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Abstract—In this paper, we propose using sparse representation for recovering the illumination of a scene from a single image
with cast shadows, given the geometry of the scene. The images with cast shadows can be quite complex and therefore cannot
be well approximated by low-dimensional linear subspaces. However, it can be shown that the set of images produced by a
Lambertian scene with cast shadows can be efficiently represented by a sparse set of images generated by directional light
sources. We first model an image with cast shadows as composed of a diffusive part (without cast shadows) and a residual part
that captures cast shadows. Then, we express the problem in an `1-regularized least squares formulation, with nonnegativity
constraints (as light has to be nonnegative at any point in space). This sparse representation enjoys an effective and fast
solution, thanks to recent advances in compressive sensing. In experiments on both synthetic and real data, our approach
performs favorably in comparison with several previously proposed methods.

Index Terms—Illumination recovery, inverse lighting, sparse representation, compressive sensing, `1 minimization.
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1 INTRODUCTION

Illumination recovery, also known as inverse lighting, is
the problem of recovering an illumination distribution in a
scene from the appearance of objects located in the scene.
It is used for augmented reality, where the virtual objects
match the existing image and cast convincing shadows on
the real scene rendered with the recovered illumination.
Shadows in a scene are caused by the occlusion of incoming
light, and thus contain information about the lighting of
the scene. Although shadows have been used widely in
determining the 3D shape of the object that casts shadows
onto the scene, few studies have been devoted to the
illumination information provided by the shadows. This
is mainly because that shadows bring great challenges to
recover illumination from a scene given a single input
image.

In this paper, we study the problem of illumination
recovery from a single image with cast shadows. Instead of
an explicit estimation of the illumination, the purpose of our
method is to recover the lighting so that the image rendered
with recovered lighting would look similar to the original
image. A prior model about the scene, as in many previous
works, is used that captures geometry and albedos [4], [3],
[36], [34], [35], [27], [33], [13]. It is in fact pointed out in
[13] that the assumption of known geometry is required
by many illumination estimation methods.1 Despite the
challenges of the task, it has been observed [32], [27],
[36] that images with cast shadows can often be sparsely
represented (see Section 2 for details). Such a sparse
representation is very attractive since sparsity leads to
efficient estimation, dimensionality reduction, and efficient

1. However, in our experiments we use models that have uniform, white
albedo, as these are easy to construct. With Lambertian objects, albedo
linearly scales pixel intensities, and so it is easy to remove the effects of
known albedo by simply scaling image pixels by corresponding albedos.

modeling. For example, by representing the lighting using
a sparse set of directional sources, we can save a large
amount of time in rendering very complex scenes while
maintaining the quality of scene recovery.

Inspired by previous studies [32], [27], [36], we ap-
proximate an image with cast shadows by a combination
of low frequency spherical harmonics and a sparse set of
directional light sources. To find the sparse solution, we
first approximate the diffusive part of the image with low
dimensional harmonics. After that, the residual is mod-
eled as a sparse combination of basis images representing
different directional light sources. The sparse solution is
then achieved by an `1-regularized least squares solver,
which has been proved to be close to the `0 solutions
under very flexible conditions [5], [9]. Compared to `2
minimization, `1 minimization tends to find the most signif-
icant directional sources and discard the insignificant ones.
This is very suitable for our purpose in which we want
to select a sparse representation from about one thousand
directional sources. The solution to the `1-regularized least
squares problem using the truncated Newton interior-point
method is very fast and reliable, which enables our method
to be used in many areas, such as lighting design. We
tested the proposed method on synthetic and real images
in comparison with serval state-of-the-art approaches. In
all the experiments the proposed method demonstrates
excellent performances in both recovery accuracy and run
time efficiency.

The rest of the paper is organized as follows. Sec.
2 discusses related work. In Sec. 3, we show that the
effects of cast shadows may not be well approximated by
any low-dimensional representation. However, when only
a few directional light sources illuminate a scene, they
may be compactly represented. After that, the model for
illumination recovery is described and analyzed in Sec. 4.
Then, in Sec. 5, we propose a solution to find a sparse



2

representation using the `1-regularized least squares. The
experiments are described in Sec. 6, where the proposed
approach demonstrates excellent performance in both ac-
curacy and efficiency. Finally, we conclude the paper in
Sec. 7.

2 RELATED WORK

As one of the major challenges in illumination recovery,
shadows have been studied for a long history. There has
been a series of work aimed at understanding the complex-
ity of the set of images produced by Lambertian objects
lit by environment maps. It is shown by Shashua [38] that,
when ignoring all shadows, the images of a Lambertian
scene lie in a three-dimensional linear subspace. The result
is used for rendering in [24]. When including attached
shadows, the set of images produced by a Lambertian scene
can be approximated by a low dimensional linear subspace.
This is shown both empirically [4], [11] and analytically
[3], [30]. Shadows in a real scene are areas where direct
light from a light source cannot reach due to the occlusion
by other objects and, thus can provide useful information in
recovering the lighting [16], [28]. In Kim and Hong [16], a
practical approach is proposed to estimate the illumination
distribution from shadows cast on a textured, Lambertian
surface. In Panagopoulos et al. [28], a graphical model is
proposed to estimate the illumination which is modeled as
a mixture of von Mises-Fisher distributions and detect the
shadows of a scene with textured surfaces from a single
image and only coarse 3D information. The sparsity of cast
shadows is studied in [32], [27], [36]. A method is proposed
by Sato et al. [36] to recover an illumination distribution
of a scene from image brightness inside shadows cast
by an object of known shape. It introduces an adaptive
sampling framework for efficient estimation of illumination
distribution using a smaller number of sampling directions.
In Okabe et al. [27], a sparse representation using a Haar
wavelet basis is proposed to recover lighting in images with
cast shadows. The work by Ramamoorthi et al. [32] shows
that, although the set of images produced by a scene with
cast shadows can be of high dimension, empirically this
dimension does not grow too rapidly.

