
Shape Guided Contour Fragment Grouping with Particle Filters

ChengEn Lu
Huazhong University of Sci. and Tech.

Wuhan, 430074, China
luchengen@gmail.com

Longin Jan Latecki
Temple University

Philadelphia, 19122, USA
latecki@temple.edu

Nagesh Adluru
University of Wisconsin-Madison

Madison, 53705, USA
adluru@wisc.edu

Haibin Ling
Temple University

Philadelphia, 19122, USA
hbling@temple.edu

Xingwei Yang
Temple University

Philadelphia, 19122, USA
xingwei@temple.edu

Abstract

We propose a novel framework for contour based object
detection and recognition, which we formulate as a joint
contour fragment grouping and labeling problem. For a
given set of contours of model shapes, we simultaneously
perform selection of relevant contour fragments in edge im-
ages, grouping of the selected contour fragments, and their
matching to the model contours. The inference in all these
steps is performed using particle filters (PF) but with static
observations. Our approach needs one example shape per
class as training data. The PF framework combined with
decomposition of model contour fragments to part bundles
allows us to implement an intuitive search strategy for the
target contour in a clutter of edge fragments. First a rough
sketch of the model shape is identified, followed by fine tun-
ing of shape details. We show that this framework yields
not only accurate object detections but also localizationsin
real cluttered images.

1. Introduction

The key role of contours and their shapes in object ex-
traction and recognition in images is well established in
computer vision and in visual perception. Extracting edges
in digital images is relatively well-understood and there are
robust detectors like [20, 11]. However, it is often diffi-
cult to distinguish edge pixels corresponding to meaning-
ful object contours. The main problem is that usually most
edge pixels represent backgroundand irrelevant texture, i.e.,
clutter, and only a small subset of edge pixels corresponds
to object contours. Further, the edge pixels do not simply
form occluding contours but broken contour fragments due
to noise and occlusion. Thus, the target occluding contour

may have large gaps in local edge detection, which renders
any (bottom-up) local search for occluding contours in clut-
tered images unsuccessful. The occluding contours cannot
be simply extracted by template matching, since the shape
of objects in images varies significantly due to view point
change, non rigid deformation, and occlusion. Clutter com-
bined with contour gaps makes contour grouping a very dif-
ficult task that requires global (top-down) information. A
further difficulty stems from the fact that contours of target
objects form only a small portion of edge pixels, which is
often less than two or three percent. Thus, we deal with an
unusually high noise to signal ratio. We show a few exam-
ple edge images illustrating these problems in Fig.1. In-
terestingly, human visual system still can perform contour
grouping, object detection, and recognition, even though
only cluttered contour information is provided (there is no
texture and color in these images). Humans can easily per-
form all these tasks although important contour information
is missing, and we may not be able to complete the missing
contour parts, e.g., we can recognize a giraffe, but we may
not be able to draw or imagine the missing outline of the gi-
raffe’s head. Thus, humans can perform contour grouping,
object detection, and recognition while keeping at least part
of missing information ambiguous, and we do not attempt
to disambiguate all missing information.

Figure 1. Parts of the objects are missing both due to missingedges
and due to broken edge links.

