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MTFH: A Matrix Tri-Factorization Hashing
Framework for Efficient Cross-Modal Retrieval

Xin Liu, Zhikai Hu, Haibin Ling, and Yiu-ming Cheung, Fellow, IEEE

Abstract—Hashing has recently sparked a great revolution in cross-modal retrieval because of its low storage cost and high query
speed. Recent cross-modal hashing methods often learn unified or equal-length hash codes to represent the multi-modal data and
make them intuitively comparable. However, such unified or equal-length hash representations could inherently sacrifice their
representation scalability because the data from different modalities may not have one-to-one correspondence and could be encoded
more efficiently by different hash codes of unequal lengths. To mitigate these problems, this paper exploits a related and relatively
unexplored problem: encode the heterogeneous data with varying hash lengths and generalize the cross-modal retrieval in various
challenging scenarios. To this end, a generalized and flexible cross-modal hashing framework, termed Matrix Tri-Factorization Hashing
(MTFH), is proposed to work seamlessly in various settings including paired or unpaired multi-modal data, and equal or varying hash
length encoding scenarios. More specifically, MTFH exploits an efficient objective function to flexibly learn the modality-specific hash
codes with different length settings, while synchronously learning two semantic correlation matrices to semantically correlate the
different hash representations for heterogeneous data comparable. As a result, the derived hash codes are more semantically
meaningful for various challenging cross-modal retrieval tasks. Extensive experiments evaluated on public benchmark datasets
highlight the superiority of MTFH under various retrieval scenarios and show its competitive performance with the state-of-the-arts.

Index Terms—Cross-modal retrieval, matrix tri-factorization hashing, varying hash length, semantic correlation matrix.

1 INTRODUCTION

‘ N J ITH the explosive growth of multi-modal data in social
networks, the relevant data from different modalities often
endow semantic correlations, and there is an immediate need
for effectively analyzing the data across different modalities. In
recent years, cross-modal retrieval, which enables similarity search
across heterogeneous modalities, has attracted a great amount of
attention in information retrieval community. In the general setting
of the problem, a user searches for semantically relevant results
of one modality in response to a query item of another different
modality, e.g., images that visually illustrate the topic of a textual
query, or textual descriptions that concretely describe the contents
of a visual query. Nevertheless, the multi-modal data usually
span in different feature spaces, and such heterogeneous property
has been widely considered as a great challenge to cross-modal
retrieval. In order to eliminate such diversity between different
modalities, an intuitive way is to learn a common latent subspace
so that the mapping features in such subspace can be directly
compared [1], [2], [3]. However, the main drawback of these
subspace methods is the level of computational complexity to deal
with the large-scale and high dimensional multi-modal data.
In recent years, cross-modal hashing [4], [5] is gaining signifi-
cant popularity due to its low storage cost, fast retrieval speed and
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impressive retrieval performance. It aims to transform the high-
dimensional data into compact binary codes and generate similar
binary codes for the relevant samples from different modalities.
Although various kinds of cross-modal hashing attempts have been
investigated to correlate the heterogeneous modalities, it remains a
challenging task to achieve efficient cross-modal retrieval mainly
due to the complex integration of semantic gap, heterogeneity and
diversity within the heterogeneous data samples. For instance,
the feature representations of heterogeneous modalities often
have different physical meanings and numerical dimensionalities
with incomparable space structures. Further, as shown in Fig. 1,
the heterogeneous data may be practically paired (i.e., one-to-
one correspondence) or unpaired (e.g., a text paragraph depicts
multiple images), and the semantics of each sample may be
marked as either single label or multiple labels [6]. Therefore,
the widespread existence of these complex multi-modal data has
significantly increased the demand of more effective cross-modal
hashing technologies to tackle these challenging scenarios.

In the literature, the pioneer cross-modal hashing methods [7],
[8] select to separate the equal-length hash code learning for dif-
ferent modalities, and these works often build a weak connection
between heterogeneous data samples. To mitigate this problem,
the majority of recent cross-modal hashing approaches project the
multi-modal data into a common semantic space and utilize a uni-
fied hash code to represent the heterogeneous data point, in either
supervised fashion where the labels are provided, or unsupervised
fashion where the labels are unavailable. Nevertheless, these
approaches mainly focus on the paired multi-modal collections,
and very little work [9] has been designed to handle the unpaired
multi-modal scenarios. In addition, as shown in Fig. 1, an even
more challenging scenario may arise in cross-modal retrieval, i.e.,
the hash representations from heterogeneous modalities could be
generally encoded and stored by different code lengths in the
database, e.g., a text paragraph is discriminatively encoded by
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Fig. 1. Two typical examples show that one image may be annotated
with multi-labels and one text paragraph may depict multiple relevant
images. Meanwhile, the heterogeneous modalities often have different
feature dimensions, and the hash codes of heterogeneous modalities
stored in database may have equal or unequal lengths in practice.

10 bits while an image by 12 bits. This is practically reasonable
because the feature dimensions of heterogeneous modalities often
differ significantly, which necessitates the different hash lengthes
for better representation. Note that, the high retrieval performance
for many hashing methods empirically depends on the appropriate
selection of code length [10], [11], [12]. On the one hand, the
big length of hash code is able to reduce the false collisions
(i.e., non-neighbor samples falling into the same bucket) and
generally yields high precision. On the other hand, the long hash
representation of a low-dimensional multimedia data significantly
increases the sparsity of the Hamming space, which may induce
potential noise and result in a low recall rate. The main reason
lies in that the collision probability that two codes of similar
instances fall into the same hash bucket decreases exponentially
as the code length increases. An example is illustrated in Fig. 1. It
can be found that two short hash codes of semantically similar
instances derived from heterogeneous modalities result in zero
Hamming distance, while the mappings to long hash length
representations induce nonzero Hamming distance. Under such
circumstances, the long hash codes may result in low recall
performance. Therefore, an inappropriate hash length selection
may make it uncompetitive for challenging cross-modal retrieval
tasks, e.g., a very low-dimensional text query to retrieve high-
dimensional relevant image samples.