Prior to our work, the idea that a complex lighting envi-
ronment with cast shadows can be represented with a few
point lights is known in previous work [42], [31], [1], [44].
In Ramamoorthi and Hanrahan [31], a signal-processing
framework that describes the reflected light field as a
convolution of the lighting and BRDF is introduced. This
work suggests performing rendering using a combination
of spherical harmonics and directional light sources with
ray-tracing to check for shadows. Structured importance
sampling is introduced by Agarwal et al. [1] to show how to
break an environment map into a set of directional lights for
image synthesis. It samples an environment map efficiently
to render scenes illuminated by distant natural illumina-
tion. Walter et al. [44] propose a scalable framework for
accurately approximating illumination from thousands or
millions of point lights using a strongly sublinear algorithm.

Our work share with the above work in sparse shadow
representation, but differs in the motivation (Section 3) and
recovery solutions.

The studies in [36], [34], [35], [27] are closely related to
our work. These studies propose recovering lighting from
cast shadows by a linear combination of basis elements that
represent the light. Specifically, in [27] a Haar wavelet basis
is used to effectively capture lighting sparsely. Given the
compact support with various sizes of Haar wavelets, each
incident direction of illumination is represented at different
resolutions. The illumination is efficiently approximated
using a small number of basis functions. In our method, we
approximate the illumination using a small number of direc-
tional sources with nine spherical harmonics. Both methods
are proposed to overcome the limitations from spherical
harmonics for not capturing high frequency components in
the lighting such as a point light or an area light with a sharp
edge and the shadows cast by an object. In the experiments,
we show that our method outperforms Haar wavelets in both
accuracy and speed.

In the field of computer graphics, illumination informa-
tion is necessary for augmented reality [2], where virtual
objects are inserted and seamlessly integrated into a real
scene. The recovered lighting can give real world appear-
ance and make images look realistic. Illumination recovery
has been of great interest to the graphics community and
there has been significant previous research [39], [40], [41],
[43], [1], [26], [44]. In [39], a method is proposed to divide
the scene into cells and for each cell split the lights into
important and unimportant lists with the latter very sparsely
sampled. Precomputed radiance functions (PRT) [40] are
used to represent low-frequency lighting environments that
capture soft shadows, and interreflections. Cluster principal
component analysis (CPCA) [41] is used to compress the
high dimensional surface signal formed from per-point
transfer matrices recorded by PRT. A new data representa-
tion and compression technique for precomputed radiance
transfer is introduced in [43] and the light transfer functions
and light sources are modeled with Spherical Radial Basis
Functions (SRBFs). The environment map is approximated
in a wavelet basis, and the light transport matrix is sparsely
and accurately encoded in the same basis [26]. In [29], [37],
a framework for capturing a sparse approximation of the
light transport based on the theory of compressive sensing
using a small set of illumination patterns is proposed.

There are many other methods to recover illumination
distributions from images; though cast shadows are not
handled specifically. The complexity of determining light-
ing grows dramatically when we must account for cast
shadows. A framework is proposed in [25] to accom-
plish photo-realistic view-dependent image synthesis from
a sparse image set and a geometric model. Two methods
are presented for recovering the light source position from
a single image without the distant illumination assumption
[12]. Much more accurate multiple illumination information
is extracted from the shading of a sphere [47]. In [22], a
framework is proposed to automatically recover an object
shape, reflectance properties and light sources from a set of
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images. A unified framework to estimate both distant and
point light sources is proposed in [48]. The number of point
light sources and the reflectance property of an object are
simultaneously estimated using the EM algorithm [13]. In
[18], synthetic 3D objects are inserted into the scene based
on the estimated illumination from a single outdoor image.
The method relies on a combination of weak cues extracted
from different portions of the image such as sky, vertical
surfaces, and the ground.

Our solution to the sparse representation is motivated
by recent advances in the field of compressed sensing [5],
[9]. A goal of compressed sensing is to exploit the com-
pressibility and sparsity of the true signal, which is an `0
minimization problem that is usually hard to solve. Recent
studies [5], [9] show that, under very flexible conditions, the
`0 minimization can be reduced to `1 minimization that fur-
ther results in a convex optimization, which can be solved
efficiently. The results from compressed sensing have been
applied to different computer vision tasks [45] for problems
such as face recognition [46], background subtraction [15],
[6], media recovery [10], visual tracking [21], texture
segmentation and feature selection [19]. In this work, we
show that the number of directional sources needed to
approximate the lighting is greatly compressible and the
illumination recovery can be cast as an `1-regularized least
squares problem.

