [17],
LCT [49] and Struck [38]. Following [30], we report eval-
uation results in OSR and DPR as shown in Figure 9.

Among the eleven compared trackers, DeepSRDCF [62]
extends SRDCF [50] by replacing hand-crafted features with

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING 9

(a) Sequences suffering from occlusions (from left to right: Box, Lemming, Girl2 and Jogging-1).

(b) Sequences suffering from background clutters (from left to right: Coke, Deer, Football and Bolt2).

(c) Sequences suffering from illumination variations (from left to right: Shaking, David, Singer2 and Sylvester).

(d) Sequences suffering from other challenges (from left to right and top to bottom: BlurOwl, Bird2, Panda and Bolt).

HCF HDT SiamFC CFNet Staple Struck LCT SINT KCF fDSST PTAVMEEM TLD SCT

Fig. 8. Qualitative evaluation of the proposed algorithm and other thirteen state-of-the-art trackers on sixteen challenging sequences.

Fig. 9. Comparison with eleven state-of-the-art trackers on TC128 [30] using
distance precision rate and overlap success rate.

20

30

40

50

60

70

80

90

Overall IV OPR SV OCC DEF MB FM IPR OV BC LR

PTAV DeepSRDCF HCF SiamFC Staple

Fig. 10. Average DPR (%) in term of individual attributes on TC128 [30].

convolutional features and obtains the best performance with
DPR of 74.0% and OSR of 53.6%. By contrast, PTAV im-
proves the state-of-the-art methods on DPR to 77.2% and OSR
to 56.3%, obtaining the gains of 3.2% and 2.7%, respectively.
In comparison with SiamFC [25] with DPR of 69.6% and
OSR of 49.7%, PTAV achieves improvements of 7.2% and
6.6% on DPR and OSR, respectively. Compared with the other
baseline, Staple [20], which obtains a DPR of 66.7% and an
OSR of 49.7%, PTAV achieves significant improvements as

well, showing clearly the benefits of introducing a verifier.
For more detailed analysis, we show the average DPR for five
trackers on different attributes in Figure 10. PTAV can well
handle various challenging factors and outperform the other
four trackers in nine out of eleven attributes.

C. Experiment on UAV20L

The recent UAV20L dataset [31] contains 20 fully annotated
sequences, with length ranging from 1,717 to 5,527 frames.
PTAV runs at 30 fps and is compared with ten trackers
including SiamFC [25], MUSTer [57], SRDCF [50], HCF [6],
MEEM [55], SAMF [45], Struck [38], fDSST [18], LCT [49]
and KCF [17].

Following [31], we report evaluation results in Figure 11.
PTAV achieves the best performance in both DPR (73.2%)
and OSR (50.4%), outperforming other trackers by large
margins (6.2% and 10.1% compared to the second best in DPR
and OSR, respectively). Furthermore, we also analyze PTAV
on twelve individual attributes provided with UAV20L [31],
icnluding scale variation (SV), aspect ratio change (ARC),
low resolution (LR), fast motion (FM), full occlusion (FOC),
partial occlusion (POC), out-of-view (OV), background clutter
(BC), illumination variation (IV), viewpoint change (VC),
camera motion (CM) and similar object (SOB). Figure 12 dis-
plays the average DPR for five trackers on different attributes,
and PTAV achieves the best results on each attribute.

D. Experiment on VOT2016

Finally, we test PTAV on VOT2016 [32] with 60 challenging
sequences. VOT2016 aims at evaluating short-term tracking
performance and thus a tracker is re-initialized whenever
failure happens. In other words, a tracker is reset if its tracking

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING 10

Fig. 11. Comparison with ten state-of-the-art trackers on UAV20L [31] using
distance precision rate and overlap success rate.

20

30

40

50

60

70

80

90

Overall SV ARC LR FM FOC POC OV BC IV VC CM SOB

PTAV SiamFC MUSTer SRDCF HCF

Fig. 12. Average DPR (%) in term of attributes on UAV20L [31].

results are found unreliable. Unfortunately, this protocol is not
directly applicable to our tracker since PTAV automatically
detects failures by itself and rolls back to resume tracking.

To follow the above evaluation protocol, we modify PTAV
by running it multiple rounds with different starting frames.
In particular, in each round, we run PTAV at current starting
frame without resetting. For the first round, the first frame in
the input sequence is used as the start frame. Afterward, we
compare the tracking results with groundtruth to find the first
failure using the VOT2016 protocol, and then we re-initialize
PTAV from the failure frame for the next round. We repeat
this process until no failure is detected. On VOT2016, PTAV
runs at 25 fps.