Remarkably, the representations of multi-modal data in terms
of unified or equal-length hash codes are the common ways
to facilitate cross-modal retrieval, and it seems that there is
no previous work to surpass such representation assumption. In
practice, the code length is of crucial importance to the quality
of hash codes because it can be treated as a trade-off between
the discriminative power and redundancy. Suppose that the hash
lengths of g1 and ¢o (in general q17#q2) bits with respect to
image and text modalities are optimal for single-modal retrieval,
and the best performance can be acquired when the code length
reaches an optimal number. Under such circumstances, the hash
length setting of ¢ bits (q#q; and g7#q2) will naturally bring
the negative effect to the retrieval performance. An illustrative
example tested on MIRFlickr dataset [13] is shown in Fig. 2, it
can be found that the best retrieval performances are not usually
achieved by large hash codes, and the optimum retrieval results
with respect to each modality are not usually produced by the
same hash length settings. Therefore, the strictly equalized hash
length representation of heterogeneous modalities may inherently
sacrifice their representation capability and scalability because
it cannot guarantee the learned binary codes to be semantically
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Fig. 2. Single-modal retrieval results obtained by Fast Supervised Dis-
crete Hashing (FSDH) [14] and tested with different hash lengths.

discriminative for heterogeneous data representation.

In practice, the feature dimensions of heterogeneous modal-
ities may be significantly different, and such physical difference
heuristically motivates us to consider different hash lengths for
heterogeneous data representations. To the best of our knowl-
edge, varying hash length encoding of multi-modal data and its
application to cross-modal retrieval have yet to be explored. In
this paper, we break the limitations of equalized hash length
representation by allowing varying hash length encoding for
different modalities, and seamlessly treat the paired or unpaired
multi-modal data collections in an integrated way. To this end, a
generalized and flexible hashing framework, termed Matrix Tri-
Factorization Hashing (MTFH), is proposed to facilitate various
cross-modal retrieval tasks. Specifically, MTFH is a two-stage
hashing framework, which allows for less complex formulations
in comparison with the coupled formulations. In the first stage,
MTFH constructs an affinity matrix by semantic label supervision,
either square or non-square, depending on the availability of
paired or unpaired data samples. Then, the modality-specific hash
codes, of either equal or unequal lengths, are jointly learned with
two semantic correlation matrices. In the second stage, kernel
logistic regression is efficiently utilized to learn the hash mapping
functions from feature space to hash code domain. To sum up, the
major contributions of this paper are highlighted as follows:

e A generalized and flexible cross-modal hashing frame-
work is developed, which can work seamlessly in various
retrieval tasks including paired or unpaired multi-modal
data, and equal or varying hash length encoding scenarios.

e MTFH is the first attempt in learning varying hash codes
of different lengths for heterogeneous data comparable,
and the learned modality-specific hash codes are more
semantically meaningful for cross-modal retrieval.

e An efficient discrete optimization algorithm is developed
for MTFH without relaxation, which can well reduce the
quantization error during the hash code learning process.

o Extensive experiments on public benchmarks highlight the
advantages of MTFH under various cross-modal retrieval
tasks and show its comparable or in most cases improved
retrieval performance over the existing counterparts..

The remainder of this paper is organized as follows. In
Section 2, we make an overview of the existing cross-modal
hashing works, and in Section 3 we elaborate the proposed MTFH
framework and its optimization scheme in detail. In Section 4,
we conduct various experiments and comparisons on popular
benchmark datasets. Finally, we draw a conclusion in Section 5.

2 RELATED WORKS

The goal of cross-modal retrieval is to obtain semantically related
data samples in one modality for a query in another different
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modality, and its main difficulty is to explicitly measure the
content similarity between the heterogeneous samples. Since the
heterogeneous data of different modalities often reside in different
feature spaces, an intuitive way is to project the heterogeneous data
into a common subspace and minimizing their heterogeneities.
Along this line, canonical correlation analysis (CCA) [15], aiming
to learn a latent space that can maximize the correlations between
the projected vectors of different modalities, is popularized for
retrieval across different modalities. Accordingly, many reason-
able extensions, e.g., bi-linear model (BLM) [16], latent subspace
analysis (LSA) [1], sparse subspace learning (SSL) [5], [17],
and correlated subspace learning (CSL) [2], [18], have also been
developed. Nevertheless, these methods are generally unsuitable
for processing large-scale and high-dimensional multi-modal data.

Hashing technique [19], [20], [21], favored for its low storage
cost and fast query speed, has recently attracted much atten-
tion in cross-modal retrieval domain. Most prior hashing works
mainly concentrate on producing binary codes for data within
the same modality, e.g., locality sensitive hashing (LSH) [22] and
its kernelized extension [23], spectral hashing [24] and k-means
hashing (KMH) [25]. These hashing methods provide important
theoretical foundations for cross-modal hashing, whose main
challenge is to learn the compact binary codes that can construct
the underlying correlations between heterogeneous modalities. In
the literature, existing cross-modal hashing methods mainly fall
into the modality-independent and modality-dependent branches.
Modality-independent approaches primarily exploit the separate
hash codes and learn the corresponding hash functions for different
modalities individually [7], [8], [26]. For instance, cross-view
hashing (CVH) [8] attempts to learn the independent hash codes
of different modalities while minimizing the similarity-weighted
hamming distances between them. Another representative work
is multi-modal latent binary embedding (MLBE) [26], which
regards the binary latent factors as hash codes and employs a
probabilistic model to learn the hash functions from multi-modal
data independently. However, these methods often build a weak
connection between heterogeneous modalities and their retrieval
performances need further improvement.

Modality-dependent approaches mainly learn the unified or
correlated hash codes to characterize the multi-modal data, which
can be roughly categorized into unsupervised and supervised
branches. Without semantic label supervision, unsupervised cross-
modal hashing intuitively learns the hash codes from original fea-
ture space to Hamming space. For instance, inter-media hashing
(IMH) [6] first exploits the intra-view and inter-view consistency
in a common Hamming space, and then utilizes the linear regres-
sion to generate the hash codes. Collective matrix factorization
hashing (CMFH) [27] employs the joint matrix factorization to
learn the unified hash codes for varying multi-modal data, while
latent semantic sparse hashing (LSSH) [28] produces a unified
hash code via the latent semantic sparse representation. In ad-
dition, fusion similarity hashing (FSH) [29] preserves the fusion
similarity from multiple modalities and learns the semantically
correlated hash codes for heterogeneous data representations.
Although these methods are able to capture the semantic corre-
lations between heterogeneous modalities, the hash codes learned
in an unsupervised way are not discriminative enough and the
corresponding cross-modal similarity is not well preserved in the
Hamming space. Consequently, these approaches are restricted by
the semantic gap that the high-level semantic hash description of
a data sample differs from its low-level feature descriptor, which

therefore degrade the retrieval performance.

