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Abstract

Edge segmentation is well-known to be subjective due
to personalized annotation styles and preferred granular-
ity. However, most existing deterministic edge detection
methods produce only a single edge map for one input im-
age. We argue that generating multiple edge maps is more
reasonable than generating a single one considering the
subjectivity and ambiguity of the edges. Thus motivated,
in this paper we propose multiple granularity edge detec-
tion, called MuGE, which can produce a wide range of
edge maps, from approximate object contours to fine tex-
ture edges. Specifically, we first propose to design an edge
granularity network to estimate the edge granularity from
an individual edge annotation. Subsequently, to guide the
generation of diversified edge maps, we integrate such edge
granularity into the multi-scale feature maps in the spatial
domain. Meanwhile, we decompose the feature maps into
low-frequency and high-frequency parts, where the encoded
edge granularity is further fused into the high-frequency
part to achieve more precise control over the details of
the produced edge maps. Compared to previous methods,
MuGE is able to not only generate multiple edge maps at
different controllable granularities but also achieve a com-
petitive performance on the BSDS500 and Multicue bench-
mark datasets.

1. Introduction
As a fundamental low-level vision task, edge detection can
greatly benefit numerous downstream tasks, such as image
inpainting [39], semantic segmentation [62], low-light im-
age enhancement [57], salient object detection [43]. The
success of deep learning techniques largely improves the
performance of edge detection, where some advanced ar-
chitectures [34, 42, 55], efficient loss functions [7, 8, 19],
and lightweight networks [9, 13, 48, 49] have been proposed
and successfully surpassed human performance.
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Figure 1. Comparisons between the state-of-the-art methods and
our proposed MuGE. (a) shows an image from the BSDS500 test
set. (b) and (c) show the predictions from the recent best meth-
ods, EDTER [42] and UAED [65]. (d)-(f) shows our generated
plausible edge maps at different granularities that better reflect the
ambiguity and subjectivity of edge detection.

It is common that people produce different edge maps
of one image since they have different annotation styles or
granularity preferences. Consequently, in view of inherent
ambiguity and the diversity of human perception, we ar-
gue that it is more reasonable to design a model that can
generate multiple predictions to satisfy such discrepancy
for edge detection. In fact, most edge detection datasets,
such as BSDS500 [1] and Multicue [37], invite multiple
annotators to label one image, and thus provide multi-
ple annotated edge maps. However, most existing meth-
ods [7, 8, 19, 34, 42, 55] simply treat the edge detection
as a deterministic dense prediction task, where the supervi-
sions are the fusion of multiple annotations by the majority
voting strategy. Therefore, for a given image (Fig. 1(a)),
the trained detectors can only generate a single edge map
(Fig. 1(b)). Recent probabilistic methods [30, 65] consider
the uncertainty of annotations by modeling the label distri-
butions as Gaussian or Beta distributions to improve the per-
formance. Sampling from the distribution, as a byproduct,
can generate multiple results, but the diversity is severely
limited and uncontrollable (Fig. 1(c)).

In this paper, we propose multiple granularity edge de-



tection, called MuGE, which captures the diversity in hu-
man perception of edges. Our proposed MuGE is the first
to have the capability of producing diverse and plausible
edge predictions with different granularities (Fig. 1(d)-(f)).
To realize our goal, two key challenges need to be solved.
One is to estimate the granularity of edge maps provided by
different annotators, and the other is to embed the estimated
edge granularity into the feature maps to control the detail
levels of the edge predictions precisely.

Firstly, to address the first issue, we devise a binary clas-
sification network to encode the edge granularity, where
edge maps with different annotation complexities are in-
volved for training. Specifically, for each image of the train-
ing dataset, we calculate the number of edge pixels in each
edge annotation, and then label the one with the fewest pix-
els as the sample with simple granularity, and the one with
the most pixels as the sample with complex granularity. Af-
ter training, we feed the remaining edge annotations into the
network and take the output value ranging from 0 to 1 as the
estimated edge granularity. During the inference stage, we
simply set the edge granularity from 0 to 1 with a fixed in-
terval to output various edge maps.

Secondly, to generate diverse edge maps flexibly, we em-
bed the edge granularity into the multi-scale feature maps.
We first modulate the edge granularity into the feature maps
in the spatial domain. Considering that low-frequency com-
ponents generally reflect the rough object contours and
high-frequency components depict the detailed textures, we
utilize the Discrete Fourier Transform (DFT) to decouple
the feature maps into low-frequency and high-frequency
parts. Subsequently, we multiply the high-frequency com-
ponents with the obtained edge granularity and further con-
catenate the features of the spatial domain for the final pre-
diction. Embedding the edge granularity into the feature
maps in both spatial and frequency domains can help the
model enhance the ability of producing distinct edge maps
with varying levels of granularity.

Our contributions can be summarized as follows:
• We propose multiple granularity edge detection, called

MuGE, which can produce differing edges, covering from
simple object contours to complex edge maps that include
richer details. To our best knowledge, MuGE is the first
edge detector with the capability of producing plausible
diverse predictions for edge detection.

• We design an edge granularity network to encode the
granularity of the annotated edge maps, and further pro-
pose to embed the estimated edge granularity into both
spatial and frequency domains to effectively generate
multiple edge maps of different granularity.

• Comprehensive experiments on benchmarks demonstrate
that our proposed MuGE can not only produce plausible
diverse edge maps, but also achieve new state-of-the-art
(SOTA) on the BSDS500 and Multicue datasets.

2. Related Work
Edge detection. Edge detection has long been a focal re-
search task. Traditional methods [3, 26] rely on gradi-
ent computing of density, color, or texture. In the past
10 years, deep learning-based solutions with supervision
have gained prominence, which mainly concentrate on ex-
ploring effective network structures and loss functions.
HED [55], CEDN [60], RDS [33], RCF [34], CED [52],
and BDCN [16] utilize VGG16 [47] to extract feature
maps. EDTR [14] and EDTER [42] introduce Transformer
for edge detection. PiDiNet [49] and LDC [9] aim to
build lightweight networks for the requirement of high effi-
ciency. RindNet [41] investigates fine-grained edge detec-
tion. To obtain crisp edges, new loss functions are devel-
oped for edge detection, such as LPCB [8], DSCD [7], and
CATS [19]. The methods in [59] and [61] tackle the prob-
lem from the noisy label perspective. Recent probabilistic
methods [30, 65] are proposed to explore the uncertainty
underlying the multiple annotations. UAED [65] constructs
Gaussian distributions to take full use of all available labels,
and BetaNet [30] replaces Bernoulli distribution with Beta
distribution in the head function and uses recurrent voting
strategy to merge multiple labels.