A preliminary conference version of this paper appears
in [20].

3 AN EXAMPLE AND MOTIVATION

In this section, we design a simple but effective example,
a flag pole scene, to illustrate the intuition and motivation of
our work. Although the set of images produced by a scene
with cast shadows can be of high dimension, it has been
shown [31] that the number of directional lights needed
to approximate the lighting is highly compressible and the
perceptual loss from the image constructed by the recovered
lighting is hardly noticeable.

In the example, we consider a scene consisting of a flat
playground with an infinitely thin flag pole. We view the
scene from directly above, so that the playground is visible,
but the flag pole appears only as a negligible point. Suppose
the scene is illuminated by an arbitrary set of directional
lights of equal intensity that each has an elevation of 45
degrees. In this case, the intensity of the lighting can
be described as a one-dimensional function of azimuth.
A single directional light illuminates the playground to
constant intensity except for a thin, black shadow on it.
The entire set of lights can cause shadows in multiple
directions. None of these shadows overlap, because the pole
is infinitely thin.

Now consider the linear subspace spanned by the images
that this scene can produce. We first consider the set of im-
ages that are each produced by a single directional source.
All images are nonnegative, linear combinations of these.
We represent each image as a vector. By symmetry, the
mean of these images will be the constant image produced

in the absence of cast shadows. Subtracting the mean, each
image is near zero, except for a large negative component
at the shadow. All these images have equal magnitude,
and are orthogonal to each other. Therefore, they span
an infinite-dimensional space, and Principal Component
Analysis (PCA) will produce an infinite number of equally
significant components. In other words, a finite-dimensional
linear subspace cannot capture any significant fraction of
the effects of cast shadows.

However, we can look at the images of this scene differ-
ently. A single directional source produces a single, black
shadow (Figure 1(a)). Two sources produce two shadows
(Figure 1(b)), but each shadow has half the intensity of the
rest of the playground, because each shadow is lit by one of
the lights. The more lights (e.g., Figure 1(c,d,e,f)) we have
the more shadows we have, but the lighter these shadows
are. In Figure 1(f) in which there are 32 DS, the shadows
are barely noticeable. Therefore, while a small set of lights
can produce strong cast shadows, many lights tend to wash
out the effects of shadowing.

The above observation implies that, to model a scene
with cast shadows, perceptually only a limited number
of directional light sources are needed plus a diffusive
component where no shadow is considered. In fact, if a
scene is indeed illuminated by a limited number of light
sources, then its shadows can be represented exactly by
these light sources. If a scene is otherwise illuminated by
a large number of directional sources, we cannot represent
the shadows well with a few sources, but we do not need
to, because they have only a small effect and the image is
approximately constant.

4 MODELING IMAGES WITH CAST SHAD-
OWS

4.1 Lighting Model
We now model cast shadows in detail. We do not

consider specular reflections, and in fact there is no reason
to believe that sparse lighting can approximate the effects
of full environment map lighting when there are significant
specular reflections. For example, instead of our playground
example, imagine images of a mirrored ball. Directional
sources produce bright spots which do not get washed out
as we add more directional sources. We also do not consider
the effects of saturated pixels. We assume the geometry of
the scene is given, as in many previous studies [4], [3], [36],
[34], [35], [27], [33], [13], so we can render directional
source images from it.

We model a scene as illuminated by light from all
directions. Therefore, an image I ∈ Rd (we stack image
columns to form a 1D vector) of a given scene has the
following representation

I =
∫

S
x(θ)Idir(θ)dθ , x(θ) ≥ 0 , (1)

where S is the unit sphere that contains all possible light
directions, Idir(θ) is the image generated by a directional
light source with angle θ ∈ S , and x(θ) is the weight (or
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(a) 1 DS (b) 2 DS (c) 4 DS (d) 8 DS (e) 16 DS (f) 32 DS

Fig. 1. A flagpole rendered with one directional source (a), two directional sources (b), four directional sources
(c), eight directional sources (d), sixteen directional sources (e), and thirty-two directional sources (f). The
shadows are lighter as the number of directional sources increases.

amount) of image Idir(θ). Note that here, without loss of
generality, an extremely simple camera model is assumed
since our conclusion does not depend on camera models.

For practical reasons, integration over the continuous
space S is replaced by a superposition over a large discrete
set of samples, say {θk}N

k=1 with a large N . Denote the
image generated by light from direction θk as Ik = Idir(θk)
and xk = x(θk); we approximate with the discrete version
of (1),

I =
N∑

k=1

xkIk , xk ≥ 0. (2)

4.2 Lighting Decomposition
It is known that in the absence of cast shadows, this

lighting can be approximated using low frequency spherical
harmonics [3], [30]. We use a nine-dimensional spherical
harmonic subspace generated by rendering images of the
scene, including their cast shadows, using lighting that
consists of zero, first, and second order spherical harmonics.
We will therefore divide the effects of these directional
sources into low- and high-frequency components. We can
then capture the low-frequency components exactly using
a spherical harmonic basis. We will then approximate the
high frequency components of the lighting using a sparse
set of components that each represent the high frequency
part of a single directional source.