PTAV is compared with top ten trackers in the VOT2016
challenge, including C-COT [12], TCNN [63], SSAT [32],
MLDF [32], Staple [20], DDC [32], EBT [64], SRBT [32],
Staple+ [32] and DNT [65]. Table IV demonstrates comparison
results in VOT2016. It shows that C-COT [12] and TCNN [63]
achieve the best results with EAOs of 33.1% and 32.5%,
respectively. C-COT [12] utilizes deep features to model object
appearance and TCNN [63] proposes tree-structured CNNs
for tracking with online update. Despite obtaining superior
performances, their speeds are around 1 and 2 fps. By contrast,
PTAV achieves competitive result (EAO of 31.2%), while
running in real-time.

E. Ablation Study

1) Different trackers for T : In PTAV, T is required to be
efficient and accurate most of the time. To show the effects
of different T , we compare three base trackers including Sta-
ple [20] (the choice in this paper), fDSST [18] and KCF [17].
Among these trackers, KCF [17] runs the most efficiently
while least accurately in short time. Compared to KCF [17]

TABLE IV
COMPARISONS ON VOT2016 [32] IN TERMS OF EXPECTED AVERAGE

OVERLAP (EAO%), ACCURACY (%), ROBUSTNESS (%) AND NO-RESET
AVERAGE OVERLAP (AO%). THE BEST TWO RESULTS ARE SHOWN IN RED

AND BLUE FONTS, RESPECTIVELY.

Algorithms EAO Accuracy Robustness AO
PTAV (Ours) 31.2 56.1 27.9 43.2
C-COT [12] 33.1 53.9 23.8 46.9
TCNN [63] 32.5 55.4 26.8 48.5
SSAT [32] 32.1 57.7 29.1 51.5

MLDF [32] 31.1 49.0 23.3 42.8
Staple [20] 29.5 54.4 37.8 38.8
DDC [32] 29.3 54.1 34.5 39.1
EBT [64] 29.1 46.5 25.2 37.0

SRBT [32] 29.0 49.6 35.0 33.3
Staple+ [32] 28.6 55.7 36.8 39.2

DNT [65] 27.8 51.4 32.9 42.7

TABLE VIII
COMPARISONS OF DIFFERENT Nint ON OTB2015 [26].

Nint = 5 Nint = 10 Nint = 15

DPR (%) 86.3 86.2 84.6
Speed (fps) 25 27 30

and fDSST [18], Staple [20] performs more robustly since
it utilizes color information for tracking, which results in its
relative inefficiency. The comparison results on OTB2015 [26],
TC128 [30] and UAV20L [31] are shown in Table V.

From Table V, we observe that PTAV with Staple as base
tracker (PTAVStaple) performs better than those with fDSST
(PTAVfDSST) and KCF (PTAVKCF). Though KCF runs the
fastest among these trackers, it performs least accurately in
short time, resulting in more requests for verifications and
detections, and significantly increased computations. As shown
in Table V, the speeds of PTAVKCF on OTB2015 [26],
TC128 [30] and UAV20L [31] are respectively 24, 19 and
20 fps, which are much slower than PTAVStaple (27, 23 and
30 fps, respectively) and PTAVfDSST (27, 24 and 26 fps,
respectively).

In term of tracking accuracy, on OTB2015 [26], PTAVfDSST

achieves competitive performance (85.2% of DPR and 77.9 %
of OSR) compared to PTAVStaple (86.2% of DPR and 77.9%
of OSR). However, on the more challenging UAV20L [31],
PTAVStaple significantly outperforms PTAVfDSST in both ac-
curacy and efficiency. Specifically, PTAVStaple obtains a DPR
of 73.2%, an OSR of 62.4% and speed of 30 fps while
PTAVfDSST with DPR of 63.1%, OSR of 47.8% and speed of
26 fps. The main reason accounting for this is that the baseline
Staple leverages color cues for tracking. In UAV20L [31], the
tracking target frequently suffers from severe view changes,
which are fatal to HoG features. Nevertheless, Staple is able
to deal with view changes using color statistics, and thus per-
forms better than fDSST in short periods. As a consequence,
PTAVStaple performs more favorably than PTAVfDSST and
requires less verifications and detections, further improving ef-
ficiency. Besides, we observe that all the three PTAV versions
improve their baseline trackers by large margins.