Previous deterministic works mainly aim at generating
a single edge map given one image. Although UAED [65]
and BetaNet [30] can generate multiple results by sampling
from the learned distributions, the predictions lack diversity
and controllability. In contrast, we are the first to focus on
producing multiple edge predictions with distinct granular-
ities, which is more suitable for various downstream tasks.

Diverse image generation. Many tasks involve diverse
image generation due to the subjectivity, complexity, or in-
sufficient cues, such as medical image segmentation [27],
image inpainting [31], translation [5], and colorization [54].

The generative model [10, 15, 18, 24] is commonly used
for this purpose. For example, MSGAN [36] increases
the distance between images generated from different la-
tent codes, and Divco [32] simultaneously considers the
positive and negative relationships between generated im-
ages by contrastive learning. StarGAN [5] and StarGAN
v2 [6] address image-to-image translation among multiple
domains by using the domain labels as the hints. Fang et
al. [12] integrate a line control matrix into the generator to
control the level of details. To generate multiple segmenta-
tion variants for a reliable diagnosis in medical image seg-
mentation, Probabilistic UNet [27] and PhiSeg [2] construct
ambiguous latent space using Variational Autoencoder, and
Valiuddin et al. [51] boost the expressiveness of posterior
distribution in latent space with normalizing flow. Wolleb
et al. [53] and Rahman et al. [45] harness the powerful gen-
eration and rich diversity capabilities of diffusion models. A
relevant work to ours is the exploration of label style in [64],
which introduces the concept of defining a specific label
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Figure 2. The overall framework of our proposed MuGE. Given an input X and its corresponding label set {Y k}Kk=1 and a estimated edge
granularity α of one edge map Y k, we first extract the multi-scale feature maps F from the encoder. Then, we split the features along the
channel dimensions (F1 and F2) and embed α into the first part F1. For the second part F2, we decompose it into high-frequency and
low-frequency components (F2h and F2l) by discrete Fourier transform (DFT), where the high-frequency features are multiplied by the
edge granularity α because high-frequency components learn local texture details. The embedded features are then converted to the spatial
domain using inverse DFT (IDFT). Finally, the enhanced features are recovered along the channel dimension F̂ through a connection
operator and are fed to the decoder, which generates the final edge map Ŷ .

style and instructing annotators to follow this style when
labeling. The defined style is then fused into probabilistic
UNet [27] and stochastic segmentation networks [38].

The above generative approaches, if applied to edge de-
tection, could be challenging to train and potentially de-
grade the performance [4, 63]. In contrast to these meth-
ods, we propose to design an edge granularity network that
serves to encode the granularity of edge maps and then in-
tegrate such edge granularity into both spatial and high-
frequency domains, which not only yields diversified edge
maps, but also improves the edge detection performance.

3. Proposed Method
Given an image X ∈ RH×W×3 and its corresponding an-
notations {Y k}Kk=1, where Y k ∈ {0, 1}H×W is the k-th
annotation and K is the total number of annotations, our
approach aims to produce a series of edge maps with di-
verse detail levels. The training framework of the pro-
posed MuGE is shown in Fig. 2, which follows the encoder-
decoder framework in [65]. For an input image X , we
first extract the multi-scale feature maps F from the en-
coder, and split the feature maps into two parts (i.e., F1 and
F2), where F1 is directly combined with the estimated edge
granularity α and F2 is decomposed into high-frequency
and low-frequency components. Then α is also integrated
into the high-frequency components to control the detailed
patterns of the produced edge map more flexibly.

3.1. Edge Granularity Network

The first challenge is how to properly encode the granularity
of edge maps. We expect that a scalar value between 0 and
1 can be obtained to represent the granularity of an edge
map, where a small value indicates a simple edge map that
sketches the object boundaries roughly, and a larger value
represents a more complex edge map, capable of depicting
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Figure 3. The training framework for the edge granularity network
S. Red boxes indicate the simplest and most complex edge maps
we selected for training. We connect the selected edge maps with
the image as the input, and obtain the predicted edge granularity α
by training a VGG16 with ground truth edge granularity α∗.

rich details within objects and background areas.
To achieve the goal, we train a binary classifier S to pre-

dict the edge granularity, where class 0 and class 1 refer
to the simplest and the most complex edge map. For each
image in the training dataset, we first count the number of
edge pixels in each annotation Y k, and then the edge maps
with maximum and minimum edge pixels are chosen as the
training samples for class 1 and 0, respectively.

Fig. 3 shows the process for training the classifier S.
Specifically, we concatenate the image and the edge map
with minimum or maximum edge pixels as the input, and
the corresponding ground truth edge granularity α∗ is set to
0 or 1. VGG16 [17] is chosen as the backbone due to its
simplicity and effectiveness. As a typical binary classifica-
tion task, the binary cross entropy (BCE) is used as the loss
function. The whole training process can be written as:

Lcls = −
N∑
i=1

(
α∗log(α) + (1− α∗)log(1− α)

)
, (1)

where N denotes the number of the training samples, and α
denotes the predicted edge granularity.
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Figure 4. The generated diverse edge predictions for the given test image with different edge granularity α, where α ranges from 0 to 1 in
intervals of 0.1 under the MS-VOC setting (multi-scale test setup trained with extra PASCAL VOC data).