We project the directional source image Ik onto the
spherical harmonic subspace and it can be written as the
sum of the projection image Îk and residual image Ĩk. Then
Equation (2) can be written as:

I =
N∑

k=1

xk(Îk + Ĩk) , xk ≥ 0. (3)

We separate the low frequency component Îk from high
frequency component Ĩk and Equation 3 becomes:

I =
N∑

k=1

xk Îk +
N∑

k=1

xk Ĩk , xk ≥ 0. (4)

We know that the low frequency component
∑∞

k=1 xk Îk

lies in a low dimensional subspace and can be approximated
using Î by simply projecting I to the spherical harmonic
subspace. Equation (4) can be written as:

I = Î +
N∑

k=1

xk Ĩk , xk ≥ 0. (5)

Î is simply the component of the image due to low-
frequency lighting, where we solve for this component
exactly using the method of [3]. We then approximate the
high frequency components of the lighting using a sparse
set of values for xk. Note that these components will be
reflected only in the cast shadows of the scene, and we
expect that when these cast shadows are strong, a sparse
approximation will be accurate.

Our problem is now reduced to finding a certain number
of xk’s that best approximate the residual image Ĩ = I− Î .
It can be addressed as a least squares (LS) problem with
nonnegativity constraints:

arg min
x
||Ax− Ĩ||2, xk ≥ 0 , (6)

where A = [Ĩ1Ĩ2 · · · ĨN ] and x = (x1, ..., xN )>. To avoid
ambiguity, we assume all the residual directional source
images Ĩk are normalized, i.e., ||Ik||2 = 1.

4.3 Low Dimensional Approximation
In practice, the size of the image can be very large,

which corresponds to a large linear system Ax = Ĩ , which
is very computationally expensive to solve. To alleviate
the problem, we use low dimensional approximation by
applying PCA to the image set A and Ĩ . The standard
PCA yields from A a mean vector µ ∈ Rd and a projection
matrix W ∈ Rm×d, which consists of the m most important
principal components of A.

Applying W and µ to equation 6, we have the following
approximation:

x̂ = arg min
x
||W (A− µ⊗ 1>)x−W (Ĩ − µ)||2

.= arg min
x
||A∗x− Ĩ∗||2, xk ≥ 0 , (7)

where ⊗ denotes the cross product, 1 ∈ RN×1 is a vector
of 1’s, A∗ .= W (A− µ⊗ 1>) and Ĩ∗ .= W (Ĩ − µ) denote
the PCA transformation of A and Ĩ respectively.

The dimension m is typically chosen to be much smaller
than d. This is also a requirement for the sparse repre-
sentation problem we introduce in the next section that
the number of observations is smaller than the number of
unknowns. The PCA plays an important role such that the
system becomes underdetermined and hence satisfies the
condition of the sparse representation problem. In this case,
the system (7) is underdetermined in the unknown x and
simple least squares regression leads to over-fitting.
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5 `1-REGULARIZED LEAST SQUARES

A standard technique to prevent over-fitting is the `2 or
Tikhonov regularization [23], which can be written as

arg min
x
||A∗x− Ĩ∗||2 + λ||x||2, xk ≥ 0. (8)

where ||x||2 = (
∑N

k=1 x2
k)1/2 denotes the `2 norm of x

and λ > 0 is the regularization parameter.
The `2 regularization is known to be robust to Gaussian

like errors. However, in our formulation, we are con-
cerned with the problem of low-complexity recovery of
the unknown vector x. This can be formulated with an `0-
regularization,

arg min
x
||A∗x− Ĩ∗||2 + λ||x||0, xk ≥ 0, (9)

in which we are interested in minimizing the `0 norm
that counts the number of non-zero elements in x. This
formulation suffers unfortunately from impractical compu-
tational cost. Instead, recently study shows that it can be
well approximated by using `1 minimizations under fairly
flexible conditions [9], [5].

Motivated by the above observation, we exploit the
compressibility in the transform domain by solving the
problem as the `1-regularized least squares problem. We
substitute a sum of absolute values for the `2 and `0 norms
used in the above regularizations:

arg min
x
||A∗x− Ĩ∗||2 + λ||x||1, xk ≥ 0. (10)

where ||x||1 =
∑N

k=1 |xk| denotes the `1 norm of x
and λ > 0 is the regularization parameter. This problem
always has a solution, though not necessarily unique. `1-
regularized least squares (LS) typically yields a sparse
vector x, which has relatively few nonzero coefficients.
In contrast, the solution to the Tikhonov regularization
problem generally has all coefficients nonzero.

Since x is non-negative, the problem (10) can be refor-
mulated as

arg min
x
||A∗x− Ĩ∗‖2 + λ

N∑

k=1

xk, xk ≥ 0. (11)

Figure 2 shows the recovered coefficients x using `1-
regularized LS and `2-regularized LS algorithms respec-
tively for the synthetic image rendered with the light probe
in Figure 3 (a). The query image is approximated using
N=977 directional source images. The parameter λ’s are
tuned such that the two recoveries have similar errors. The
results show that `1 regularization gives a much sparser
representation, which fits our expectation.