As illustrated in Fig.1 shape information alone is often
sufficient for boundary detection. Since shape information
is invariant to color, texture, and brightness, we can sig-
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nificantly reduce the number of training examples needed
for object recognition. In fact, in the proposed approach
we only use a small number of hand drawn occluding con-
tours as our shape models. Given an input image, e.g., Fig.
2(a), we perform edge detection (b), and group edge pix-
els to edge fragments in a simple bottom-up process (c).
We detect a global geometric configuration of edge frag-
ments that is most similar to a given shape model by si-
multaneously performing top-down selection of foreground
edge fragments and shape matching process. Since our tar-
get function is highly discontinuous, and exhaustive brute
force search of all possible global configurations of edge
fragments has a prohibitive complexity, we employ a par-
ticle filter (PF) framework to drive the top-down compu-
tation. We extend the standard PF framework to address
the following two issues that are specific to our task: (1)
Since all edge fragments in a given image are available, we
have a case of PF with static observations. (2) In our ap-
proach particles perform ”tracking” in the space of pairs of
model contour fragments and edge fragments in the image.
Thus, in our application time corresponds to the number of
pairs in this space, which also corresponds to the number
of grouped edge fragments in the image. Fig.2(d) shows a
detected and recognized swan. It is composed of four edge
fragments, which means that our PF algorithm required four
steps. The model swan used is shown in the top left corner.
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Figure 2. (b) show the edge map of image (a). (c) The 48 edge
segments obtained by simple edge linking form our label setE =
{e1, e2, . . . e48}. (d) The grouping result obtained by the proposed
PF approach. The colors indicate the assignment to the model
segments shown in top left.

The main problem in recognizing objects of interest us-
ing edge fragments obtained from cluttered images seems
to be the fact that a sufficient number of contour fragments
needs to be assembled in order to make any useful detection
decision. For example, any two contour fragments of the
detected swam in Fig.2(d) are not sufficiently discrimina-

tive. To address this problem a ”delayed decision” strategy
is necessary, and PF provides a statistically sound approach
to achieve delayed decision. Moreover, PF allows us to re-
alize an intuitive idea of first assembling a rough sketch of
the target contour from edge fragments, and then refining
this sketch by adding further edge fragments if the shape
similarity to the target contour can be improved.

The rest of the paper is organized as follows. After
briefly reviewing related work in§2, we present the core
theory of our system in§3. Our flexible part bundle shape
model is described in§4. It constrains the proposal distribu-
tion of PF to first follow a rough sketch of the target contour.
We describe our new shape descriptor in§5. Its flexibility
makes it very suitable for contour fragment grouping. Fi-
nally, §6 presents our experimental results.

2. Related Work

Grouping edge pixels into contours using various
saliency measures and cues has been studied for long and
is still an active research field [33, 31, 27, 16, 26]. Once
contours are identified they can be further grouped into ob-
jects by performing shape matching with model contours.
For example, Shottonet al. [25] and Opeltet al. [22] use
Chamfer distance [2] to match fragments of contours learnt
from training images to edge images. McNeil and Vijayaku-
mar [21] represent parts learnt from semi-supervised train-
ing as point-sets and establishes probabilistic point corre-
spondences for the points in edge images. Ferrariet al. [7]
use a network of nearly straight contour fragments and slid-
ing window search. Thayananthanet al. [28] modify shape
context [1] to incorporate edge orientations and Viterbi op-
timization for better matching in clutter. Flezenswalb and
Schwartz [6] presents a shape-tree based elastic match-
ing among two shapes and extended it to match a model
and cluttered image by identifying contour parts (smooth
curves) using [5]. More recently, Zhuet al. [34] formu-
late the shape matching of contours (identified using [33])
in clutter as a set-set matching problem. They present an
approximate solution to the hard combinatorial problem by
using a voting scheme ([32, 18]) and a relaxed context se-
lection scheme by algebraically encoding shape context into
linear programming. Besides, Ravishankaret al. [23] in-
troduced a multi-stage contour based detection approach.
They decompose the model shapes into segments at high
curvature points. The segments are then scaled, rotated, de-
formed and matched independently in the gradient image.
Dynamic programming is used to group the matched seg-
ments in a multi-stage process that begins with triples of
segments as opposed to pairs of segments used in [7]. An
appearance based approach was recently used by Maji and
Malik [19] by integrating hough transform based features
of codebooks into kernel classifiers. Aside from the recent
work mentioned above, there are many early studies that



use geometric constraints for model-based object and shape
matching [15, 13, 14].