After training the edge granularity network, we fix the
parameters and take the predictions that range from 0 to 1
as the estimated granularity for the other edge maps, which
will be further used for training the edge detection model.
In the inference stage, given a test image, we vary the edge
granularity α from 0 to 1 with a fixed interval tα to control
the granularity of generated edge maps. The interval tα can
be any arbitrary value, and Fig. 4 displays a test image and
the corresponding M predicted edge maps (M = 11) with
tα = 0.1. As the α value increases, the produced edge map
becomes increasingly richer in details. More visualization
results about α are given in supplementary materials.

3.2. Edge Detector with Granularity

Our method is built upon the backbone of UAED [65],
which consists of an EfficientNet encoder [50] (E) and
two UNet++ decoders [66] (D1 and D2). The prediction
head (H1 and H2) is constructed as a Gaussian distribu-
tion, whose standard deviation is supervised by the value
computed from the label sets to capture ambiguity and fully
exploit all annotations. We operate on the extracted feature
maps F , which are down-sampled to 1/2, 1/4, 1/8, 1/16,
and 1/32 of the original images respectively. And the cor-
responding output channels are 64, 48, 80, 224, and 640.

To better control the granularity of the predictions, in ad-
dition to preserving spatial features, we also transform fea-
tures into the frequency domain, where the frequency fea-
tures are partitioned into high-frequency and low-frequency
components. Elaborately, we split the feature maps F into
two parts (F1 and F2) along the channel dimension, and di-
rectly embed the edge granularity into the first part. Then
we decompose the second part into low-frequency F2l and
high-frequency F2h using DFT:

F2l = B ⊙DFT(F2), F2h = (1−B)⊙DFT(F2), (2)

where ⊙ is element-wise multiplication and 1 is a matrix
of ones. B ∈ RH×W is a binary mask with 1 in the center
region and 0 elsewhere, where the region size is controlled
by a ratio r to distinguish between high-frequency and low-
frequency components. r is empirically set to 0.5.

Motivated by the fact that low-frequency components
mainly reflect object contours and high-frequency compo-
nents prefer to depict the details within objects [29], we
embed the edge granularity into the high-frequency compo-
nents. Specifically, if the edge granularity has a relatively

small value, indicating a simpler edge map that roughly
outlines the contours of objects, the response of the high-
frequency components should be suppressed, whereas it
should be retained otherwise. Therefore, we multiply high-
frequency information F2h by the edge granularity α to ob-
tain new high-frequency F̂2h = αF2h to control the detail
levels of the generated edge maps.

Subsequently, we use the inverse DFT (IDFT) to convert
the frequency domain back to the spatial domain, i.e., F̂2 =
IDFT(F2l) + IDFT(F̂2h).

Finally, we concatenate the two features (F̂1 and F̂2) on
the channel dimension, then forward them to the decoder
(D1 and D2) and prediction head (H1 and H2) to obtain the
final prediction Ŷ :

F̂ = concat(F̂1; F̂2), F̂1 = αF1

µ̂ = H1(D1(F̂ ), σ̂2 = H2(D2(F̂ )),

Ŷ = sigmoid(µ̂+ ϵσ̂), ϵ ∼ N (0, I),

(3)

where µ̂ is the mean, σ̂2 is the variance of the predicted edge
maps, and the prediction Ŷ is randomly sampled from the
learned distribution by the reparameterization trick [25].

3.3. Network Training

The loss function used for training can be divided into three
parts: the edge loss function, which supervises the training
of edge predictions; the frequency loss function, which fa-
cilitates the recovery of frequency domain information; and
the CLIP loss function which constrains the consistency be-
tween the granularity of prediction and ground truth.

Edge loss function. We use the loss function developed in
UAED [65] to supervise the training of the predicted edge
maps, which includes a balanced mean squared error (MSE)
loss for uncertainty estimation (Lbvar) and an uncertainty-
driven loss for edge detection (Lue):

Luaed = Lbvar + Lue,

Lbvar =

HW∑
j=1

Mj(σ̂
2
j − σ2

j )
2, Lue =

HW∑
j=1

exp(βtσ̂j)Le,

Mj = γYj + (1− γ)(1− Yj), γ = [Y k
− ]
/
([Y k

− ] + [Y k
+ ]),

Le = −
HW∑
j=1

Mj

(
Y k
j log(Ŷj) + (1− Y k

j )log(1− Ŷj)
)
,

(4)



where j denotes the j-th pixel, βt = t/T is an adaptive
factor, t is the current epoch, and T is the total epochs. The
notation [·] denotes the number of pixels, and Y k

− and Y k
+

denote the non-edge and edge pixels respectively in k-th
annotated edge map.

Frequency loss function. Edge details can be perceived
in the frequency domain. To generate crisp edge maps, we
use focal frequency loss (FFL) [22] to close the frequency
distance between the prediction and the ground truth at the
frequency domain. Due to the prediction with large fre-
quency distance being more likely regarded as a hard sam-
ple, the corresponding training weight should be strength-
ened. Therefore, a weighting strategy emphasizes the learn-
ing from these hard samples. Specifically, we transform the
prediction and the ground truth into the frequency domain
using DFT, and the frequency loss function is presented as:

Lffl =

HW∑
j=1

Zj

∣∣DFTj(Y
k)−DFTj(Ŷ )

∣∣2, (5)

where Zj = |DFTj(Y
k) − DFTj(Ŷ )|η is the weight put

on each frequency. Here we set η 1.

CLIP loss function. To ensure that the granularity of the
prediction is similar to that of ground truth, we feed predic-
tion and ground truth to the CLIP visual encoder [44] to ex-
tract 512-D features, and use MSE loss to close the distance
between the two feature maps. The CLIP loss function can
be written as:

Lclip = (CLIP(Ŷ )− CLIP(Y k))2. (6)

Total loss function. The final optimization objection is
the sum of the above three losses:

L = Luaed + Lffl + Lclip. (7)

4. Experiments
4.1. Experimental Setting

Dataset. In this section, we conduct experiments on two
datasets, BSDS500 [1] and Multicue [37], which contain
multiple annotations for evaluation. BSDS500 contains 500
high-resolution RGB natural scene images with a size of
321 × 481, divided into 200 for training, 100 for valida-
tion, and 200 for testing. Each image is manually anno-
tated by 4-9 annotators. To augment and make full use of
the dataset, we process the images following UAED [65],
which rotates each image at 25 different angles and flips
each image (horizontally, vertically, and both) at each an-
gle. Moreover, we incorporate the PASCAL VOC Context
Dataset [11], consisting of 10,103 images, as supplemen-
tary training data. Multicue contains 100 scenes designed

for the study of boundary and edge detection in challeng-
ing natural scenes. Each scene includes both left-view and
right-view short (10-frame) sequences. The last frame of
each left-view sequence is annotated with edges by 6 anno-
tators and boundaries by 5 annotators. Data augmentation
involves rotation at 4 different angles (0, 90, 180, 270) and
flipping. 80 images are randomly selected for training, leav-
ing the remaining 20 for testing. This process is repeated
three times and the average scores of three independent tri-
als are regarded as the final results.