2) Different verifiers for V: The verifier V plays a crucial
role in PTAV by validating tracking results and correcting
T if needed. To study the effects of V , we compare two

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING 11

TABLE V
COMPARISONS OF DPR (%), OSR (%), CLE IN PIXELS AND SPEED (FPS) AMONG DIFFERENT T WITH VGGNET [34] BASED V ON THREE BENCHMARKS.

OTB2015 [26] TC128 [30] UAV20L [31]
DPR OSR CLE Speed DPR OSR CLE Speed DPR OSR CLE Speed

PTAVStaple 86.2 77.9 18.9 27 77.2 70.0 32.1 23 73.2 62.4 56.1 30
PTAVfDSST 85.2 77.9 19.4 27 75.2 66.1 32.7 24 63.1 47.8 102.7 26

PTAVKCF 74.2 58.6 34.5 24 63.9 54.6 53.6 19 41.6 32.1 195.3 20
Staple [20] 78.4 70.9 31.9 43 66.7 62 57.5 43 48.5 44.3 223.1 49

fDSST [18] 72.0 67.6 51.1 51 57.5 52.4 82.1 51 42.2 34.4 256.8 52
KCF [17] 69.2 54.8 45.0 243 55.1 46.1 77.4 242 31.1 20.0 282.4 245

TABLE VI
COMPARISONS OF DPR (%), OSR (%), CLE IN PIXELS AND SPEED (FPS) BETWEEN DIFFERENT V WITH SAME TRACKER ON THREE BENCHMARKS.

OTB2015 [26] TC128 [30] UAV20L [31]
DPR OSR CLE Speed DPR OSR CLE Speed DPR OSR CLE Speed

Staple PTAVVGGNet 86.2 77.9 18.9 27 77.2 70.0 32.1 23 73.2 62.4 56.1 30
PTAVAlexNet 84.0 75.5 20.7 34 75.0 68.9 40.3 31 65.9 58.6 70.7 33

fDSST PTAVVGGNet 85.2 77.9 19.4 27 75.2 66.1 32.7 24 63.1 47.8 102.7 26
PTAVAlexNet 79.4 74.3 31.2 29 67.5 61.1 43.8 26 54.7 43.2 121.0 31

KCF PTAVVGGNet 74.2 58.6 34.5 24 63.9 54.6 53.6 19 41.6 32.1 195.3 20
PTAVAlexNet 72.3 58.0 37.1 31 62.4 52.6 54.9 22 39.6 27.6 216.1 27

TABLE VII
COMPARISONS IN TERMS OF DPR (%), OSR (%), CLE IN PIXELS AND SPEED (FPS) BETWEEN FIXED TEMPLATE AND DYNAMIC TEMPLATE SET USING T

BASED ON DIFFERENT TRACKERS AND V BASED ON VGGNET [34] ON THREE BENCHMARKS.

OTB2015 [26] TC128 [30] UAV20L [31]
DPR OSR CLE Speed DPR OSR CLE Speed DPR OSR CLE Speed

Staple dynamic templates 86.2 77.9 18.9 27 77.2 70.0 32.1 23 73.2 62.4 56.1 30
fixed template 85.6 77.1 20.4 25 76.3 68.9 32.3 22 72.6 61.6 62.8 28

fDSST dynamic templates 85.2 77.9 19.4 27 75.2 66.1 32.7 24 63.1 47.8 102.7 26
fixed template 84.9 77.6 21.1 25 74.1 64.2 35.7 21 62.4 45.6 113.2 25

KCF dynamic templates 74.2 58.6 34.5 24 63.9 54.6 53.6 19 41.6 32.1 195.3 20
fixed template 73.5 57.9 37.2 21 62.8 52.9 56.9 14 40.8 30.9 214.2 18

different alternatives based on VGGNet [34] and the much
lighter AlexNet [5]4. Compared to the VGGNet-based V , the
AlexNet-based V runs more efficiently but less accurately.
Specifically, the speed of VGGNet based-V runs at 6 fps
while its AlexNet counterpart runs at 17 fps. The comparisons
of PTAV with different verifiers are reported in Table VI.
From Table VI, we observe that, when using the same base
tracker, PTAV with VGGNet-based V (PTAVVGGNet) outper-
forms that with AlexNet-based V (PTAVAlexNet) on all three
benchmarks. However, owing to heavier computational burden,
the efficiency of PTAVVGGNet is slightly decreased, but still
competitive to that of PTAVAlexNet, showing the flexibility of
our framework.