3. Particle Filter with Static Observations

Let S = {s1, . . . , sm} be a set of model contour parts
(or segments), w hich are called sites in the Markov Ran-
dom Field (MRF) terminology. LetE = {e1, . . . , en} be a
set of edge fragments in a given imageI, which are called
labels in the MRF terminology. Edge fragments are gen-
erated using edge-linking software [17], then we introduce
break points at high curvature points in order to allow for
more flexible shape matching. LetES be a set of all func-
tions f : S → E, which represent label assignments to
the sides. Our goal is to find a functionf with maximum
posterior probability for a pdfp : ES → R+:

f̂ = argmax
f∈ES

p(f | Z), (1)

whereR+ denotes the nonnegative real numbers andZ is
the set of the observations. It is a very important property
of our framework that the set of observationsZ is static. It
is determined by the appearance of a target object (or a set
of target objects). Our primary appearance feature is shape
of the contour of the target object (or target objects). It is
measured by shape similarity of extracted and grouped edge
fragments to the target contour. The appearance features
of target objects (which we also call model objects) can be
manually defined, e.g., by drawing the contour of the query
shape, or learned from training examples.

We propose to perform the optimization in Eq.1 in
the particle filter (PF) framework. This is possible, since
each functionf ∈ XS is a finite set of pairs, i.e.,f =
{x1, . . . , xm}, wherexk ∈ S × E. Obviously the order
of thex’s does not matter, i.e., each permutation ofx’s in
the setf = {x1, . . . , xm} defines the same functionf .
A key observation for the proposed approach is that a se-
quence(x1, . . . , xm) maximizingp clearly determines the
setf = {x1, . . . , xm} that maximizesp1. Thus, we solve a
more specific problem of finding a sequence. The sequence
order is important in the proposed PF inference process,
which is described below. Following a common notation in
the PF framework, we denote a sequence(x1, . . . , xm) as
x1:m. We can now restate our goal (1) as finding a sequence
with maximum posterior probability:

x̂1:m = argmax
x1:m∈(S×E)m

p(x1:m | Z). (2)

Obviously, as stated above, a solutionx̂1:m = (x̂1, . . . , x̂m)
of Eq.2, which is a sequence, defines a solution of Eq.1 as
f̂ = {x̂1, . . . , x̂m}, which is a set.

1The issue of initializing the sequence is discussed later inthe section.

We will approximatep(x1:m | Z) in Eq.2 in the frame-
work of Bayesian Importance Sampling. By drawing sam-
plesx(i)

1:m for i = 1, . . . , N from an easier to sample pro-
posal distributionπ we obtain:

p̂(x1:m | Z) =

N∑

i=1

w(x
(i)
1:m) δ(x1:m − x

(i)
1:m), (3)

whereδ is the Dirac delta function and

w(x
(i)
1:m) =

p(x
(i)
1:m | Z)

π(x
(i)
1:m | Z)

(4)

are normalized weights. The weightsw(x
(i)
1:m) account for

the fact that the proposal distributionπ in general is not
equal to the true distribution of successor states.

However, due to the high dimensionality of(S ×E)m it
is still hard to sample fromπ. Therefore, we will derive a
recursive estimation of the weights and recursive sampling
of the sequence elements one by one fromS × E. The re-
cursive estimate of the importance weights will be obtained
by factorizing the distributionsp andπ and by modeling the
evolution of the hidden statesxk ∈ S × E in discrete time
steps. We do not have any natural time parameter in our
approach, but discrete steps of expanding the sequence of
hidden states by one new state can be interpreted as discrete
time steps. Our derivation is similar to the PF derivation,
but it differs fundamentally, since unlike the standard PF
framework, the observationsZ do not arrive sequentially,
but are available at once. For everyt from 1 tom, we have

w(x
(i)
1:t) =

p(x
(i)
1:t | Z)

π(x
(i)
1:t | Z)

=
p(xt|x

(i)
1:t−1, Z) p(x

(i)
1:t−1|Z)