Supervised cross-modal hashing often utilizes the semantic
labels or relevance feedbacks to mitigate the semantic gap be-
tween heterogeneous modalities, which can produce more com-
pact hash codes to boost the retrieval performance. Along this
line, semantic correlation maximization (SCM) [12] utilizes the
label information to maximize the semantic correlation, while
semantic preserving hashing (SePH) [30] constructs an affinity
matrix by label supervision to approximate hash codes. In addi-
tion, co-regularized hashing (CRH) [10], parametric local multi-
modal hashing (PLMH) [11], heterogeneous translated hashing
(HTH) [31], quantized correlation hashing (QCH) [32], supervised
matrix factorization hashing (SMFH) [33] and hetero-manifold
regularisation hashing (HMRH) [34], have also been developed
for cross-modal retrieval. It is noted that these supervised methods
transform the semantic information of given labels into pairwise
similarities and slightly relax the original discrete learning prob-
lem into a continuous learning manner, which may yield less
effective binary codes due to the accumulated quantization error.
To resist such optimization problem, discrete cross-modal hashing
(DCH) [35] and cross-modal discrete hashing (CMDH) [36] at-
tempt to directly learn the compact binary codes under a discrete
optimization framework. However, these two methods are only
designed for the paired multi-modal instances. To adapt unpaired
multi-modal data collections, recent generalized semantic preserv-
ing hashing (GSePH) [9] factorizes the supervised affinity matrix
to handle four different cross-modal retrieval scenarios, i.e., single
label-paired (SL-P), single label-unpaired (SL-U), multi label-
paired (ML-P) and multi label-unpaired (ML-U) scenarios. Similar
to most previous works, this method encodes the multi-modal
data with equal hash lengths, which may limit its representation
discriminability and scalability in real-world applications, for
reason that the data from different modalities may be practically
stored by different hash lengths.

In recent years, deep neural networks have also been ex-
ploited to achieve cross-modal hashing [37], [38], [39]. Differing
from conventional cross-modal hash learning methods, these ap-
proaches attempt to combine the high-level feature learning and
hash code learning in an integrated way, whereby the feature
representations can be optimized with hash code learning through
error back-propagation. Although these deep methods have shown
outstanding performance on many benchmarks, they are always
constrained by computational complexity and exhaustive search
for learning optimum model parameters. Another potential lim-
itation is that these approaches cannot well close the semantic
gap between the Hamming distance on binary codes and the
metric distance on high-level representations. In addition, these
methods generally utilize the unified hash code to represent the
heterogeneous data points and depend highly on paired multi-
modal data collections. Therefore, it is still desirable to develop a
flexible cross-modal hashing framework practically.

3 MATRIX TRI-FACTORIZATION HASHING

Hashing maps the high-dimensional features into low-dimensional
binary codes, while preserving the similarities of data from orig-
inal space. Although multi-modal relevant data often share the
similar semantics, the heterogeneous data samples may not have
one-to-one correspondence and their corresponding hash codes
could be practically stored in different lengths. As a typical multi-
modal data processing method, matrix factorization [27], [33]
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Fig. 3. The proposed generalized and flexible MTFH framework, which explicitly correlates the heterogeneous modalities. Note that, MTFH can
handle both paired or unpaired multi-modal data collections, and equal or varying hash length encoding scenarios.

has shown its effectiveness for cross-modal hashing, but often
limits its application domain in unified hash code learning and
paired multi-modal data collections. To the best of our knowledge,
there has been no previous work on exploring varying hash codes
of different lengths for cross-modal retrieval. In this section,
we present an efficient matrix tri-factorization hashing (MTFH)
framework to facilitate various kinds of cross-modal retrieval
tasks, which can work seamlessly in various settings including
paired or unpaired multi-modal data collections, and equal or
varying hash length encoding scenarios. To integrate all these
challenging tasks, we describe the proposed MTFH framework
with only two modalities and its extension problem will be
carefully discussed in Section 4.10. The schematic pipeline of the
proposed cross-modal retrieval framework is shown in Fig. 3.

3.1

Suppose that we have training data with two different modalities
XeR™ %% and YER™ %2 with ny, ny (in some cases 14 #ns)
being the numbers of data samples and dy, do (in general d;#ds)
the feature dimensions of these two modalities, respectively. The
provided training labels for both modalities are L, € R™*¢ and
L, € R *¢ where c is the number of semantic categories. More
specifically, only one of the c entries is equal to 1 if the data is
annotated with single semantic label (e.g., L¢ = [0 0 1 0 0]), and
more than one entries will be equal to 1 if this data is marked with
multiple semantic labels (e.g., L, = [1 010 1)).

As suggested in [30], the semantic affinity matrix with em-
bedding supervision can be efficiently utilized to learn hash codes
of training instances. Accordingly, we first construct an affinity
matrix S;;=(L,LJ) or Sij:eﬂ'L;*Lg“g/” for both single
and multi-label retieval tasks, where (-,-) is the normalized
inner product and o a constant factor. As demonstrated in [9],
an effective hash code learning scheme is to find the optimal
hash codes from SE€R™ *"2 directly and attempt to factorize S
as: S—>%UBT, UcR™*a1 B€R™2%9  where the rows in U
(resp. B) are the hash codes for the items in X (resp. Y) and ¢q; is
length of hash code. Note that, the values of hash codes are often
mapped into {—1, 1} for simple computation, and it can be easily
mapped into {0, 1}. It is noted that such a factorization can only

Notations and Problem Formulation

generate the hash codes of equal length for multi-modal instances,
which is unsuitable for different hash length encoding scenario.