3) Fixed template v.s. dynamic template set: To adapt V
to target appearance variation, we propose the dynamic tem-
plate set for adaptive verification, which can take advantages of
confident tracking results to improve validation quality, leading
to reduction of verifications and detections for efficiency. Table
VII shows the results of PTAV using dynamic template set
versus using a fixed template. From Table VII we observe
that using dynamic template set for verification improves
PTAV for different trackers in both accuracy and efficiency.
In specific, when using the Staple as base tracker, DPRs on
three benchmarks are improved from 85.6%, 76.3% and 72.6%
to 86.2%, 77.2% and 73.2%, respectively. For fDSST as the
base tracker, the DPRs are improved from 84.9%, 74.1%,

4For the verifier with AlexNet [5], one just needs to replace and initialize
the five convolutional blocks in Figure 4 with AlexNet.

TABLE IX
COMPARISONS OF TRACKING SPEED (FPS) ON THREE BENCHMARKS.

OTB2015 [26] TC128 [30] UAV20L [31] VOT2016 [32]

Single thread 15 14 17 15
Two threads 27 23 30 25

and 62.4% to 85.2%, 75.2%, and 63.1%, respectively. For
tracker with KCF, the DPRs are improved from 73.5%, 62.8%,
and 40.8% to 74.2%, 63.9%, and 41.6%, respectively. The
consistent performance gains demonstrate the effectiveness of
the proposed dynamic templates for verification. In addition,
the speeds of PTAV are also consistently boosted owing to the
higher validation quality, as shown in Table VII.

4) Different verification interval Nint: In PTAV, different
verification interval Nint may affect both the accuracy and
efficiency. A smaller Nint implies that more frequent verifica-
tion operations are performed during tracking, which results in
more computation and thus degrades the efficiency of system,
as evidenced by the lower speed (25 fps) of Nint = 5 compared
to that (27 fps) of Nint = 10 in Table VIII. Besides, the deep
feature based verifier in our framework is fixed during tracking
for the sake of efficiency. As a consequence, the discriminative
power of verifier is limited compared with existing online fine-
tuned deep trackers (e.g., [8]). Thus, using a smaller Nint in
PTAV does not guarantee large improvement in accuracy. As
shown in Table VIII, the DRP is only increased by 0.1% from
86.2% to 86.3% when changing Nint from 10 to 5. A larger
Nint, on the contrary, may save some computation but may put

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING 12

PTAV at the risk when the target appearance changes quickly.
If the T loses the target, it may update vast backgrounds in
its appearance model until next verification. Even if the V
re-locates the target and offers a correct detection result, the
tracker may still lose it due to heavy changes in the target
appearance model. From Table VIII, we observe that when
increasing Nint from 10 to 15, the speed is slightly improved
from 27 fps to 30 fps. Nevertheless, the DPR is significantly
decreased by 1.6% from 86.2% to 84.6%. Taking into account
both accuracy and speed, we set Nint to 10 in our experiments.

5) Two threads v.s. one: In PTAV, the tracker T does
not rely on the verifier V most of the time, and two separate
threads process tracking and verifying in parallel for efficiency.
Consequently, T does not have to wait for the feedback from
V to process next frame, and it traces back and resumes
tracking only when receiving a correction feedback from V .
Owing to storing intermediate results, T is able to quickly
trace back without much extra computation. Table IX shows
the comparison of speed between using two threads and using
only a single thread. It shows that using two threads in parallel
clearly improves the efficiency of the whole system. It is worth
noting that the only difference of PTAV using one single
thread and two parallel threads is the efficiency. In term of
tracking accuracy, these two different implementations achieve
the same performance. For PTAV with one single thread, the
DPRs on OTB-2015 [26], TC-128 [30] and UAV20L [31] are
86.2%, 77.2% and 73.2% respectively, which are the same as
PTAV with two threads.