π(xt|x
(i)
1:t−1, Z) π(x

(i)
1:t−1|Z)

=
p(xt|x

(i)
1:t−1, Z)

π(xt|x
(i)
1:t−1, Z)

w(x
(i)
1:t−1)

=
p(Z|x

(i)
1:t−1, xt)p(xt|x

(i)
1:t−1)

p(Z|x
(i)
1:t−1)π(xt|x

(i)
1:t−1, Z)

w(x
(i)
1:t−1) (5)

To obtain the last equation, we apply Bayes rule to decom-
posep(xt|x

(i)
1:t−1, Z) that interchangesxt andZ.

As it is often the case in PF applications, we assume that
π(xt|x

(i)
1:t−1, Z) = p(xt|x

(i)
1:t−1). Using this simple explo-

ration based proposal the weight recursion in (5) becomes:

w(x
(i)
1:t) = w(x

(i)
1:t−1)

p(Z|x
(i)
1:t−1, xt)

�
�

�
�

��

p(xt|x
(i)
1:t−1)

p(Z|x
(i)
1:t−1)�

�
�

�
��

p(xt|x
(i)
1:t−1)

= w(x
(i)
1:t−1)

p(Z|x
(i)
1:t−1, xt)

p(Z|x
(i)
1:t−1)

(6)



By recursive substitution of weights in (6), i.e., by applying
(6) tow(x

(i)
1:t−1), w(x

(i)
1:t−2), . . . , w(x

(i)
1:2), we obtain

w(x
(i)
1:t) = w(x

(i)
1:t−2)

�
�

�
�

��

p(Z|x
(i)
1:t−1)

p(Z|x
(i)
1:t−2)

p(Z|x
(i)
1:t−1, xt)

�
�

�
�

��

p(Z|x
(i)
1:t−1)

= w(x
(i)
1 )

p(Z|x
(i)
1:t−1, xt)

p(Z|x
(i)
1 )

(7)

Finally, under the assumption that all particles have the
same initial weightw(x

(i)
1 ) and the same initial observation

probabilityp(Z|x(i)
1 ) for i = 1, . . . , N , we obtain

w(x
(i)
1:t) = p(Z|x

(i)
1:t−1, xt) (8)

The weight in (8) represents particle evaluation with re-
spect to shape and other appearance features of the model
described in the observation setZ. The intuitive explana-
tion is that a new correspondencext added to the sequence
of correspondencesx(i)

1:t−1 should increase the similarity of
the selected edge fragments in the image to the model ob-
ject. Thus, the new weight is more informative if evaluated
using the extended set of correspondencesx

(i)
1:t, and the old

weightw(x
(i)
1:t−1) is not needed for the evaluation. For com-

parison, the corresponding weight update in the standard PF
framework ([29]) is

w(x
(i)
1:t) = w(x

(i)
1:t−1) p(zt|x

(i)
1:t−1, xt), (9)

wherezt denotes the new observations obtained at timet.
Because our observationsZ do not have any natural order,
Z cannot be expressed as a sequence of observations. We do
not make any Markov assumption in the proposed formula
(8), i.e., the new statext is dependent on all previous states
x

(i)
1:t−1 for each particle(i).

Since the proposed PF framework performs sequential
filtering, there are two important issues that need to be ad-
dressed: setting the initial correspondencesx

(i)
1 for each

particle i = 1, . . . , N (Section3.1) and the number of
particles, which will be determined experimentally. We
only mention here that the proposed approach is in some
sense robust to the initial correspondences, since it does
not matter with which correspondence we start as long as
we start at some element of the optimal set of correspon-
denceŝx1:m = (x̂1, . . . , x̂m). Practically, we start at most
promising correspondences, which are determined by sam-
pling form a distribution determined by shape similarity be-
tween model contour segments and image edge fragments.