Implementation Details. Our training details are the
same as UAED [65], where Pytorch [40] based image seg-
mentation (SMP) neural network library [21] is utilized as
the deep learning framework. To speed up the training pro-
cess, we follow LPCB [8] and UAED [65] to make all train-
ing samples the same size, so that the model can be trained
in a mini-batch way. For the BSDS500 dataset, we rotate
the images to maintain the same size (321 × 481). For the
Multicue dataset, each image with a size of 720 × 1280 is
randomly cropped to 512 × 512 sub-images for training.
The batch size is set to 4 for the edge detector and 16 for
the edge granularity network. All parameters are updated
by Adam optimizer [23] with a learning rate of 1e-4. All
experiments are conducted on a single RTX 3090.

Evaluation Protocols. We access the diversity of the
generated multiple predictions and evaluate the perfor-
mance using widely used metrics, including optimal dataset
scale (ODS), optimal image scale (OIS), and Average Preci-
sion (AP). The predictions are processed by non-maximum
suppression (NMS) before evaluation following previous
works [34, 65]. The localization tolerance is set to 0.0075 to
control the maximum allowed distance in matches between
the predictions and the ground truth maps.

4.2. Comparison with State-of-the-arts

We first discuss and visualize the diversity of our predic-
tions. Then we compare the performance of the proposed
MuGE with existing excellent edge detectors, including tra-
ditional detectors such as Canny [3], CNN-based detectors
such as RCF [34] and UAED [65], and transformer-based
detector EDTR [14] and EDTER [42].

Diverse results on BSDS500. Fig. 5 clearly visualizes
that our proposed MuGE can yield diversified plausible pre-
dictions with varying detail levels, which better align with
human perception and can also benefit different kinds of
downstream tasks. Despite that UAED [65] can also gener-
ate multiple edge maps by sampling from distributions, its
results lack diversity. For further quantitative comparison
of the diversity of generated edge predictions, we compute
the LPIPS metric [67] in Table 1, where UAED generates
M = 3 samples with µ and µ± σ, as well as M = 11 sam-
ples with µ, µ± σ, µ± 1.5σ, µ± 2σ, µ± 2.5σ, and µ± 3σ,
respectively. For MuGE, M = 3 and M = 11 mean we
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Figure 5. Qualitative comparisons on challenging samples in the BSDS500 test set under MS setting. Note that UAED samples from the
learned distribution with µ and µ± 3σ, and MuGE produces diverse results with edge granularity of 0, 0.5, and 1, respectively.

Table 1. The calculated LPIPS on BSDS500 [1] (higher is better).
M means the number of predictions.

Method M = 3 M = 11

UAED 0.0380 0.0118
MuGE (Ours) 0.1663 0.1065

generate 3 and 11 maps with an interval of tα = 0.5 and
tα = 0.1 respectively. Table 1 shows that MuGE has a big
improvement in producing diverse predictions. More visu-
alization results are given in supplementary materials.

Quantitative results on BSDS500. Since MuGE is ca-
pable of producing diverse results, we use the best-matching
strategy to report the metrics for the comparison between
the best edge prediction generated by our approach and the
single final ground truth fused by all annotators’ maps for
each test image. The results are summarized in Table 2,
where our results with different intervals (tα = {0.5, 0.1}
produces M = {3, 11} results) are reported. For a fair com-
parison, UAED also generates the same number of predic-
tions for evaluation with the best-matching strategy, which
is denoted as UAED*. Obviously, a smaller interval typi-
cally generates more potential predictions, leading to better
performance. It should be noted that our training model re-
mains the same across various intervals, with the only dif-
ference being the generation of varying numbers of predic-
tions in MuGE. The following discussions and experiments
are conducted with M = 11.

We can see that our proposed MuGE achieves a
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Figure 6. The precision-recall curves for the BSDS500 dataset.

new state-of-the-art, outperforming other CNN-based and
Transformer-based methods. In the single-scale setting,
compared with the second best method UAED [65], we
obtain a performance gain of 0.9%, 0.9%, and 1.5% in
terms of ODS, OIS, and AP. We also achieve ODS=0.861,
OIS=0.867, and AP=0.909 under the MS-VOC setting,
which also surpasses UAED [65]. Fig. 6 shows more in-
tuitive results through the Precision-Recall curve.

In addition to evaluation with best-matching strategy, we
also report the results with a single specific edge granular-
ity α in Table 3. When the granularity of the prediction is
the simplest (α = 0) or most complex (α = 1), the per-



Table 2. Comparisons on the BSDS500 [1] testing set. VOC
means training with extra PASCAL VOC data. The best results
are denoted as red.