F. A Special Design of PTAV

The main contribution of our work is the proposal of a
novel tracking framework, PTAV, which aims at facilitating
tracking in practical applications. PTAV is flexible and each
component of it can be designed based on specific objective.
For instance, in order to improve the ability of PTAV in dealing
with occlusion, we develop a more accurate verifier in PTAV
by incorporating attention mechanism into V , which is able
to automatically assign more importance to the visible parts
of target for accurate validation when occlusion happens. In
specific, the attention model is applied after each RoI pooling
layer. Let f ∈ Rm×n×c denote the feature after the RoI pooling
layer. The attention model consists of convolution and softmax
operations. In detail, the RoI pooled feature f is fed to two
consecutive convolution layers with kernel sizes 3 × 3 and
1 × 1 to obtain fmap ∈ Rm×n×1. Afterwards, we perform
softmax operation on spatial locations of fmap, and obtain the
spatial attentional map m ∈ Rm×n. The attentional feature fatt
is derived by multiplying each channel of f with m. These
attentional features are then normalized and fed to the loss
layer as in Eq. (2) to learn an attentional verifier.

We evaluate this PTAV with the specially designed ver-
ifier for handling occlusion (referred to as PTAVocc) on
OTB2015 [26]. Table X shows comparisons between PTAV
and PTAVocc in terms of the overall performance on OTB2015
and evaluation results on 49 sequences with occlusions. From
Table X, we observe that the specially designed attention
model effectively improves the performance of the system in

TABLE X
COMPARISON OF PTAV AND ITS VARIANT PTAVocc ON DPR (%).

Dataset PTAV PTAVocc

OTB2015 [26] 86.2 86.8
OTB2015-Occlusion [26] 81.4 82.6

dealing with occlusion. In detail, PTAVocc improves the DPRs
on OTB2015 and its occlusion subset from 86.2% to 86.8%
and from 81.4% to 82.6%. Such improvements with simple
modification exhibit the flexibility and practicability of our
framework.

G. Failure Cases

With the collaboration between T and V , PTAV usually
performs well in various challenging situations; however, there
exist scenarios in which PTAV may fail. As shown in Figure
13(a) on Jump, though V can detect unreliable tracking results
of T , it does not provide correct feedbacks for subsequent
tracking due to heavy deformation. On Matrix shown in
Figure 13(b), the target undergoes severe illumination vari-
ation, occlusion, rotation and background cluttering, causing
difficulties for T to localize the target. Even though V corrects
T when validating unreliable tracking results, T still drifts to
background quickly. In certain cases where the target suffers
form heavy appearance changes, V cannot provide effective
feedbacks to T , resulting in irrecoverable drift and failures.

(a) Video Jump (b) Video Matrix

PTAV Groundtruth

Fig. 13. Failure cases of Jump and Matrix for PTAV on OTB2015 [26].

H. Discussion about the PTAV Architecture

PTAV provides a flexible framework to integrate a tacker
and a verifier for real-time tracking with high accuracy. It is
necessary to analyze the architecture of PTAV for accuracy
and efficiency.
Accuracy. PTAV improves tracking accuracy by combining a
tracker with a verifier using two parallel threads. In order to
demonstrate the effectiveness of this design in term of accu-
racy, we compare three trackers on OTB2015 [26] including
the baseline Staple [20], PTAV implemented on a single thread
(referred to as PTAVst) and the proposed PTAV. In detail,
PTAVst achieves the DPR of 86.2%. Compared to the baseline
Staple with DPR of 78.4%, PTAVst obtains 7.8% improvement
in DPR, demonstrating a clear benefit of integrating a tracker
with a verifier for tracking. Besides, PTAV also achieves the
same performance as PTAVst with DPR of 86.2%, showing
no accuracy sacrifice in parallelizing tracker and verifier on
two threads.
Efficiency. PTAV improves the system efficiency by split-
ting tracking and verifying on two parallel threads. Due to

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING 13

the uncertainty in different video sequences, it is difficult
to quantitatively analyze the efficiency of PTAVst with one
thread and PTAV with two threads. Therefore, we conduct
a qualitative analysis on the speed. For PTAVst, its speed
is jointly determined by the tracker and the verifier. In our
implementation, the tracker and verifier run at 43 fps and 6
fps, respectively. When combining them on one single thread,
the upper limit for the system speed with verification interval
10 is 1/(1/43+1/60) ≈ 25 fps. However, because the verifier
needs perform object detection, the speed of PTAVst is 15 fps.
By contrast, the speed of the proposed PTAV is determined
by the relatively slow component of tracker and verifier. In
our solution, the upper limit for speed can be 43 fps as fast
as the tracker. Nevertheless, due to the interactions between
verifier and tracker such as object detection and tracing back,
the speed of the system is lower than the upper limit. Since the
verification results for most time are positive (i.e., larger than
the threshold τ0), the detections are occasionally performed.
As a result, the whole system still runs in real-time.