Let ¢o (in general go7q;) represent another code length and
VER™ %42 ig the targeted hash matrix of Y, it is imperative to
learn the correlation between B and V. Since the rows of both B
and V characterize the hash codes of the same instance, they share
the semantic consistency intrinsically. Therefore, we consider a
semantic correlation matrix H; €R7 %% to map VT into BT,
ie, HHVT BT, and propose to factorize S into three matrices:
S%q%UHlVT. Such a decomposition is a typical matrix tri-
factorization (MTF) form [40], [41], and H; can map the hash
code length of Y from ¢2 to g1, while maintaining the semantic
consistency. For cross-modal retrieval with different hash lengths,
it is also necessary to map the hash code length of X from ¢; to
qo. Further, we rewrite %UH1VT as q%U(g—le)VT, and the
length of rows in U(q—le) becomes ¢o. That is, H; serves as
a function of building the semantic connection between two hash
representations in the same modality and ensuring the heteroge-
neous data comparable between different modalities. Nevertheless,
it is infeasible to derive a single H; to maintain the semantic
consistency between different hash representations for both X and
Y. To tackle this problem, we propose to utilize another semantic
correlation matrix Hy€R% %92 for the semantic correlation in X,
and alternatively factorize S as: S‘)%UHZVT. It is noted that
these triple decompositions have the constraint that the elements
of U and V take values in {—1, 1}, and such two factorizations
might not exist. To mitigate these problems, we consider the
following regularized least squares problem:

min_ aS— L UH, VT |24 (1-a)[S—~ UH, VT2
U,V,H,,H qn q2
st. Ue{-1,1}""0 Ve{-1,1}"2*®
VHTe{-1,1}"2*% UHye{—1,1}m*®
ey
where || - || is the Frobenius norm, and « a constant to bal-
ance two learning parts. Remarkably, the objective function in
Eq. (1) is essentially a challenging combinatorial optimization
problem, which is highly non-convex (usually NP hard) and
cannot be solved trivially by an off-the-shelf solver. Often, a
possible solution might involve a deep search of optimal values,
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which is computationally intractable [42]. Since there are several
discrete constraints in Eq. (1), especially VHT €{—1,1}"2*%
and UHy€e{—1, 1}™ > it is impractical to obtain their optimal
solutions s1multaneously To tackle this problem, we introduce
two auxiliary variables Uand V to separate these constraints and
reformulate the Eq. (1) to an approximated one that it can be
solved efficiently by employing a regularization algorithm:

‘min aHS——UUTHF—&—(l a)||S——VVT||F
U,v,U,V.H, H,

+ B010 — VETB+ |9 ~ URGIR)
+ A(H: |5 + [H2 )

st. Ue{-1,1}"""9 Ve {-1,1}""
ﬁ c {_1’ 1}’n2><(]1"<\/' c {_1’ 1}711 X q2

where [ is the penalty parameter and A the regularization parame-
ter. With an appropriate 3, the solution of Eq. (2) is highly close to
Eq. (1). However, the optimization in Eq. (2) is still formulated as
a mixed-integer optimization problem, which is still non-convex
and normally intractable due to the discrete constraints on binary
codes. In order to simplify the optimization in Eq. (2) and obtain
a feasible solution, an intuitive way is to replace the constraint
set {—1, 1} with the continuous valued interval [—1, 1] and make
the problem computationally tractable. Although this relaxation
scheme greatly reduces the hardness of the optimization by dis-
carding the discrete constraints, the approximated solution may
accumulate large quantization error as the code length increases.
Under such circumstances, the generated binary codes are less
effective [43], which may significantly degrade the cross-modal
retrieval performances. This is mainly because the discrete con-
straints are not treated adequately during the learning procedure.
As introduced in [35], [43], the discrete optimization technique is
able to learn the binary codes directly under discrete constraints,
while simultaneously reducing the quantization error. Inspired
by these works, we propose an efficient discrete optimization
algorithm to solve Eq. (2), and alternately minimize the variables
by an iterative framework until the convergence is reached.

2

3.2 Optimization Phases

The optimization problem in Eq. (2) is a mixed binary opti-
mization problem, which is non-convex with respect to matrix
variables U, V, U V H; and H>. Remarkably, it is convex
with respect to any single variable while fixing the other ones.
Accordingly, an alternating optimization technique can be adopted
to iteratively and efficiently solve the optimization problem until
the convergence is reached. In the following, we elaborate the
proposed discrete optimization algorithm in details. R

H-step: Learn H; and Hs by holding U, V, U and V fixed,
then the sub-optimization problems derived in Eq. (2) becomes:

min B|U — VH] |7 + A Hl[%, o

wmin BV — UL [} + \Ha 3.

Accordingly, H; and Hy can be computed by a regularized
linear regression respectively, and their closed-form solutions are:

H, = UTV(VTV + 287D @
H, = (UTU 4+ A8 )" 1UTY,

where 1 is an identity matrix.

U-step: Learn U by fixing variables V, ﬁ, \7, H,,H,, and
the sub-optimization of Eq. (2) is further simplified as:

: L2 v 2

min oS = UU [k + 5[V - UH:|[& )
st. Ue{-1,1}mxa,

The problem in Eq. (5) is NP-hard for directly optimizing the

binary code matrix U. As indicated in [43], a closed-form solution

for one row of U can be achieved by fixing all the other rows. By

expanding each item, we can rewrite Eq. (5) as follows:
2 ~ N
min S|} — “T(STUTT) + 5 |UTT3,
U q1 a7

N N 6
+ BIVIZ — 28Te(VIUH,) + g[UH, 2 ©
st. Ue{-1,1}mxan

where Tr(+) is the trace norm. According to the algebraic operation
of the trace, Eq. (6) can be further simplified as:

min U0 + §|URL 3 — 2Te(P, V)
v (N
s.t. U e{-1,1}m*n
where PlzﬁﬁTST—i—ﬁHg\AfT. Specifically, coordinate descent
method has received extensive attention in recent years due to its
effectiveness for solving large-scale optimization problems [44].
As suggested in [35], [43], we can learn U bit by bit and the
discrete coordinate descent method can be utilized for optimiza-
tion [43]. Without loss of generality, let u and U denote the [-th
column of U and U, h, and p; represent the [-th row of H; and
P,, U’, U’ and H), are the corresponding matrices of U, U and
H,, respectively, excluding u, U and hy, we have

IUTT||2 = const + [[uti”|| + 2Tr(T'U T un")

= const + 26T 0'U " u ®
|[UH,||% = const + ||uhy||* + 2Tr(H’2TU’Tuh2)
= const + 2h, H}, UM )
Tr(P,U) = const + piu, (10)

where [[ut?|? = Tr(GuTuti®) = n;Tr(UuT) = nyxny =
const, |[uhy||? = Tr(hJuTuhy) = n1Tr(hihy) = const.