Setup Method Backbone ODS OIS AP
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(S
S)

Canny TPAMI’86 [3] - 0.611 0.676 0.520
gPb-UCM TPAMI’10 [1] - 0.729 0.755 0.745
DeepContour CVPR’15 [46] AlexNet 0.757 0.776 0.790
HED ICCV’2015 [55] VGG16 0.788 0.808 0.840
Deep Boundary ICLR’15 [28] VGG16 0.789 0.811 0.789
RDS CVPR’16 [33] VGG16 0.792 0.810 0.818
COB ECCV’16 [35] VGG16 0.793 0.820 0.859
AMH-Net NIPS’17 [56] ResNet50 0.798 0.829 0.869
RCF CVPR’17 [34] VGG16 0.798 0.815 -
LPCB ECCV’18 [8] VGG16 0.800 0.816 -
BDCN CVPR’19 [16] VGG16 0.806 0.826 0.847
DSCD ACM’20 [7] VGG16 0.802 0.817 -
LDC ACM’21 [9] MobileNet 0.799 0.816 0.837
EDTR ICONIP’21 [14] Transformer 0.820 0.839 0.861
EDTER CVPR’22 [42] Transformer 0.824 0.841 0.880
FCL-Net NN’22 [58] VGG16 0.807 0.822 -
UAED CVPR’23 [65] EfficientNet 0.829 0.847 0.892
BetaNet KBS’23 [30] VGG16 0.803 0.822 -
PEdger ACM’23 [13] Recurrent 0.823 0.841 -
UAED* (M = 3) EfficientNet 0.838 0.847 0.882
UAED* (M = 11) EfficientNet 0.841 0.847 0.881
MuGE (M = 3) EfficientNet 0.845 0.854 0.895
MuGE (M = 11) EfficientNet 0.850 0.856 0.896

M
ul

ti-
Sc

al
e

(M
S)

Deep Boundary ICLR’15 [28] VGG16 0.803 0.820 0.848
EDTR ICONIP’21 [14] Transformer 0.830 0.851 0.886
EDTER CVPR’22 [42] Transformer 0.840 0.858 0.896
FCL-Net NN’22 [58] VGG16 0.816 0.833 -
UAED CVPR’23 [65] EfficientNet 0.837 0.855 0.897
UAED* (M = 3) EfficientNet 0.847 0.856 0.879
UAED* (M = 11) EfficientNet 0.850 0.855 0.885
MuGE (M = 3) EfficientNet 0.853 0.863 0.901
MuGE (M = 11) EfficientNet 0.858 0.864 0.902

Si
ng

le
-S

ca
le

-V
O

C
(S

S-
V

O
C

)

Deep Boundary ICLR’15 [28] VGG16 0.809 0.827 0.861
RCF CVPR’17 [34] VGG16 0.806 0.823 -
CED CVPR’17 [52] VGG16 0.815 0.833 0.889
LPCB ECCV’18 [8] VGG16 0.808 0.824 -
BDCN CVPR’19 [16] VGG16 0.820 0.838 0.888
DSCD ACM’20 [7] VGG16 0.813 0.836 -
LDC ACM’21 [9] MobileNet 0.812 0.826 0.857
PiDiNet ICCV’21 [49] PDC 0.807 0.823 -
EDTER CVPR’22 [42] Transformer 0.832 0.847 0.886
FCL-Net NN’22 [58] VGG16 0.815 0.834 -
UAED CVPR’23 [65] EfficientNet 0.838 0.855 0.902
UAED* (M = 3) EfficientNet 0.849 0.856 0.891
UAED* (M = 11) EfficientNet 0.851 0.857 0.892
MuGE (M = 3) EfficientNet 0.852 0.859 0.904
MuGE (M = 11) EfficientNet 0.855 0.860 0.905

M
ul

ti-
Sc

al
e-

V
O

C
(M

S-
V

O
C

)

Deep Boundary ICLR’15 [28] VGG16 0.813 0.831 0.866
RCF CVPR’17 [34] VGG16 0.811 0.830 0.846
LPCB ECCV’18 [8] VGG16 0.815 0.834 -
BDCN CVPR’19 [16] VGG16 0.828 0.844 0.890
DSCD ACM’20 [7] VGG16 0.822 0.859 -
LDC ACM’21 [9] MobileNet 0.819 0.834 0.860
EDTER CVPR’22 [42] Transformer 0.848 0.865 0.903
FCL-Net NN’22 [58] VGG16 0.826 0.845 -
UAED CVPR’23 [65] EfficientNet 0.844 0.864 0.905
UAED* (M = 3) EfficientNet 0.856 0.865 0.880
UAED* (M = 11) EfficientNet 0.859 0.866 0.890
MuGE (M = 3) EfficientNet 0.858 0.865 0.907
MuGE (M = 11) EfficientNet 0.861 0.867 0.909

Table 3. Comparisons on BSDS500 for a single edge granularity.

Method SS MS
ODS OIS AP ODS OIS AP

UAED [65] 0.829 0.847 0.892 0.837 0.855 0.897

Ours (α = 0) 0.803 0.818 0.855 0.814 0.829 0.887
Ours (α = 0.5) 0.830 0.846 0.885 0.837 0.855 0.892
Ours (α = 0.6) 0.831 0.847 0.886 0.838 0.857 0.893
Ours (α = 1) 0.822 0.839 0.873 0.831 0.849 0.887

Table 4. Comparisons on Multicue [37]. All results are obtained
by a single-scale input. The best two results are denoted as red
and blue respectively.

Method ODS OIS AP

E
dg

e

Human VR’16 [37] 0.750 (0.024) - -
Multicue VR’16 [37] 0.830 (0.002) - -
HED ICCV’15 [55] 0.851 (0.014) 0.864 (0.011) -
RCF CVPR’17 [34] 0.857 (0.004) 0.862 (0.004) -
BDCN CVPR’19 [16] 0.891 (0.001) 0.898 (0.002) 0.935(0.002)
DSCD ACM’20 [7] 0.871 (0.007) 0.876 (0.002) -
LDC ACM’21 [9] 0.881 (0.012) 0.893 (0.011) -
PiDiNet ICCV’21 [49] 0.855 (0.007) 0.860 (0.005) -
FCL-Net NN’22 [58] 0.875 (0.005) 0.880 (0.005) -
EDTER CVPR’22 [42] 0.894 (0.005) 0.900 (0.003) 0.944 (0.002)
UAED CVPR’23 [65] 0.895 (0.002) 0.902 (0.001) 0.949 (0.002)
MuGE (Ours) 0.898 (0.004) 0.900 (0.004) 0.950 (0.004)