The optimization of Eq.2 is computed in a framework of
Sequential Importance Resampling (SIR). We outline now
our PF algorithm, which in each iteration, i.e., at every time
stept, and for each particlei = 1, . . . , N executes the 3
steps:

1) Importance sampling / proposal: Samplex(i)
t ∼

π(xt|x
(i)
1:t−1, Z) and setx(i)

1:t = (x
(i)
1:t−1, x

(i)
t ).

2) Importance weighting/evaluation: An individual im-
portance weight is assigned to each particle according to
Eq.8.
3) Resampling: At the sampling stage we sample a lot
more followers than the number of particles which is re-
ferred to as prior boosting [12, 4] so as to capture multi-
modal likelihood regions. Thus we have a larger set of par-
ticles{x(i)

1:t}
M
i=1 whereM > N from which we sub-sample

N particles and assign the qual weights to all of them as
in the standard SIR approach. While SIR requires a justi-
fication that it still computes (4) due to the presence of the
old weights in (9), which are reset to be be equal to1/N
after resampling in SIR, this fact is obvious in the proposed
approach, since the old weights are not present in (8).

In order to be able to execute the proposed algorithm, we
need to define the proposal distributionπ(xt|x

(i)
1:t−1, Z) =

p(xt|x
(i)
1:t−1) and the posterior distributionp(Z|x(i)

1:t). We
describe their constructions below.

3.1. Proposal Distribution

We use shape similarity to define the initial proposal dis-
tribution. In order to achieve scale invariance, each model
segmentssk and edge fragmentsej in the image is sampled
with the same number of points, e.g., 20 points. We use
a novel shape descriptor described in Section5 to define
shape similarityψ : S × E → R+. By normalizingψ we
obtain the initial proposal distributionπ(x1|Z). An exam-
ple is shown in Fig.3(right). By sampling (with repetition)
from this distribution, we obtain the initial set of particles
x

(i)
1 ∼ π(x1|Z) for i = 1, . . . , N .
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Figure 3. Matrix of similarities between 8 model contour seg-
ments left and 16 edge fragments middle. It represents the initial
proposal distributionπ(x1|Z).

We now describe the proposal distribution for the con-
secutive integrations of our PF, i.e.,π(xt|x

(i)
1:t−1, Z) =

p(xt|x
(i)
1:t−1). Many object detection methods reported in

the literature, e.g., [25], utilize the object centroid as the
localization constraint of various object parts. They ex-
plore the fact that object parts hinge around the centroid,
which significantly reduces object search space when the
set of centroid hypotheses is small. Our proposal distribu-
tion is based on this idea. We use the shape similarityψ
to define the center point functionCP : S × E → I. It



transforms the center point of the model shape to the im-
ageI for a given correspondencex(i)

1 = (sk, ej), for some
k andj and some particle(i). We observe that our model
shape has a unique center point. Every possible correspon-
dence transfers it to a object center hypothesis in the im-
age. The centroid transfer is possible, since we estimate
the scaling factor from the length ratio of fragmentssk, ej .
Thus, each pair(sk, ej) defines a potential center point of
the model shapeM on the imageI. Since each particle
x

(i)
1:t−1 = ((s1, e1), . . . (st−1, et−1)) is a sequence of such

pairs, we can extend the definition of the center point to in-
clude all particles. Thus,CP (x

(i)
1:t−1) denotes the average

center point of the model shapeM on the imageI. Then,
the proposal distributionp(xt|x

(i)
1:t−1) is defined as a dis-

crete distribution over the setS × E, where the probability
of eachxt ∈ S × E is proportional to a Gaussian of the
distance betweenCP (x

(i)
1:t−1) andCP (xt).

Since this proposal distribution is not particularly dis-
criminative in that it is unable to uniquely determine
the right extension of a given sequence of correspond-
ing segments((s1, e1), . . . (st−1, et−1)), due to inaccuracy
of the centroid estimation, we determineK followers for
each particlex(i)

1:t−1 by sampling (with repetition) from

p(xt|x
(i)
1:t−1). Thus, sampling form the proposal distribu-

tion increases the number of particles toM = KN from
N . We recall that in the resampling step, the number of par-
ticles is again reduced toN . In all our experimental results
K = 25 andN = 150.