Algorithm 1 summarizes the whole illumination recovery
procedure. Our implementation solves the `1-regularized
least squares problem via an interior-point method based
on [17]. The method uses the preconditioned conjugate
gradients (PCG) algorithm to compute the search direction
and the run time is determined by the product of the total
number of PCG steps required over all iterations and the
cost of a PCG step. We use the code from [7] for the
minimization task in (11).
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Fig. 2. The recovered coefficients x from `1-
Regularized LS (a) and `2-Regularized LS (b).

Algorithm 1 Sparse representation for inverse lighting
Require: Input image I and the geometry of the scene I

is generated from.

1: Obtain N directional source images {I1, I2, . . . , IN}
by rendering the scene with N directional light sources
uniformly sampled from the upper hemisphere (object
is put on a plane and there is no light coming from
beneath).

2: Create the first nine spherical harmonic images by
integrating the N directional source images.

3: Project each directional source image Ik to the
9D spherical harmonic subspace and obtain the
corresponding residual directional source image
{Ĩ1, Ĩ2, . . . , ĨN}.

4: Normalize Ĩk such that ‖Ĩk‖2 = 1 and form matrix
A = [Ĩ1Ĩ2 · · · ĨN ].

5: Project the query image I to the spherical harmonic
subspace and obtain the residual image Ĩ .

6: Apply PCA to A and obtain the projection matrix W
and the mean vector µ.

7: A∗ ← W (A− µ⊗ 1>) and Ĩ∗ ← W (Ĩ − µ).
8: Solve the `1-regularized least squares problem with

nonnegativity constraints (11).
9: Render the scene with the spherical harmonic light-

ing plus the recovered sparse set of directional light
sources.

6 EXPERIMENTS

In this section, we conduct two kinds of experiments:
illumination recovery and illumination transfer on both
synthetic and real data, in comparison with four other pre-
vious approaches. The illumination recovery experiments
are recovering the lighting from the images and rendering
the scene with the lighting recovered. In the illumination
transfer experiments, we apply the recovered illumination
from one scene to the other scene and vice versa.

6.1 Experimental Setup
6.1.1 Data

Both synthetic and real datasets are used in our experi-
ments to validate the performance of our proposed method.
For synthetics data, we use two synthetic scenes with four
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different lighting environment maps. For real data, we use
photos of three real objects printed by using a 3D printer
from pre-designed CAD models. Details of these datasets
are described in next subsections.

6.1.2 Methods for Comparison
We compare our proposed algorithms with four previous

proposed methods: Spherical Harmonics [3], [30], Non-
Negative Least squares (NNL) [4], Semidefinite Program-
ming (SDP) [33], and Haar wavelets [27] algorithms. To
make this algorithm comparable, we use about 100 direc-
tional sources to represent the lighting which is obtained
from thousands of possible directional sources. The reason
that we choose 100 sources is because by examining
the coefficients for all the experiments, we find that the
coefficients become zero or very small after 100 sources.
The λ in Equation (11) is set to 0.01 for all the experiments.
We experimentally choose 0.01 for λ that achieves the best
approximation results.

In the following, we briefly review and analyze the four
algorithms that are used for comparison.

Spherical Harmonics (SH): In [3], [30], it is shown that
the image without cast shadows is well approximated by a
linear combination of the first nine harmonics images.

Non-Negative Linear (NNL): In [4], it is shown that
the set of images of an object produced by nonnegative
lighting is a convex cone in the space of all possible
images. Given an image I , the method attempts to minimize
‖Ha − I‖ subject to a >= 0 where H is the matrix
whose columns are directional source images. If we densely
sample the illumination distribution, it makes the solution
exceedingly expensive in terms of processing time and
storage requirements because of the high dimensionality
of the matrix H formed by point source images.

Semidefinite Programming (SDP): In [33], semidefinite
programming is applied to perform a constrained optimiza-
tion to quickly and accurately solve for the non-negative
linear combination of spherical harmonics. It has been
applied for specular object recognition on both synthetic
and real data by better separating the correct and incorrect
models. Our work is the first to show that SDP can also be
used to handle shadows.

In [33], SDP is designed to approximate high frequency
signals that cannot be captured by the 9D spherical har-
monics. It works well on specular objects such as a shiny
rubber ball and a ceramic shaker using harmonics up to 10th
order. The total harmonics used in SDP is (10+1)2 = 121.
Since images with cast shadows generally have a lot of
high frequency signals, it still misses a certain amount of
information which is contained in higher order harmonics.

Haar Wavelets (Haar): In [27], spherical harmonics is
compared to Haar wavelets as a basis for recovery from
shadows. The Haar wavelets approach is similar since Haar
wavelets also form an orthonormal basis. The advantages
pointed out are the compact supports with various sizes
which allow different resolutions in different regions.

In this method, the illumination distribution is mapped
to a cube and two-dimensional Haar wavelet basis elements

are used in each face of the cube. Similar to the spherical
harmonics, the illumination distribution is represented by a
linear combination of the wavelet basis functions Φi(θ, φ)
and Ψijkl(θ, φ)

L(θ, φ) =
∑

i

(ciΦi(θ, φ) +
∑

j,k,l

di,j,k,lΨijkl(θ, φ)) (12)

where ci and di,j,k,l are coefficients of the corresponding
basis functions. The coefficients are computed using a
constrained least squares estimation which constrains the
resulting distribution to be position.