B
ou

nd
ar

y

Human VR’16 [37] 0.760 (0.017) - -
Multicue VR’16 [37] 0.720 (0.014) - -
HED ICCV’15 [55] 0.814 (0.011) 0.822 (0.008) 0.869 (0.015)
RCF CVPR’17 [34] 0.817 (0.004) 0.825 (0.005) -
BDCN CVPR’19 [16] 0.836 (0.001) 0.846 (0.003) 0.893 (0.001)
DSCD ACM’20 [7] 0.828 (0.003) 0.835 (0.004) -
LDC ACM’21 [9] 0.839 (0.012) 0.853 (0.006) -
PiDiNet ICCV’21 [49] 0.818 (0.003) 0.830 (0.005) -
FCL-Net NN’22 [58] 0.834 (0.016) 0.840 (0.016) -
EDTER CVPR’22 [42] 0.861 (0.003) 0.870 (0.004) 0.919 (0.003)
UAED CVPR’23 [65] 0.864 (0.004) 0.872 (0.006) 0.927 (0.006)
MuGE (Ours) 0.875 (0.006) 0.879 (0.006) 0.932 (0.004)

formance is lower than the middle granularity α. It is rea-
sonable since the final ground truth map is merged with all
edge maps. Not surprisingly, α = 0.5 and α = 0.6 achieve
superior results, which also surpass the UAED in terms of
ODS and OIS. Since multiple ground truth maps are also
provided in BSDS500, we also evaluate the average perfor-
mance with multiple ground truths, and the results are given
in supplementary materials.

Quantitative results on Multicue. Experiments are
also performed on the Multicue dataset. Table 4 shows
the quantitative results. Our proposed MuGE also achieves
a new state-of-the-art on the Multicue edge and bound-
ary (ODS=0.898, OIS=0.900, AP=0.950 on the edge, and
ODS=0.875, OIS=0.879, AP=0.932 on the boundary). We
surpass the second best UAED [65] by 1.1%, 0.7%, and
0.5% in terms of ODS, OIS, and AP scores on the bound-
ary. Some visual examples with different edge granularity
are given in supplementary materials.

4.3. Ablation Study

The crucial designs of MuGE include embedding the edge
granularity into both spatial and frequency domains, FFL



Table 5. The ablation study on the BSDS500 dataset for the role of
every part plays. All results are obtained by a single-scale input.

Method Embed (F) Embed (S) Lclip Lffl ODS OIS AP

UAED 0.829 0.847 0.892

Ours

✓ 0.846 0.851 0.899
✓ ✓ 0.846 0.853 0.899
✓ ✓ ✓ 0.849 0.857 0.898
✓ ✓ ✓ 0.846 0.852 0.894
✓ ✓ ✓ ✓ 0.850 0.856 0.896

loss, and CLIP loss. We conduct ablation experiments on
these components to demonstrate the effectiveness of our
method. The results are summarized in Table 5.

Effect of embedding the edge granularity. We embed
the encoded edge granularity into spatial and frequency do-
mains to control the generation of diverse edges. We can see
that embedding the edge granularity into the frequency do-
main (1st row) can not only generate diverse maps, but also
improve the performance by large margins (1.7%, 0.4%,
0.7% in ODS, OIS, and AP), while embedding the edge
granularity into both the spatial and frequency domains
(2nd row) contributes to the largest performance gain.

Effect of CLIP loss. We introduce the CLIP loss to
ensure the detail level of predictions and ground truths re-
mains consistent. The experiments show that CLIP loss can
further improve performance by 0.3%, 0.4% (3rd row) and
0.4%, 0.4% (5th row) in ODS and OIS. In addition, we em-
pirically find that introducing the CLIP loss can also help
stabilize the training process.

Effect of FFL loss. FFL loss is responsible for aligning
the details of edges by recovering the frequency informa-
tion. Although FFL loss does not significantly improve per-
formance (4th row), it can yield more crisp edges shown in
Fig. 7, which is validated by the increased Average Crisp-
ness metric [61] (e.g., from 0.228 to 0.291 when α = 0).

4.4. Further Analysis

Comparison with fixed edge granularity encoding strat-
egy. In MuGE, we train an edge granularity network to en-
code the granularity of each edge annotation. Another naive
way is using a simple normalization operator, i.e., for all
edge maps of each image, we calculate the number of edge
pixels in each map and then normalize each edge map ac-
cording to the maximum and minimum values, resulting in
a scalar between 0 and 1 served as the estimated granular-
ity. As shown in Table 6, a simple normalization strategy
can lead to a significant performance gain, but our learnable
granularity encoding strategy achieves better performance
in the single-scale setting.

Different edge granularity embedding strategies. To
embed the edge granularity into feature maps for generat-
ing diverse predictions, we multiply the edge granularity
into the feature maps in the spatial and frequency domains

Table 6. The ablation study on the BSDS500 dataset for the differ-
ent edge granularity encoding and embedding strategies.

Edge Granularity
Controlling Strategy

SS SS-VOC
ODS OIS AP ODS OIS AP

Encoding
Normalization 0.847 0.852 0.891 0.857 0.862 0.903

Classifier 0.850 0.856 0.896 0.855 0.860 0.902

Embedding

concat(X; α) 0.849 0.857 0.898 0.848 0.857 0.897
concat(F ; α) 0.848 0.854 0.896 0.848 0.855 0.897

AdaIN 0.804 0.821 0.857 0.833 0.846 0.893
Ours 0.850 0.856 0.896 0.855 0.860 0.902

Figure 7. Qualitative visualization of the role of FFL loss on
BSDS500 under SS setting. From left to right are the input, and the
results with FFL loss and without FFL loss, respectively (α = 1).

(αF ). We also try other embedding strategies for compar-
ison: (1) concat(X; α): connect the edge granularity with
the input image along the channel dimension; (2) concat(F ;
α): connect the edge granularity with the multi-scale fea-
ture maps along the channel dimension; (3) AdaIN: use a
fully connected layer to map the edge granularity to a scale
and bias, and then perform the AdaIN [20] on the multi-
scale feature maps. From Table 6, we can see that AdaIN
can not bring performance gain. Besides, simply connect-
ing the edge granularity with input image or feature maps
can achieve better results, but still lower than our strategy,
especially in the SS-VOC setting.