3.2. Likelihood

We define in this section the likelihoodp(Z|x(i)
1:t), which

is needed for particle evaluation. We recall thatx
(i)
1:t =

((s1, e1), . . . (st, et)), i.e., it is a sequence of pairs of cor-
responding model segments and edge fragments. It is de-
fined by similarity between the shape formed by segments
of model contourM and the shape formed by the edge frag-
ments

p(Z|x
(i)
1:t) ∝ ψ(

t⋃

j=1

sj ,

t⋃

j=1

ej), (10)

whereψ is defined in Section5.
For smallt (t = 1, 2) this posterior is not particularly

discriminative. However, already starting witht = 3 or 4,
the shape of correctly selected edge fragments starts to re-
semble the model contour, and consequently, the descriptive
power ofp(Z|x(i)

1:t) increases significantly.

4. Contour Models with Part Bundles

Given a single model contour that can be hand drawn
or extracted from an example image, we first decompose it

into possibly overlapping model contour parts (or segments)
S = {s1, . . . , sm}; breaking segments at high curvature
points. The segments are then grouped into part bundles.

An example bundle decomposition is shown in Fig.4.
In addition to longer contour segments, we need to select
shorter ones, since contour parts may be missing in edge
images. The main constraint for the bundle design is to en-
sure that a rough shape sketch obtained by selecting one
part form each bundle still resembles the model contour. A
bundle can have fragments representing overlapping parts
thus allowing for redundancy. A cognitive motivation be-
hind our bundle decomposition scheme is that an object can
be recognized even if some parts of it are missing, as can be
observed in Fig.1. There are several reasons why parts of
objects can be missing in real images: missing edge infor-
mation, occlusion, failures in contour grouping. The selec-
tion of parts and their grouping into bundles was designed
manually. We have one model per shape class and select
model parts and grouping them into bundles. However,
when ground truth images with detected contour fragments
were available, automatic learning part bundles is also pos-
sible.

Figure 4. The contour model of the apple and the corresponding
part bundles. The contour is shown in the center. The 11 contour
fragments are decomposed into four part-bundles.

Formally,B = {Bk}m′

k=1, whereBk ⊂ S andm′ ≤ m,
is a part bundle decomposition ofS if and only if

⋃
B = S

andBi

⋂
Bj = ∅ for i, j = 1, ...,m′ andi 6= j.

The part bundles are naturally integrated in our PF
framework in that they constrain the proposal distribution
p(xt|x

(i)
1:t−1) defined in§3.1. Given a particlex(i)

1:t−1 =
((s1, e1), . . . (st−1, et−1)), at stepst = 2, . . . ,m′ − 1 we
constrain the correspondencext = (st, et) to selectst that
belongs to a different part bundle from the part bundles
of s1, . . . , st−1. Thus, we ensure to first have one seg-
ment from each part bundle. Only when this is satisfied for
t = m′, we allow to select multiple segments form the same
bundles. Intuitively this means that we enforce our parti-
cles to first trace a rough shape sketch of the model shape
in the edge image before filling in shape details. We show



an example evolution of particle filter in Fig.5. Matching
edge fragments are numbered with corresponding model
segments shown in Fig.4. Rough sketch (matching model
segments are from different part bundles) is obtained after
iteration 3, shape details are added in iterations 4 and 5.

(a) an image (b) edge fragments (c) pf initialization
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(d) 1st iteration (e) 2nd iteration (f) 3rd iteration (g) 4thiteration (h) 5th iteration

Figure 5. The evolution of particles: (b) shows the edge fragments
of (a); (c) edge fragments that are parts of initial particles are in
color; (d) to (g) shows edge fragments of particles with highest
weights after each iteration. The part bundle model is shownin
Fig. 4. Rough sketch is obtained after iteration 3, shape details are
added in iterations 4 and 5.