V. CONCLUSION

In this paper, we propose a new visual tracking framework,
parallel tracking and verifying (PTAV), which decomposes
object tracking into two sub-tasks, fast tracking and reliable
verifying. We show that, by carefully distributing the two
tasks into two parallel threads and allowing them to work
together, PTAV can achieve the best known tracking accuracy
among all real-time tracking algorithms. Furthermore, to adapt
the verifier to object appearance variations, we propose using
dynamic target templates for adaptive verification, resulting
in further improvements in both accuracy and efficiency. The
encouraging results are demonstrated in extensive experiments
on four popular benchmarks. Moreover, PTAV is a flexible
framework with great rooms for improvement and generaliza-
tion, and thus is expected to inspire the designing of more
efficient tracking algorithms in the future.

We summarize the potential directions to improve PTAV and
shed light on our future work. First, the performance of PTAV
heavily depends on the fast tracking part. In this work, we only
apply one base tracker based on correlation filter for target
localization, which may be sensitive to large deformation and
rotation (see Figure 13). To improve PTAV, a better way for
the tracking part in our future work is to simultaneously use
multiple efficient trackers for target localization, and each of
them is capable of dealing with different challenges. With
multi-thread technology, these trackers can be implemented in
parallel to save computation. Second, we adopt a simple clus-
tering method to update the target templates for verification.
Although this strategy shows advantages in comparison to our
previous work [33], we do not have principled interpretations
and explanations. Our future work will emphasize directly
learning an adaptive deep verifier to avoid manually designing
empirical update strategy. Third, the verification interval is
fixed and may not be optimal for all sequences. For instance,
for videos without drastic appearance changes, the verification
interval should be a relatively larger number to maintain the
efficiency of the whole system. By contrast, for sequences with

heavy appearance variations, the verification interval should be
a small to guarantee the accuracy. Therefore, it is of great
interest to develop a learning-based solution to estimate a
suitable verification interval.

REFERENCES

[1] A. W. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara, A. Dehghan,
and M. Shah, “Visual tracking: An experimental survey,” TPAMI, vol. 36,
no. 7, pp. 1442–1468, 2014.

[2] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,” ACM
Computing Surveys, vol. 38, no. 4, p. 13, 2006.

[3] X. Li, W. Hu, C. Shen, Z. Zhang, A. Dick, and A. V. D. Hengel, “A
survey of appearance models in visual object tracking,” ACM TIST,
vol. 4, no. 4, pp. 1–58, 2013.

[4] M. Kristan, J. Matas, A. Leonardis, T. Vojı́vr, R. Pflugfelder, G. Fer-
nandez, G. Nebehay, F. Porikli, and L. vCehovin, “A novel performance
evaluation methodology for single-target trackers,” TPAMI, vol. 38,
no. 11, pp. 2137–2155, 2016.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012.

[6] C. Ma, J.-B. Huang, X. Yang, and M.-H. Yang, “Hierarchical convolu-
tional features for visual tracking,” in ICCV, 2015.

[7] Y. Qi, S. Zhang, L. Qin, H. Yao, Q. Huang, J. Lim, and M.-H. Yang,
“Hedged deep tracking,” in CVPR, 2016.

[8] H. Nam and B. Han, “Learning multi-domain convolutional neural
networks for visual tracking,” in CVPR, 2016.

[9] L. Wang, W. Ouyang, X. Wang, and H. Lu, “Stct: Sequentially training
convolutional networks for visual tracking,” in CVPR, 2016.

[10] N. Wang and D.-Y. Yeung, “Learning a deep compact image represen-
tation for visual tracking,” in NIPS, 2013.

[11] H. Fan and H. Ling, “Sanet: Structure-aware network for visual track-
ing,” in CVPR Workshop, 2017.

[12] M. Danelljan, A. Robinson, F. S. Khan, and M. Felsberg, “Beyond
correlation filters: Learning continuous convolution operators for visual
tracking,” in ECCV, 2016.

[13] R. Tao, E. Gavves, and A. W. Smeulders, “Siamese instance search for
tracking,” in CVPR, 2016.

[14] L. Wang, W. Ouyang, X. Wang, and H. Lu, “Visual tracking with fully
convolutional networks,” in ICCV, 2015.

[15] S. Hong, T. You, S. Kwak, and B. Han, “Online tracking by learning
discriminative saliency map with convolutional neural network,” in
ICML, 2015.

[16] H. Fan and H. Ling, “Siamese cascaded region proposal networks for
real-time visual tracking,” in CVPR, 2019.