By integrating Eq. (8), Eq. (9) and Eq. (10) together, we obtain
the following optimization problem:

(q aTUU" + phoH, U — py )
1

min
u 1)
st ue {-1,1}".
Then, the solution of u can be computed by
u = sign <p1 — —U’(U’) — BU'H} hT> (12)
q

U-step: Fix U,V, V7 H,, H,, and update U, then the sub-
optimization problem in Eq. (2) becomes

1. .

min oS — —UU"||% + 6||U - VHT ||%
U ¢ 13)

sit. Ue{-1,1}"*%,

Similarly, a closed-form solution for one row of ﬁ can be
achieved by fixing all the other rows. By expanding each item, we
can rewrite Eq. (13) as follows:

20

min of S|z — Z2T(STUTT) + S| UTT2
U q1 q7

. 14
+ 8] 0)% — 28T(UTVHT) + g vET|Z 1Y

st. Ue{—1,1}m7a,
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Since affinity matrix S is a fixed item and HIAJH% =ngXq =
const, the above equation can be further simplified as:
« ~ ~
min 5 |UTT |3 - 21e(P, )
U ?\1 (15)
st Ue {—1,1}mxn
%UTS + BH,VT. Let py denote the I-th row

-~

of Py, we can obtain Tr(P2U) = const + p2u. According to
Eq. (8), the solution of U can be achieved by:

U = sign <p2T — (%IAJ’U’Tu) :
1

where Py =

(16)

V-step: Learn V by fixing the variables U, ﬁ, \A/', H, H,,
the sub-optimization problem in Eq. (2) can be simplified as:
1 ~ .
min (1-a)||S——VVT|%+8|U - VH] ||
in (1 a))l$ — - VVT3+ 5 M
st. Ve{-1,1}"xe,
Similarly, a closed-form solution for one row of V can be
achieved by fixing all the other rows. By expanding each item, we
can rewrite Eq. (17) as follows:

21— «)
2

min (1 a)|IS|% - Tr(STVVT)

(1-a)
+
a3
—2pTe(UTVHY) + 8| VH] ||%
st Ve {—1,1)mxe,

Since S and ﬁ are the fixed items, the above equation can be
further simplified as:

« ~

o [VVTI[E + BIVH |7 — 2Te(P5V)

‘5 19)
st. Ve {-1,1}2xa

where sz%VTS + 5H?IAJT Without loss of generality,

let v, v and h; denote the t¢-th column of V, \:7 and H;
respectively, p3 represent the t-th row of Pj, V', V' and H)
are the corresponding matrices of V, V and H; respectively
excluding v, ¥V and hy, we have the following equations:

IVVT||% = const + ||[vvT||? 4 2Tr(V/ (V') T9vT)

IVVTIE + 8U]% (18)

min
v

~ (20)
= const + 2vTV/(V)T¥
[VHT||2. = const + ||vhT || + 2Tr(H, V' vh]) on
= const + Qh?HiV/Tv
Tr(P3V) = const + p3v. (22)

By integrating the Eq. (20), Eq. (21) and Eq. (22) together, we
can obtain the following optimization problem:
. 1_aATA/ /T Tyy/ 7T )
min v'V'V' +h;H; V'™ — v
(5 VT p) vy
st. ve{-1,1}".
Then, the solution of v can be calculated as:

1— ~
v = sign (p}f - qQO‘V’(V’)TG - BV’H’IThl) .2
2

\A/'-step: Fix U7V,IAJ,H1,H2, and update \A/', then we get
the following sub-optimization problem:
1 ~ N
min (1 —a)||S— —VVT|% + 8|V — UH,||2
i (1—-a - I+ Bl 17 )
st. Ve{-1,1}mxe,

By expanding each item, we can rewrite Eq. (25) as follows:
2(1 — PN
min (1= a)|S|% — 21 = YrygTyvT)
v qz
(1-a)
%

— 23Te(VTUHy) + §||UH: |7

ot Ve {—1,1pmxe.

+ IVVEIE +BIVIE (26)

Since S is a fixed item and ||V||% = njxga = const, the
above equation can be further simplified as:

o, -~ ~
VVTZ — 2T (P,V
2 | |7 (P4V) on

st. Ve {—1,1}mxe
where P4:1;—2QVTST+BH;FUT. Let p4 denote the k-th row

of P4, we can obtain Tr(P4V) = const + p4V. By integrating
Eq. (20), the solution of ¥V can be computed by:

- 1- N
V = sign <p4T - aVV'TV') )
q

min
v

. (28)
2
Accordingly, the optimum elements in Eq. (2) can be obtained

iteratively via alternating minimization techniques.
Algorithm 1 The Proposed E-RCD for Hash Code Updating

input: hash matrix B € {1, —1}"*%, ensemble round r;
output: updated hash matrix ]3;

1: denote by as the [-th column of B;

2:for T=1:7r do

3: independent selection at each iteration;

4: repeat

5: choose index [ with uniform probability from {1,--- , q};
6: update b] via discrete hash learning;

7: until (all columns are updated )

8: end forA

9: return B = sign{B' + B2 +--- + B"}.

3.3 Updating Scheme

During the coordinate descent optimization, only one variable
is updated at each iteration, while all the others remain fixed.
There are several strategies to select the coordinate index, in-
cluding cyclic coordinate descent (CCD), randomized coordinate
descent (RCD) and greedy coordinate descent (GCD) [45]. More
specifically, CCD updates variables in a cyclic order, while RCD
chooses variables randomly based on some distribution. Differ-
ently, GCD measures the coordinate index by the magnitude of
gradient. Since the optimization in our framework is a discrete
optimization problem, GCD scheme is improper for this case.
In [35], [43], discrete cyclic coordinate (DCC) descent scheme
is selected to update the binary hash codes. Remarkably, DCC
is still an approximated solution to discrete hashing and may fall
into a local minima [35], [44]. To alleviate the possible trapping in
local minimum, a straightforward way is to repeat the optimization
procedures several times with different random initializations. As
discussed in [45], empirical studies have proved that RCD locally
converges to the global minimum at a geometric rate with high
probability. Specifically, we utilize the ensemble RCD (E-RCD)
to derive the hash codes more reliably.