5. Shape Descriptor

We introduce a very simple and intuitive shape descrip-
tor. It can be computed for any set of pointsX on the
plane. (In this paper we apply it to compare sets of con-
tour fragments.) Given a pointA ∈ X , a shape descriptor
of point A denotedSX(A) is a histogram of all triangles
spanned byA and all pairs of pointsB,C ∈ X , where
pointsA,B,C must be different. To be more specific, with
reference to Fig.6, SX(A) is a 3D histogram of the an-
glesBAC, and two distancesAB andAC. In order to
distinguish the two distances, we require that the triangle
BCA is oriented clockwise. In order to make our descrip-
tor scale invariant, the distances are normalized by the aver-
age pairwise distance of points inX . The shape descriptor
S(X) of the setX is a joint 3D histogram of all points,
i.e., S(X) =

∑
{SX(x)| x ∈ X}. Then, the similarity

ψ(X,Y ) between two setsX,Y is obtained by the standard
histogram intersection.

Our shape descriptor has been inspired by Carlsson [3]
(see also [30]), but it is different. Carlson considers only
qualitative orientation of each triangle: oriented clock or
counterclockwise. Our descriptor provides a full quantita-
tive description of each triangle. This leads to a significant
increase in descriptive power. The comparison of our tri-
angle histogram shape similarity measure to other measures
is left out due to limited space. We only demonstrate in§6
that it is more flexible than shape context [1], which has
been used to evaluate similarity between contour segments
in object detection [34]. Shape context considers pairwise
relationship between points, while we consider relations be-
tween triples of points.

A

B C

Figure 6. A triangle constructed by points A, B and C.

6. Experimental Results

We present results on the ETHZ shape classes ([10]). It
has 5 different object categories with 255 images in total.
All categories have significant intra-class variations, scale
changes, and illumination changes. Moreover, many objects
are surrounded by extensive background clutter and have
interior contours. This dataset comes with ground truth gray
level edge maps, which is a very important factor for fair
comparison, in particular for contour based methods.

Fig. 7 shows P/R curves for three methods: Contour Se-
lection by Zhu et al. [34], Ferrari et al. [8], and our method.
We selected these two methods for comparison, since they
also are contour based methods, and direct comparison is
possible, since [34] published P/R curves in the paper and
[8] published their code. We first choose the same criterion
that is used in [8] and [34], i.e., a detection is deemed as
correct if the detected bounding box covers over 20% of the
ground truth bounding box. Our approach performs better
than [8] on four categories (exception: “Mugs”) and also
outperforms [34] on four categories (exception: “Bottles”).

Our, 20% overlap

Our, 50% overlap

Ferrari 20% overlapet al.

Ferrari 50% overlapet al.

Zhu 20% overlapet al.

Figure 7. Precision/Recall curves of our method compared toZhu
et al. [34] and the method by Ferrari et al. [8] on ETHZ shape
classes. We report both 20% and 50% overlap results whenever
available.

Similar to the experimental setup in [34], we use only
the single hand-drawn models provided for each class.

Since the criterion of 20% overlap may not indicate a
true detection, we also show the results with 50% overlap,
which is a standard measure on PASCAL collection. Our
P/R curves with 20% and 50% overlap are identical for “Ap-



plelogos” and “Swans”. The performance of our system did
not change much with 50% criterion for “Mugs”. For “Bot-
tles” and “Giraffes” we notice a drop with 50% overlap, but
still our performance is better than that of [8].

The 50% overlap results are not reported in [34] and in
[8]. However, by running the released code of [8], we are
able to report P/R results with both 20% and 50% overlap
on the classes “Bottles”, ”Giraffes” and ”Mugs”. In [8] only
detection rate (DR) vs. false positive per image (FPPI) is
reported. Since we were not able to successfully run the
code on ”Swans” and ”Applelogos, for these two classes,
we report the translation of their results into P/R from [34].