6.1.3 Evaluation Criterion

Accuracy. To evaluate the accuracy of different algo-
rithms, we use the Root-Mean-Square (RMS) errors of pixel
values, which is also used in [27]. Specifically, for an input
image I ∈ Rd and its recovery I ′ ∈ Rd, the RMS between

them is defined as r(I, I ′) =
√
‖I − I ′‖22/d, where d is

the number of pixels in the image.
Run Time. We divide the run time for illumination

recovery into three parts: (1) preprocessing time, (2) time
for solving the lighting recovery algorithm (e.g., solving the
`1-regularized LS, SDP), and (3) rendering the scene with
recovered lighting. First, part (1) can be done off-line and
is actually similar for all methods. In fact, preprocessing
time is dominated by the time for generating images
using different directional light sources (via PovRay for
all experiments). These images are pre-computed off-line,
and are actually used in all methods2. Second, part (3) is
usually much faster than the other two parts and therefore
can be ignored. For the above reasons, in the paper we focus
only on the part (2), which measures the time efficiency of
different illumination recovery approaches.

All the algorithms were run in MATLAB 7.4.0. The com-
puter used was a laptop with Intel Core Duo at 1.73GHz
with 2.0GB RAM.

6.2 Experiments with Synthetic Data

6.2.1 Synthetic Images

There are two synthetic scenes used in our experiments.
One is composed of a coffee cup and a spoon, with a plate
underneath them (see Figure 5). The teacup and spoon will
cast shadows on the plate when the light comes from certain
directions. The other scene consists of one table and four
chairs (see Figure 6). The legs of table and chairs are thin
and will cast shadows on the ground which poses challenges
for the illumination recovery.

Four synthetic images for each scene are obtained by
rendering the scene with high dynamic environment maps
(namely kitchen, grace, campus, and building, see Figure
3) provided by [8]. We consider a scene where the objects
are placed on an infinite plane, so only lights coming from
the upper hemisphere are taken into account.

2. The spherical harmonics and Haar wavelets also need these images
for basis image estimation.
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(a) (b) (c) (d)

Fig. 3. Light probes [8] used to generate our synthetic
dataset: (a) kitchen, (b) grace, (c) campus, and (d)
building. The light probes are sphere maps and shown
in low-dynamic range for display purposes.

6.2.2 Experiments
Using the POV-Ray ray tracer we generate directional

images, each using a single directional light source. We
obtain directions by uniformly sampling the upper hemi-
sphere, and each direction represents a directional light.
We generate directional source images each of which is
rendered with one directional light. Using these images, we
numerically integrate to compute nine harmonic images of
the scene, each with lighting consisting of a single spherical
harmonic. The coefficient of the integrated image is the
intensity value in the spherical harmonic function at that
direction.

Figure 4 shows the first nine harmonic images created
from more than three thousand directional source images
derived from a 3D model of one teacup (top), and a table
with four chairs (bottom).

The recovery results of teacup images and table-chair
images are shown in Figure 5 and Figure 6 respectively.

From the results we can see that spherical harmonics by
itself fails to capture the apparent shadows cast on the plate
and ground. For NNL, we tested two versions, using the 100
and 300 largest DS respectively. There are 977 DS used to
approximate the lighting and the best 100 and 300 ones
are picked, so these two versions have the same processing
time. The reason to use 300 DS is, as illustrated in Figure
5, NNL with 100 DS fails to generate a reasonable result.
This tells us the results of NNL is not sparse and require
a large number of directional sources in order to produce
good results. Comparing with spherical harmonics, SDP
captures more details of the cast shadows, but the shadows
are very fuzzy and the shadow boundaries are unclear. For
the wavelet based method, we render the image with 102
Haar basis functions as in [27]. Both Haar wavelets and
our method reproduce the shadows reliably.

In the illumination transfer experiments, we apply the
recovered illumination from teacup to the model of table-
chair and vice versa. Then we compare the results to the
ground truth images. These tests are similar to those used
for lighting recovery in [27]. The results are shown in
Figure 7.

To quantitatively evaluate the performance of the meth-
ods in terms of speed and accuracy, we measure the quality
of the approximation by looking at RMS and the speed by
run time. The errors in pixel values and run time in seconds
are shown in Table 1 and Table 2. One can find that the error

TABLE 1
RMS errors and average run time on the synthetic
teacup images. Note: the running time does not
include the preprocessing for generating “basis”

images (same for all the rest tables).

Probe Probe Probe Probe Avg. Run
Method Kitchen Grace Building Campus Time (sec.)

SH 8.00 12.23 12.21 7.39 0.01

NNL (100 DS) 55.74 17.31 39.41 74.87 9389.8

NNL (300 DS) 5.96 2.80 1.87 12.50 9389.8

SDP 3.21 4.11 3.48 1.26 10.9

Haar Wav. 3.42 3.12 1.61 0.96 1322.0

Proposed 2.33 2.69 1.22 1.09 11.8

TABLE 2
RMS errors and average run time on the synthetic

table-chair images.

Probe Probe Probe Probe Avg. Run
Method Kitchen Grace Building Campus Time (sec.)