[17] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed
tracking with kernelized correlation filters,” TPAMI, vol. 37, no. 3, pp.
583–596, 2015.

[18] M. Danelljan, G. Häger, F. S. Khan, and M. Felsberg, “Discriminative
scale space tracking,” TPAMI, vol. 39, no. 8, pp. 1561–1575, 2017.

[19] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, “Visual
object tracking using adaptive correlation filters,” in CVPR, 2010.

[20] L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik, and P. H. Torr,
“Staple: Complementary learners for real-time tracking,” in CVPR, 2016.

[21] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “Exploiting
the circulant structure of tracking-by-detection with kernels,” in ECCV,
2012.

[22] M. Danelljan, F. Shahbaz Khan, M. Felsberg, and J. Van de Weijer,
“Adaptive color attributes for real-time visual tracking,” in CVPR, 2014.

[23] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in CVPR, 2005.

[24] J. Van De Weijer, C. Schmid, J. Verbeek, and D. Larlus, “Learning color
names for real-world applications,” TIP, vol. 18, no. 7, pp. 1512–1523,
2009.

[25] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, and P. H. Torr,
“Fully-convolutional siamese networks for object tracking,” in ECCV
Workshop, 2016.

[26] Y. Wu, J. Lim, and M.-H. Yang, “Object tracking benchmark,” TPAMI,
vol. 37, no. 9, pp. 1834–1848, 2015.

[27] G. Klein and D. Murray, “Parallel tracking and mapping for small ar
workspaces,” in ISMAR, 2007.

[28] R. Mur-Artal, J. M. M. Montiel, and J. D. Tardos, “ORB-SLAM: a
versatile and accurate monocular slam system,” IEEE Transactions on
Robotics, vol. 31, no. 5, pp. 1147–1163, 2015.

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING 14

[29] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric
discriminatively, with application to face verification,” in CVPR, 2005.

[30] P. Liang, E. Blasch, and H. Ling, “Encoding color information for visual
tracking: Algorithms and benchmark,” TIP, vol. 24, no. 12, pp. 5630–
5644, 2015.

[31] M. Mueller, N. Smith, and B. Ghanem, “A benchmark and simulator for
uav tracking,” in ECCV, 2016.

[32] M. Kristan and et al, “The visual object tracking vot2016 challenge
results,” in ECCV Workshop, 2016.

[33] H. Fan and H. Ling, “Parallel tracking and verifying: A framework for
real-time and high accuracy visual tracking,” in ICCV, 2017.

[34] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in ICLR, 2014.

[35] B. Babenko, M.-H. Yang, and S. Belongie, “Robust object tracking with
online multiple instance learning,” TPAMI, vol. 33, no. 8, pp. 1619–1632,
2011.

[36] K. Zhang, L. Zhang, and M.-H. Yang, “Real-time compressive tracking,”
in ECCV, 2012.

[37] H. Grabner, C. Leistner, and H. Bischof, “Semi-supervised on-line
boosting for robust tracking,” in ECCV, 2008.

[38] S. Hare, S. Golodetz, A. Saffari, V. Vineet, M.-M. Cheng, S. L. Hicks,
and P. H. Torr, “Struck: Structured output tracking with kernels,” TPAMI,
vol. 38, no. 10, pp. 2096–2109, 2016.

[39] D. A. Ross, J. Lim, R.-S. Lin, and M.-H. Yang, “Incremental learning
for robust visual tracking,” IJCV, vol. 77, no. 1-3, pp. 125–141, 2008.

[40] J. Kwon and K. M. Lee, “Visual tracking decomposition,” in CVPR,
2010.

[41] X. Mei and H. Ling, “Robust visual tracking using `1 minimization,”
in ICCV, 2009.

[42] C. Bao, Y. Wu, H. Ling, and H. Ji, “Real time robust l1 tracker using
accelerated proximal gradient approach,” in CVPR, 2012.

[43] T. Zhang, S. Liu, C. Xu, S. Yan, B. Ghanem, N. Ahuja, and M.-H. Yang,
“Structural sparse tracking,” in CVPR, 2015.

[44] H. Fan and J. Xiang, “Robust visual tracking with multitask joint
dictionary learning,” TCSVT, vol. 27, no. 5, pp. 1018–1030, 2017.

[45] Y. Li and J. Zhu, “A scale adaptive kernel correlation filter tracker with
feature integration,” in ECCV Workshop, 2014.