From the P/R curves we found that our method performs
significantly better than the other two methods on non-rigid
objects: ”Swans” and ”Giraffes”. We benefit here from
our novel shape descriptor. Thin-Plate Spline Robust Point
Matching algorithm (TPS-RPM) is used to fine tune the de-
tected contour in [8]. [34] uses shape context as shape de-
scriptor. To illustrate the benefits of our new shape descrip-
tor in the presence of noise and deformation we compare
it with shape context (SC) [1] on Kimia99 dataset [24] in
Table1. This dataset has a lot of intra-class deformation.

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

SC 97 91 88 85 84 77 75 66 56 37

Our 99 97 96 97 96 93 93 88 86 68

Table 1. Retrieval results on Kimia99 dataset

We use 150 particles,K = 25 nearest neighbors for pro-
posal distribution. For shape descriptor, we select 6 distance
bins (in log space), and 12 angle bins (between 0 andπ).

We also use detection rate vs false positive per image
(DR/FPPI) in Fig.8 to evaluate our results. We quote the
other curves from [9], which is a longer version of [8], and
compare our system to three different methods: [10], [9],
and Chamfer matching, also reported in [9]. All the meth-
ods use 20% bounding box overlap. From the results we
can see that our method outperforms all of them on 0.3
FPPI, and is better in four categories (except “Swans”) on
0.4 FPPI. Our precisions at 0.3/0.4 FPPI are Applelogos:
92.5/92.5, Bottles:95.8/95.8, Giraffes: 86.2/92.0, Mugs:
83.3/85.4, Swans: 93.8/93.8.

Some detection examples of our method can be found in
Fig. 9. Since we group edge fragments, the detected objects
are precisely localized, which is in contrast to appearance
based sliding window approaches. We also show some false
positives in the bottom row.

7. Conclusions

In addition to the well-known sequential filtering bene-
fit of particle filters that implements delayed decision in a
sound statistical framework, one of the main benefits of the
proposed PF framework for grouping of edge fragments is
the fact that global shape similarity can be explicitly em-
ployed. It measures how similar the edge fragments of each

Chamfer Matching

Ferrari . ECCV06et al

Ferrari .  2008et al

Our method

Figure 8. DR/FPPI curves of our method compared to results re-
ported in Ferrari et al [9].

Figure 9. Sample detection results. The edge map is overlaidon
the image in white. The detected fragments are shown in black.
The corresponding model parts are shown in top-left corners. The
red frame in the bottom row shows some false positives.

particle are to the model contour. Thus, providing strong
likelihood function for evaluation of each particle. Since
each particle carries a contour hypothesis, the proposed ap-
proach can handle large variations of object contours in-
cluding nonrigid deformation and missing parts in cluttered
images.

The main limitation of the proposed system is that it
works with edge fragments, which are obtained by bottom-
up, low level linking of edge pixels, and therefore, it heav-
ily relies on good edge detection results. We assume that
the occluding contour of a target object is composed of no
more than 10 to 20 edge fragments, which can be broken,
deformed, and some parts can be missing. With the recent
progress in edge detection, e.g., pb edge detector [20], good



edge detection results on many images are possible, e.g., on
the ETHZ dataset [10], and consequently our assumption is
satisfied. However, still on many images the performance
of edge detectors is unsatisfactory, i.e., our assumption is
not satisfied, e.g., the occluding contour of a target objectis
composed of more than 20 edge fragments that are only few
pixels long. This is the main reason why we do not report
any experimental results on PASCAL challenge collection
of data sets. While on many images in the ETHZ collec-
tion, edge detection performs sufficiently well so that our
assumption is satisfied, this is not the case for a large per-
centage of PASCAL images. For a large part this is due to
low resolution of these images.
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