SH 11.09 9.44 9.36 8.64 0.01

NNL (100 DS) 15.26 10.91 10.84 12.20 9410.5

NNL (300 DS) 8.72 10.90 10.73 9.51 9410.5

SDP 7.29 8.36 7.62 6.49 11.2

Haar Wav. 5.92 4.04 4.43 5.20 1332.0

Proposed 5.71 3.95 4.37 4.90 12.0

TABLE 3
Illumination transfer errors (RMS) on synthetic images.

teacup to table-chair table-chair to teacup
Method (top row Fig. 7) (bottom row Fig. 7)

SH 43.09 52.25

NNL (100 DS) 57.21 18.93

NNL (300 DS) 15.42 13.07

SDP 18.89 59.47

Haar 18.09 15.93

Proposed 7.26 5.60

in our method is the smallest of all the listed methods and
the run time is much smaller than the Haar wavelets method
which has comparable accuracy to our method. Table 3
shows the illumination transfer results. The ground truth
images are rendered with high dynamic environment map
kitchen. Our method has much smaller errors than the other
methods. Therefore, our method works best for recovering
illumination from cast shadows in terms of both accuracy
and speed.
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Fig. 4. The first nine harmonic images from a 3D model of one teacup (top) and a table with four chairs (bottom).
The left most column contains the zeroth harmonic, the second to fourth columns contain the three first order
harmonic images, and the rest are the images derived from the second harmonics (same for Figure 9). Image
values are scaled to the full range of the intensity (same for Figure 9).

(a) Truth (b) SH (c) NNL1 (d) NNL2 (e) SDP (f) Haar (g) Proposed

Fig. 5. Experiments on synthetic images rendered from the teacup scene. The left column shows the ground
truth images from different lighting environment probes shown in Figure 3 (kitchen, grace, campus and building
from top to bottom, respectively). Columns (b) to (g) show results from different methods. Note: NNL1 uses 100
directional lighting sources and NNL2 uses 300.

6.3 Experiments with Real Data
6.3.1 Real Data

For the real objects, we built CAD models of three
objects (namely chair1, chair2, and couch, see Figure 8
(a-b)) and printed them with a 3D printer (see Figure 8 (c)
for results). The only difference between chair1 and chair2
is the number of backrest bars. The 3D printer we use is
manufactured by Z Corporation with the model ZPrinter
310 Plus. We briefly explain how a 3D object is created
from a 3D printer. First, a 3D CAD file is imported into the
system software. The software slices the file into thin cross-
sectional slices, which are fed to the 3D printer. Second, the
printer creates the model one layer at a time by spreading
a layer of powder and inkjet printing a binder in the cross-
section of the part. Finally, the process is repeated until
every layer is printed and the part is complete and ready to
be removed.

After the printing out the objects, we place them under
natural indoor illumination and take pictures of them using

a Canon EOS Digital Rebel XT camera. The images are
then used in our experiments. Figures 10 and 11) show
these images.

One of our experiments involves recovering lighting from
one object (chair1), and using it to render a model of a
second object (chair2) (as in [27]). For this reason, we
take pictures of chair1 and chair2 in exactly the same
illumination environment.

6.3.2 Registration
After we take pictures of the real objects, we need to

register the object in the picture to the 3D model. We select
the feature points (see Figure 8) and match them from the
picture to the 3D model. For chair1 and chair2, eight corner
points are selected as feature points. For couch, there is no
apparent corner points on the model. We add seven small
balls with center on the couch whose center are used as
feature points for the registration.

To do the registration, the object is first rotated and trans-
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(a) Truth (b) SH (c) NNL1 (d) NNL2 (e) SDP (f) Haar (g) Proposed

Fig. 6. Experiments on synthetic images rendered from the table-chair scene. The left column shows the ground
truth images from different lighting environment probes shown in Figure 3 (kitchen, grace, campus and building
from top to bottom, respectively). Columns (b) to (g) show results from different methods. Note: NNL1 uses 100
directional lighting sources and NNL2 uses 300.

(a) Ground truth (b) SH (c) NNL1 (d) NNL2 (e) SDP (f) Haar (g) Proposed

Fig. 7. Illumination transfer experiments on synthetic images. The ground truth images are rendered with high
dynamic environment map kitchen. Top row: transfer the illumination of teacup to table-chair. Bottom row: transfer
the illumination of table-chair to teacup. Column (a): ground truth images. Columns (b–g): the images rendered
with the lighting recovered using different methods. Note: NNL1 uses 100 directional lighting sources and NNL2
uses 300.

lated to the camera coordinate system and then projected
onto the image plane. We use a simplified pinhole camera
model [14] with six parameters to do the registration. The
objects are registered to the images by minimizing the
distance between the feature points on the image and the
corresponding feature points from the 3D model.

6.3.3 Experiments

In the illumination recovery experiments, we apply all
the algorithms to real images of chair1, chair 2 and couch.
The recovered images are shown in Figure 10.

In the illumination transfer experiments, we apply the
recovered illumination from chair1 to the model of chair2
and vice versa. Then we compare the results to the ground
truth images. The results are shown in Figure 11.

Figure 9 show the first nine harmonic images created
from more than three thousand directional source images
derived from a 3D model of chair1.