5. Conclusion

In this paper, we propose a novel edge detector called
MuGE which, for the first time, explicitly considers edge
granularity and integrates the edge granularity into the fea-
ture maps of both spatial and frequency domains, thus gen-
erating diverse edge predictions with varying levels of de-
tail. The capability can benefit different kinds of down-
stream tasks with various demands. Comprehensive experi-
ments are conducted on the BSDS500 and Multicue datasets
to demonstrate the superiority of the proposed MuGE.

Limitation. Encoding the edge granularity in the anno-
tation is not the only way to control the detail levels of edge
maps, and we will also explore implementing a more flexi-
ble edge detector using other schemes (e.g., text prompt).
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Qi Tian, Matti Pietikäinen, and Li Liu. Pixel difference net-
works for efficient edge detection. In Int. Conf. Comput. Vis.,
pages 5117–5127, 2021. 1, 2, 7

[50] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
conference on machine learning, pages 6105–6114. PMLR,
2019. 4

[51] MM Valiuddin, Christiaan GA Viviers, Ruud JG van Sloun,
Fons van der Sommen, et al. Improving aleatoric uncertainty
quantification in multi-annotated medical image segmenta-
tion with normalizing flows. In Uncertainty for Safe Utiliza-
tion of Machine Learning in Medical Imaging, and Perinatal
Imaging, Placental and Preterm Image Analysis, pages 75–
88. Springer, 2021. 2

[52] Yupei Wang, Xin Zhao, and Kaiqi Huang. Deep crisp bound-
aries. In IEEE Conf. Comput. Vis. Pattern Recog., pages
3892–3900, 2017. 2, 6, 7, 3

[53] Julia Wolleb, Robin Sandkühler, Florentin Bieder, Philippe
Valmaggia, and Philippe C Cattin. Diffusion models for
implicit image segmentation ensembles. In International
Conference on Medical Imaging with Deep Learning, pages
1336–1348. PMLR, 2022. 2

[54] Yanze Wu, Xintao Wang, Yu Li, Honglun Zhang, Xun Zhao,
and Ying Shan. Towards vivid and diverse image colorization
with generative color prior. In Int. Conf. Comput. Vis., pages
14377–14386, 2021. 2

[55] Saining Xie and Zhuowen Tu. Holistically-nested edge de-
tection. In Int. Conf. Comput. Vis., pages 1395–1403, 2015.
1, 2, 7

[56] Dan Xu, Wanli Ouyang, Xavier Alameda-Pineda, Elisa
Ricci, Xiaogang Wang, and Nicu Sebe. Learning deep struc-
tured multi-scale features using attention-gated crfs for con-
tour prediction. In Adv. Neural Inform. Process. Syst., pages
3961–3970, 2017. 7

[57] Xiaogang Xu, Ruixing Wang, and Jiangbo Lu. Low-light
image enhancement via structure modeling and guidance. In
IEEE Conf. Comput. Vis. Pattern Recog., pages 9893–9903,
2023. 1

[58] Wenjie Xuan, Shaoli Huang, Juhua Liu, and Bo Du. Fcl-
net: Towards accurate edge detection via fine-scale correc-
tive learning. Neural Networks, 145:248–259, 2022. 7

[59] Wenjie Xuan, Shanshan Zhao, Yu Yao, Juhua Liu, Tongliang
Liu, Yixin Chen, Bo Du, and Dacheng Tao. Pnt-edge: To-
wards robust edge detection with noisy labels by learning
pixel-level noise transitions. In ACM Int. Conf. Multimedia,
2023. 2

[60] Jimei Yang, Brian Price, Scott Cohen, Honglak Lee, and
Ming-Hsuan Yang. Object contour detection with a fully



convolutional encoder-decoder network. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 193–202, 2016. 2

[61] Yunfan Ye, Renjiao Yi, Zhirui Gao, Zhiping Cai, and Kai
Xu. Delving into crispness: Guided label refinement for crisp
edge detection. IEEE Trans. Image Process., 2023. 2, 8

[62] Zhiding Yu, Rui Huang, Wonmin Byeon, Sifei Liu, Guilin
Liu, Thomas Breuel, Anima Anandkumar, and Jan Kautz.
Coupled segmentation and edge learning via dynamic graph
propagation. Adv. Neural Inform. Process. Syst., 34:4919–
4932, 2021. 1

[63] Zhiliang Zeng, Ying Kin Yu, and Kin Hong Wong. Ad-
versarial network for edge detection. In 2018 Joint 7th In-
ternational Conference on Informatics, Electronics & Vision
(ICIEV) and 2018 2nd International Conference on Imaging,
Vision & Pattern Recognition (icIVPR), pages 19–23. IEEE,
2018. 3

[64] Kilian Zepf, Eike Petersen, Jes Frellsen, and Aasa Feragen.
That label’s got style: Handling label style bias for uncertain
image segmentation. In Int. Conf. Learn. Represent., 2023.
2

[65] Caixia Zhou, Yaping Huang, Mengyang Pu, Qingji Guan,
Li Huang, and Haibin Ling. The treasure beneath multiple
annotations: An uncertainty-aware edge detector. In IEEE
Conf. Comput. Vis. Pattern Recog., pages 15507–15517,
2023. 1, 2, 3, 4, 5, 6, 7

[66] Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima
Tajbakhsh, and Jianming Liang. Unet++: A nested u-net
architecture for medical image segmentation. In Deep learn-
ing in medical image analysis and multimodal learning for
clinical decision support, pages 3–11. Springer, 2018. 4

[67] Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Dar-
rell, Alexei A Efros, Oliver Wang, and Eli Shechtman. To-
ward multimodal image-to-image translation. Adv. Neural
Inform. Process. Syst., 30, 2017. 5



MuGE: Multiple Granularity Edge Detection

Supplementary Material

In this supplementary material, we display more results
with different numbers of edge maps and qualitative com-
parisons of the predictions produced by UAED [65] and our
proposed MuGE. We also provide additional visualization
results on BSDS500 [1] and Multicue [37] datasets. Be-
sides, since multiple annotations are available in BSDS500,
we report the metrics for comparison with multiple ground
truths for further evaluation.