Let Be{1, —1}"*1 be the representative symbol of updating
hash code matrix, where n is the number of learning samples and
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q is the code length. Accordingly, the optimization procedure of
the proposed E-RCD is explicitly summarized in Algorithm 1.
Please note that a large number of rounds in ensemble learning
could increase the computational load during the updating process.
Fortunately, it is practically adequate to run only a few rounds
(e.g., =3) in ensemble updating process. Consequently, each
elements in Eq. (2) can be obtained iteratively by repeating
each updating process until the procedure converges or reaches
maximum iterations. The main procedures of the proposed MTFH
approach are summarized in Algorithm 2.

Algorithm 2 Matrix Tri-Factorization Hashing (MTFH)

input: S € {1,0}"*"2 ¢y, g2, parameters «, [3;

Olltpllt U A% Hl, HQ,

1: initialize Hy, Hy as random matrices, and U, V, U V as
binary random matrices with elements in {—1,1};

2: repeat

update Hy, Hy via Eq. (4);

4:  compute u via Eq. (12), update U via Algorithm 1;

5: compute U via Eq. (16), update U via Algorithm 1;

6:  compute v via Eq. (24), update V via Algorithm 1;
7.

8

9

: compute V via Eq. (28), update V via Algorithm 1;
: until (convergency or reaching maximum iterations)
:return U, V, H,, Hs.

3.4 Learning Hash Functions

The hash function builds the mapping relation from input features
of each modality to binary codes [46]. In general, learning hash
functions for any bit of the hash code can be transformed into a
predictive model learning process, and any binary classifier such
as linear projections or non-linear projections can be selected to
learn the hash function. In the literature, many different hash
functions are explored and the most common hash function is
the linear hash function, which projects the input feature vector
by a linear transformation followed by an element-wise sign
operation. Although linear hash function is very simple to use,
it cannot capture the nonlinearity embedded in real-world data.
To handle non-linear mapping, kernel logistic regression, capable
of modelling non-linear mappings, is popularized to learn the
projections from features to hash codes [7], [30]. For simplicity,
we select modality X for illustration. That is, a non-linear function
¢ first maps the sample x; into the reproducing kernel Hilbert
space (RKHS) as ¢(x;), and then a linear function f in the RKHS
space brings the input to the hash code domain. To learn such
projection in RKHS for the k-th bit (1 < k<g7), we need to learn
the projection f,({k) by minimizing the following function:

manlog 1+ (fb( Jo(xi) f(k) (29)

x

el

where bgk)e{—l,l} is the i-th entry in b(*), and 7 is
a parameter for weighting the regularizer. For features com-
ing from modality X, we can learn a set of hash functions
Fx {f(l), (2), . ,(:“ }+. Similarly, We can also learn a set
of hash functions F'y={f (1), >('2)7 . y } to map the features
from Y to the hash code domain. For the testing data x and y
coming respectively from X and Y modalities, the hash codes
can be computed as: hyx=sign(Fx (x)) and hy=sign(Fy (y)).

3.5 Hash Codes for Out-of-Sample Extension
For any data point not in the training set, we can predict its
hash code with the corresponding probability obtained from kernel
logistic regression. For instance, given an unseen instance x from
the modality X, the corresponding output probability for the k-th
bit of its predicted hash code Al can be calculated as:

Pr(hf = blx) = (14 ¢ 00K ) (30)

where be{—1,1} denotes the binary state in hash code and

,(ck) is the k-th projection function in kernel logistic regression.
Accordingly, for unseen instances, x and Yy, respectively, from
modalities X and Y, we can get their corresponding hash codes

hE at the k-th bit and h; at the ¢-th bit as follows:
hE = sign(Pr(hk = 1|x) — Pr(hf = —1|x))
hy, = sign(Pr(h, = 1|y) — Pr(hj, = —1[y)).
These two modality-specific hash codes are learned indepen-
dently for single-modal retrieval, and their hash lengths may
be different. Fortunately, with semantic correlation matrices H;

and Ho, these hash codes can be further transformed into the
semantically equivalent patterns to adapt to cross-modal retrieval:

Iy = sign(hyxHs), ﬁy = sign(hy HY). (32)

€2V

3.6 Complexity Analysis

The computational complexity of the proposed MTFH framework
mainly involves the optimization in the training phase. The time
complexity of each iteration consists of updating {H,,H,},
U, U, V and V, which respectively, involves the computa-
tional complexity of O(q?n+q¢3), O((¢*n+¢3n)r), O(¢*nr),
O((¢?>n+¢*n)r) and O(g*n?r), where n=max(ny,ns),
g=max(q1, q2) and 7 is ensemble round. Therefore, the overall
complexity is approximated as O((r¢?n?+(r¢®+q¢®)n+q¢>)t),
where ? is the number of iterations to convergence and it is usually
less than 20 in practice. In most experiments, the final solution
does not substantially change if we utilize a large round number,
and therefore it is appropriate to set the ensemble round r at
a very small value (e.g., 7=3). Therefore, the proposed discrete
optimization scheme is suitable for practical cross-modal hashing
tasks, and more discussions concerning to the large-scale data
processing will be included in Section 4.10.

4 EXPERIMENTS

In this section, we conduct a series of quantitative experiments on
public benchmarks and validate the effectiveness of the proposed
approach on various challenging retrieval tasks. The source code
is made publicly available at: https://github.com/starxliu/MTFH.

4.1 Datasets and Evaluation Protocol

In the experiments, three popular multi-modal datasets, i.e., Wiki!,
MIRFlickr?> and NUS-WIDE?, are selected for testing, and the
main description of each dataset is briefly described as follows:
Wiki dataset consists of 10 categories and 2,866 image-text
pairs from the public Wikipedia articles [2]. Specifically, the image
is described by a 128-dimensional SIFT feature vector, while the

1. http://www.svcl.ucsd.edu/projects/crossmodal/
2. http://press.liacs.nl/mirflickr/
3. http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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text article is characterized by a 10-dimensional feature vector that
is computed by the Latent Dirichlet Allocation (LDA) model. The
whole Wiki dataset is split into a training set of 2,173 instances
and a testing set of 693 instances.