[46] J. Valmadre, L. Bertinetto, J. F. Henriques, A. Vedaldi, and P. H. Torr,
“End-to-end representation learning for correlation filter based tracking,”
in CVPR, 2017.

[47] T. Liu, G. Wang, and Q. Yang, “Real-time part-based visual tracking
via adaptive correlation filters,” in CVPR, 2015.

[48] H. Fan and J. Xiang, “Robust visual tracking via local-global correlation
filter,” in AAAI, 2017.

[49] C. Ma, X. Yang, C. Zhang, and M.-H. Yang, “Long-term correlation
tracking,” in CVPR, 2015.

[50] M. Danelljan, G. Hager, F. Shahbaz Khan, and M. Felsberg, “Learning
spatially regularized correlation filters for visual tracking,” in ICCV,
2015.

[51] Z. Kalal, K. Mikolajczyk, and J. Matas, “Tracking-learning-detection,”
TPAMI, vol. 34, no. 7, pp. 1409–1422, 2012.

[52] Y. Hua, K. Alahari, and C. Schmid, “Occlusion and motion reasoning
for long-term tracking,” in ECCV, 2014.

[53] J. H. Yoon, D. Y. Kim, and K.-J. Yoon, “Visual tracking via adaptive
tracker selection with multiple features,” in ECCV, 2012.

[54] N. Wang and D.-Y. Yeung, “Ensemble-based tracking: Aggregating
crowdsourced structured time series data,” in ICML, 2014.

[55] J. Zhang, S. Ma, and S. Sclaroff, “Meem: robust tracking via multiple
experts using entropy minimization,” in ECCV, 2014.

[56] J. Santner, C. Leistner, A. Saffari, T. Pock, and H. Bischof, “Prost:
Parallel robust online simple tracking,” in CVPR, 2010.

[57] Z. Hong, Z. Chen, C. Wang, X. Mei, D. Prokhorov, and D. Tao, “Multi-
store tracker (MUSTER): A cognitive psychology inspired approach to
object tracking,” in CVPR, 2015.

[58] R. Girshick, “Fast R-CNN,” in ICCV, 2015.
[59] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman,

and A. Y. Wu, “An efficient k-means clustering algorithm: Analysis and
implementation,” TPAMI, vol. 24, no. 7, pp. 881–892, 2002.

[60] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick,
S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for
fast feature embedding,” in ACM MM, 2014.

[61] J. Choi, H. Jin Chang, J. Jeong, Y. Demiris, and J. Young Choi, “Visual
tracking using attention-modulated disintegration and integration,” in
CVPR, 2016.

[62] M. Danelljan, G. Hager, F. Shahbaz Khan, and M. Felsberg, “Convo-
lutional features for correlation filter based visual tracking,” in ICCV
Workshops, 2015.

[63] H. Nam, M. Baek, and B. Han, “Modeling and propagating cnns in a
tree structure for visual tracking,” arXiv, 2016.

[64] G. Zhu, F. Porikli, and H. Li, “Beyond local search: Tracking objects
everywhere with instance-specific proposals,” in CVPR, 2016.

[65] Z. Chi, H. Li, H. Lu, and M.-H. Yang, “Dual deep network for visual
tracking,” TIP, vol. 26, no. 4, pp. 2005–2015, 2017.

Heng Fan received his B.E. degree in College of
Science, Huazhong Agricultural University (HZAU),
Wuhan, China, in 2013. He is currently a Ph.D. stu-
dent in the Department of Computer and Information
Science, Temple University, Philadelphia, USA. His
research interests include computer vision, pattern
recognition and machine learning.

Haibin Ling received the BS and MS degrees
from Peking University, China, in 1997 and 2000,
respectively, and the PhD degree from the University
of Maryland College Park in 2006. From 2000 to
2001, he was an assistant researcher at Microsoft
Research Asia. From 2006 to 2007, he worked as a
postdoctoral scientist at the University of California
Los Angeles. After that, he joined Siemens Corpo-
rate Research as a research scientist. Since fall 2008,
he has been with Temple University where he is now
an Associate Professor. He received the Best Student

Paper Award at the ACM UIST in 2003, and the NSF CAREER Award in
2014. He serves as associate editors for IEEE Trans. on Pattern Analysis and
Machine Intelligence, Pattern Recognition, and Computer Vision and Image
Understanding, and has served or will serve as area chairs for CVPR 2014,
CVPR 2016 and CVPR 2019.