By visually checking the results in Figures 10 and 11,
we can see that all these experiments show the superiority
of our methods. Spherical harmonics fail to capture the
apparent shadows cast on the seat of the chair and the
ground. In comparison, SDP captures more details of the
cast shadows, but the shadows are very fuzzy and there are
some highlights on the ground. NNL can produce accurate
shadows, but the shadows are intersecting and overlapping
each other, causing the image to be unrealistic to the user.
The Haar wavelets method produces accurate shadows,
but there are some highlights on the ground. Our method
generates visually realistic images and produces accurate
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(a) (b) (c)

Fig. 8. (a-b): Two of the three 3D models used for generating real objects. The marked feature points in color
are used for registration. (c): The three real objects printed out from 3D models by a 3D printer, from left to right:
chair1, couch and chair2.

Fig. 9. The first nine harmonic images created from more than three thousand directional source images derived
from a 3D model of the chair1.

(a) Ground truth (b) SH (c) NNL (d) SDP (e) Haar (f) Proposed

Fig. 10. Illumination recovery experiments on real images. (a) Ground truth images. (b)-(f) show the image
rendered with the lighting recovered from (a) using different approaches, where (c) and (f) use 100 directional
sources, and (e) uses 102 wavelet basis.

shadows both on the seat and the ground.
The quantitative evaluation, including the RMS and

running times, is summarized in Table 4 for illumination
recovery experiments and Table 5 for illumination transfer
experiments. In both experiments, our method achieves the
smallest error of all the methods in only tens of seconds
run time.

6.3.4 Discussion
There is specular texture on the ground plane in the

images. This is due to several reasons. The ground plane
is a big white table. It may not be ideally Lambertian, and

has specular component on the surface. Another reason is
the object in the image to the 3D model registration. We
use a simplified pinhole camera model with six parameters
to do the registration. An ideal white Lambertian ground
plane and more advanced registration method would help
reduce the specular texture in the image. Note that these
problems do not exist in synthetic experiments, where no
specular texture on the ground is observed.

We also conducted experiments using random projection
matrix as suggested in [46]. The entries of the projection
matrix are independently sampled from a zero-mean normal
distribution, and each row is normalized to unit length.
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(a) Ground truth (b) SH (c) NNL (d) SDP (e) Haar (f) Proposed

Fig. 11. Illumination transfer experiments on real images. Top row: transfer the illumination of chair1 to chair2.
Bottom row: transfer the illumination of chair2 to chair1. Column (a): ground truth images. Columns (b–f): the
images rendered with the lighting recovered from chair 1 (top of (a)) using different methods. The method in
(c,d,f) use 100 directional light sources, while that in (e) uses 102 sources.

TABLE 4
Illumination recovery errors (RMS) and run times (in seconds) on real images.

Method chair1 RMS chair1 run time chair2 RMS chair2 Run time couch RMS couch Run time

SH 13.99 0.01 13.77 0.01 9.39 0.01

NNL 10.26 1854.89 9.62 1826.67 7.37 2050.22

SDP 9.38 10.88 8.76 11.30 7.01 14.62

Haar 10.75 1529.60 7.87 1526.34 7.84 1585.27

Proposed 7.50 14.54 7.79 14.82 6.56 13.82

TABLE 5
Illumination transfer errors (RMS) on real images.

Chair1 to Chair2 Chair2 to chair 1
Method (top row Fig. 11) (bottom row Fig. 11)

SH 15.31 15.51

NNL 10.35 11.05

SDP 9.40 10.09

Haar 11.02 9.03

Proposed 8.24 8.58

(a) teacup (b) chair1

Fig. 12. Illumination recovery experiments using ran-
dom projection matrix.

Figure 12 shows the illumination recovery results using
random projection matrix. The RMS errors are 4.86 for
the teacup and 10.43 for chair1, respectively. The results
are less desirable than the ones using PCA.

6.4 Sparsity Evaluation
In the previous section, we argue that we can approx-

imate the query image well using a sparse set of direc-
tional light sources. To justify our argument, we conduct
experiments on synthetic and real images. Figure 13 shows
the RMS versus number of possible directional sources for
synthetic images rendered with the grace light probe (left)
and a real image (right) under natural indoor lighting. The
accuracy improves gradually as the number of directional
sources increases. From the plots, we can see after a certain
number of directional sources (≈ 50 for the left and ≈ 180
for the right), the error remains constant. It matches the
argument that we can approximate the query image well
enough using only a sparse set of directional sources and
after a certain number of directional sources, increasing
the number of directional sources does not improve the
accuracy.

7 CONCLUSIONS

In this paper, we start from a simple example and explain
that although the dimensionality of the subspace of images
with cast shadows can go up to infinity, the illumination can
still be well approximated by a sparse set of directional
sources. Following this example, we derive a theoretical
model and cast illumination recovery as an `1-regularized
least squares problem. An efficient and fast solution is
provided to find the most significant directional sources
for the estimation. Experiments on both synthetic and real
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Fig. 13. The improvement in accuracy by adding
directional sources. RMS versus number of directional
sources for a synthetic image (teacup, second row of
Figure 5) rendered with grace light probe (left figure)
and a real image (chair2, middle left of Figure 10)
under natural indoor lighting (right figure).

images have shown the effectiveness of our method in both
accuracy and speed.
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