A. Different intervals of the edge granularity
The choice of interval value is arbitrary, and we present the
results with an interval of 0.1 in the main paper. In the sup-
plementary, we further show the results with intervals of
0.05 in Fig. 8. Moreover, we also summarize the quanti-
tative comparisons of different numbers of produced maps
shown in Table 8. Obviously, a smaller interval typically
generates more potential predictions, thus leading to better
performance. It is worth noting that no matter how many
predictions are generated, the model training is fixed, and
we just need to feed different α to control the granularity of
edge maps.

B. Qualitative comparisons of multiple Predic-
tions.
Fig. 9 shows the qualitative comparisons of the multiple
predictions between UAED and MuGE. From the visual-
ized results, we can see that the diversity of UAED is quite
limited, in contrast, our proposed MuGE presents a better
diversity with different edge granularity, which can be ben-
eficial for the downstream tasks by controlling the granular-
ity of the edge maps.

C. More Visualization Results
In this section, we report more qualitative results on
BSDS500 [1] and Multicue [37] datasets. More specifi-
cally, Fig. 10 shows the visual results compared with other
approaches on BSDS500 [1] dataset, and more results of
the proposed MuGE on BSDS500 [1] dataset are given in
Fig. 11. Moreover, Fig. 12 depicts qualitative results for
Multicue boundary [37].

Table 7. Comparisons on BSDS500 [1] for multiple ground truth
edge maps. All results are obtained under the MS-VOC setting.

Method ODS OIS AP

EDTER [42] 0.727 0.769 0.775
UAED [65] 0.732 0.775 0.794

MuGE (Ours) 0.756 0.788 0.815

D. Results on multiple ground truth edge maps
In Table 2 of the main paper, we compare with previous
works by evaluating the performance between the selected
best-matching edge map and the single final fused ground
truth for each test image. Since multiple ground truth maps
are also provided in BSDS500 dataset, we further evalu-
ate the performance on multiple ground truths, i.e., we se-
lect the corresponding matched prediction from generated
11 predictions for each annotator’s ground truth, and re-
port the average performance. From Table 7, we can see
that MuGE also outperforms the current SOTA UAED [65]
by 2.4%, 1.3%, and 2.1%, and Transformer-based method
EDTER [42] by 2.9%, 1.9%, and 4.0% in terms of the aver-
age ODS, OIS, and AP scores.

Table 8. Results on the BSDS500 [1] testing set with different intervals of the edge granularity.

# Predictions Edge Granularity
SS MS SS-VOC MS-VOC

ODS OIS AP ODS OIS AP ODS OIS AP ODS OIS AP

M = 1 α = 0.6 0.831 0.847 0.886 0.838 0.857 0.893 0.838 0.853 0.897 0.843 0.860 0.900
M = 2 α ∈ {0, 1} 0.835 0.849 0.888 0.845 0.859 0.897 0.847 0.857 0.901 0.853 0.864 0.905
M = 3 α ∈ {0, 0.5, 1} 0.845 0.854 0.895 0.853 0.863 0.901 0.852 0.859 0.904 0.858 0.865 0.907
M = 6 α ∈ {0, 0.2, . . . , 0.8, 1} 0.849 0.855 0.896 0.856 0.864 0.902 0.854 0.860 0.905 0.860 0.867 0.909
M = 11 α ∈ {0, 0.1, . . . , 0.9, 1} 0.850 0.856 0.896 0.858 0.864 0.902 0.855 0.860 0.905 0.861 0.867 0.909
M = 21 α ∈ {0, 0.05, . . . , 0.95, 1} 0.851 0.857 0.897 0.858 0.864 0.903 0.856 0.861 0.905 0.862 0.867 0.909
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Figure 8. The generated diverse edge predictions for the given test image with different edge granularity α, where α ranges from 0 to 1 in
intervals of 0.05 under the MS-VOC setting.

(a) Input (b) UAED (µ− 3σ) (c) UAED (µ− 2.5σ) (d) UAED (µ− 2σ) (e) UAED (µ− 1.5σ) (f) UAED (µ− 1σ)

(g) UAED (µ) (h) UAED (µ+ σ) (i) UAED (µ+ 1.5σ) (j) UAED (µ+ 2σ) (k) UAED (µ+ 2.5σ) (l) UAED (µ+ 3σ)

(a) Input (b) MuGE (0) (c) MuGE (0.1) (d) MuGE (0.2) (e) MuGE (0.3) (f) MuGE (0.4)

(g) MuGE (0.5) (h) MuGE (0.6) (i) MuGE (0.7) (j) MuGE (0.8) (k) MuGE (0.9) (l) MuGE (1)

Figure 9. Qualitative diversity comparisons of UAED and our proposed MuGE in the BSDS500 test set under the MS-VOC setting.



In
pu

t
G

T
R

C
F

[3
4]

C
E

D
[5

2]
B

D
C

N
[1

6]
E

D
T

E
R

[4
2]

U
A

E
D

[6
5]

(µ
−

3
σ
)

U
A

E
D

[6
5]

(µ
)

U
A

E
D

[6
5]

(µ
+

3
σ
)

M
uG

E
(0
)

M
uG

E
(0
.5
)

M
uG

E
(1
)

Figure 10. Qualitative comparisons on challenging samples in the BSDS500 test set under the MS setting. Note that UAED samples from
the learned distribution with µ− 3σ, µ, and µ+ 3σ, respectively, and MuGE produces diverse results with edge granularity of 0, 0.5, and
1, respectively.



(a) Image (b) Ground truth (c) MuGE (0) (d) MuGE (0.5) (e) MuGE (1)

Figure 11. Qualitative comparisons on the testing set of BSDS500 under the MS-VOC setting.



(a) Input (b) GT-Boundary (c) UAED-Boundary (d) MuGE-Boundary (0) (e) MuGE-Boundary (1)

Figure 12. Qualitative results with different edge granularity on the Multicue Boundary.
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