MIRFlickr dataset comprises 25,000 image-text pairs col-
lected from the popular Flickr website [13], where the images are
annotated with textual tags. Specifically, each image is described
by a 150-dimensional edge histogram descriptor, while the text is
represented by a 500-dimensional feature vector derived from its
binary tagging vectors. Each image-text pair is annotated with one
or more of 24 semantic labels. As suggested in [30], we remove
the instances whose textual tags appear less than 20 times or label
is not annotated, and take out 5% of the dataset as the query set
and the remaining parts as the training set.

NUS-WIDE dataset includes 269,548 image-text pairs with
81 manually annotated concepts in total [47]. Specifically, each
image is represented by a 500-dimensional SIFT feature vector,
while each text is described by a 1000-dimensional bag-of-words
(BoW) vector. Since some of the labels are scarce and a large part
of concepts contain little samples, 186,577 annotated instances are
selected from the top 10 most frequent concepts to guarantee that
each concept has abundant training samples (abbreviated as NUS-
WIDE-AIl). As NUS-WIDE-all is a larger dataset, it is generally
impossible to learn the hash functions on the whole database.
Therefore, we randomly select 100,000 labeled image-text pairs
from NUS-WIDE-all database to construct a small dataset (ab-
breviated as NUS-WIDE-100k), with 5% pairs as the query set
and the remaining parts as the training set. For NUS-WIDE-all
dataset, we keep the training samples and testing samples as the
same as the selection in NUS-WIDE-100k, and utilize the learned
hash functions to generate the hash codes of remaining samples.

The quantitative performance is evaluated by the popular mean
Average Precision (mAP) over all queries in the query set [30]:
n% S mi i p(k)o(k), where ng is the sample size of
query set, m; is the number of ground-truth neighbors relevant
to query ¢ in the database, p(k) denotes the precision of top
k retrieved results, and 0(k)=1 if the k-th retrieved sample is
relevant, otherwise §(k)=0. Given a query of one modality, the
goal of each cross-modal task is to find the relevant neighbors from
the database of another modality. That is, the relevant instances
corresponding to a given query are defined as those share as least
one semantic label with the query. The larger mAP generally
indicates the better retrieval performance. We take the testing
set of one modality as the query set to retrieve the relevant
data of another modality, including retrieving text with given
image (I—T) and retrieving image with given text (T—1). In the
experiments, we fix a=0.5, A=0.1 and =0.1.

4.2 Baseline Methods

As surveyed in Section 2, there exist many cross-modal hashing
works. It is noted that the recent deep cross-modal hashing
methods integrate the high-level feature learning and hash learning
together, and our framework is totally different from those works.
In that sense, it is really difficult to perform a relatively fair
and meaningful comparison with these approaches appropriately.
Specifically, we compare the proposed MTFH with eight well
known cross-modal hashing methods, including two unsupervised
methods, i.e., CMFH [27] and FSH [29], and six supervised
approaches, i.e., SMFH [33], SCM [12], SePH [30], GSePH [9],
DCH [35] and SRLCH [48]. Those algorithms have been briefly

introduced in Section 2 and considered to be the current state-
of-the-arts in cross-modal hash learning. Note that, some other
competitive works are already reported within these works.

For the selected baselines, we utilize the source codes kindly
provided by the respective authors. The parameters are initialized
as the authors have given in their original papers. As SePH [30]
and SMFH [33] are computationally expensive, it is difficult to
learn their corresponding hash functions on a larger training set.
For the implementation of these two works, we follow their data
processing suggestions and sample a subset of 5000 instances,
respectively from the retrieval sets of larger MIRFlickr and NUS-
WIDE datasets, to form the training sets. For the other baselines,
the training samples are initialized as the same as in the data
description. All the experiments are implemented using MATLAB
and conducted on a computer running at an Intel Xeon®) E5-2609
1.90GHz processer with 128 GB memory. In the experiments,
we perform five runs for each algorithm and take the average
performance for illustration.

4.3 Results of Equal Hash Length Encoding

As surveyed in Section 2, almost all existing cross-modal hashing
methods choose either unified or equal-length hash codes for
multi-modal data representation. For fair comparison, we first set
q1=q2 to learn the equal-length hash codes and vary the hash
length from 16 to 128 bits (i.e., 16, 32, 64 and 128). Meanwhile,
we select both random (rnd) and k-means (km) sampling scheme
in kernel logistic regression, and record the mAP scores on
all four benchmark datasets. Table 1 displays the quantitative
comparisons of cross-modal retrieval performances with state-of-
the arts baselines, while Fig. 4 shows their precision-recall curves.
It can be found that the proposed MTFH approach has achieved the
comparable cross-modal retrieval performances in different hash
length settings, and outperformed most baselines, i.e., CMFH [27],
SMFH [33], FSH [27], SCM [12], SePH [30] and GSePH [9].
For the small Wiki dataset, DCH [35] has yielded very
competitive mAP scores in [=T task (i.e., 32, 64 and 128 bits),
while SRLCH [48] has resulted the larger mAP scores in T—I
task (i.e., 16 and 32 bits). However, their retrieval performances
often degrade on the larger datasets. Comparatively speaking, the
proposed MTFH approach has delivered very competitive cross-
modal retrieval performance on the Wiki dataset, and simultane-
ously yielded the best retrieval performance on the larger datasets.
The main reason lies that the Wiki dataset is a single-label dataset,
while the other datasets are multi-label databases. For single-label
dataset, some examples belonging to only one semantic label may
have significantly different features. Under such circumstances,
the features can be utilized to increase the discrimination power
of hash code learning. Therefore, DCH and SRLCH are designed
to jointly learn the hash functions and unified binary codes, which
can produce very promising results on the Wiki dataset. For the
multi-label dataset, the semantic labels are able to depict each
instance, and the modality-specific hash codes derived from the
proposed MTFH approach are more semantically meaningful than
those generated from DCH and SRLCH. As a result, the proposed
MTFH has yielded the best retrieval performance on the larger
datasets. For T—1 task, the mAP scores obtained by the proposed
MTFH_km approach are higher than 0.80 and 0.75, respectively
evaluated on the MIRFlickr and NUS-WIDE-100k datasets. For
the largest NUSWIDE-AIl dataset, the hash codes of out-of-
sample data can be well obtained and the proposed MTFH method
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TABLE 1
Quantitative comparisons of cross-modal retrieval performance (mAP) on different datasets, and the best results are highlighted in bold.

Task|  Method Wiki

MIRFlickr

NUS-WIDE-100k NUS-WIDE-All

16 32 64

128 16 32 64

128 16 32 64 128 16 32 64 128

CMFH [27]
SMFH [33]
FSH [29]
SCM_orth [12]
SCM_seq [12]
SePH_rnd [30]
SePH_km [30]
GSePH_rnd [9]
GSePH_km [9]
DCH [35]
SRLCH [48]

0.2172 0.2231 0.2316
0.2698 0.2900 0.2929
0.2235 0.2316 0.2408
0.1561 0.1416 0.1336
0.2341 0.2410 0.2445
0.2702 0.3013 0.3135
0.2770 0.2964 0.3153
0.2690 0.2906 0.3101
0.2778 0.2882 0.3044
0.3410 0.3692 0.3710
0.3268 0.3345 0.3225

0.2395
0.3009
0.2474
0.1339
0.2569
0.3181
0.3138
0.3001
0.3040
0.3783
0.3381

0.5683
0.5913
0.5893
0.5899
0.6280
0.6727
0.6736
0.6544
0.6460
0.6777
0.6166

0.5684
0.5997
0.6027
0.5800
0.6345
0.6804
0.6789
0.6664
0.6649
0.6730
0.5924

I-T

0.5687
0.5956
0.6006
0.5738
0.6385
0.6799
0.6822
0.6768
0.6725
0.6883
0.6526

0.5693(0.3428 0.3434 0.3433
0.5986 | 0.3612 0.3613 0.3628
0.6022 | 0.4927 0.4986 0.5015
0.5689 | 0.3990 0.3813 0.3666
0.6490|0.5275 0.5414 0.5481
0.6857(0.5347 0.5472 0.5533
0.68510.5381 0.5517 0.5556
0.684210.5194 0.5399 0.5489
0.6835|0.5018 0.5370 0.5595
0.688510.5706 0.5939 0.5982
0.6327]0.4362 0.4572 0.4506

0.343210.3658 0.3689 0.3689
0.3635|0.3668 0.3678 0.3690
0.5057{0.4930 0.5000 0.5093
0.3572|0.3975 0.3787 0.3665
0.5498 1 0.5266 0.5378 0.5406
0.5574|0.5264 0.5389 0.5539
0.5654|0.5357 0.5526 0.5681
0.5699 | 0.4997 0.5436 0.5428
0.5715|0.5006 0.5408 0.5571
0.6072|0.5108 0.5383 0.5480
0.46120.3478 0.3517 0.3513

0.3681
0.3692
0.5133
0.3559
0.5436
0.5527
0.5724
0.5496
0.5590
0.5501
0.3582

MTFH_rnd
MTFH_km

0.3260 0.3523 0.3454
0.3413 0.3533 0.3511

0.3388
0.3349

0.7515
0.7471

0.7568
0.7606

0.7592
0.7651

0.7636 | 0.6507 0.6557 0.6744
0.7676 | 0.6554 0.6591 0.6759

0.6741]0.5949 0.6144 0.6243
0.6751|0.6021 0.6184 0.6282

0.6228
0.6271

CMFH [27]
SMFH [33]
FSH [29]
SCM_orth [12]
SCM_seq [12]
SePH_rnd [30]
SePH_km [30]
GSePH_rnd [9]
GSePH_km [9]
DCH [35]
SRLCH [48]

0.4902 0.5077 0.5173
0.6085 0.6274 0.6308
0.4805 0.4804 0.5127
0.1521 0.1330 0.1258
0.2257 0.2459 0.2494
0.6428 0.6493 0.6570
0.6402 0.6543 0.6585
0.6478 0.6644 0.6679
0.6445 0.6639 0.6683
0.6980 0.7160 0.7172
0.7132 0.7184 0.7330

0.5348
0.6445
0.5182
0.1207
0.2535
0.6672
0.6674
0.6762
0.6755
0.7195
0.7437

0.5646
0.5890
0.5865
0.5893
0.6176
0.7252
0.7313
0.6894
0.6663
0.7455
0.6004

0.5652
0.5909
0.5970
0.5802
0.6234
0.7306
0.7320
0.7046
0.7113
0.7559
0.5796

T—I

0.5649
0.5915
0.5965
0.5719
0.6285
0.7374
0.7381
0.7313
0.7269
0.7825
0.6342

0.5653(0.3464 0.3472 0.3473
0.595410.3524 0.3524 0.3529
0.5969 | 0.4751 0.4785 0.4822
0.5661|0.3873 0.3714 0.3602
0.6369 | 0.4952 0.5076 0.5157
0.7397|0.6231 0.6491 0.6577
0.744210.6310 0.6546 0.6628
0.7367 | 0.5871 0.6234 0.6419
0.7441]0.5595 0.6379 0.6593
0.79210.6939 0.7276 0.7287
0.6053|0.5175 0.5346 0.5423

0.347410.3687 0.3698 0.3692
0.35380.3587 0.3593 0.3606
0.4879(0.4729 0.4807 0.4883
0.357410.3883 0.3699 0.3589
0.5174]0.4956 0.5031 0.5124
0.6654|0.6103 0.6360 0.6507
0.6702|0.6143 0.6428 0.6533
0.6638 | 0.5720 0.6334 0.6308
0.6764 | 0.5780 0.6289 0.6482
0.747310.4926 0.5171 0.5254
0.54700.3467 0.3466 0.3469

0.3698
0.3605
0.4909
0.3546
0.5104
0.6487
0.6649
0.6442
0.6550
0.5298
0.3471

MTFH_rnd
MTFH_km

0.7037 0.7150 0.7365
0.7020 0.7134 0.7339

0.7399
0.7368

0.7965
0.8044

0.8067
0.8146

0.8198 0.8303
0.8172

0.7486 0.7760 0.7912
0.7567 0.7797 0.7945

0.7938]0.6788 0.6980 0.7213
0.8044 | 0.6973 0.7096 0.7326

0.7201

0.8352 0.7307

has also delivered the best cross-modal retrieval performances.
The main superiorities contributed to these very competitive
performances are three-fold: 1) The modality-specific hash codes
derived from MTFH are more discriminative and interpretable to
characterize the heterogeneous data samples, while the unified
hash representation may degrade their representation capability to
represent both modalities. 2) MTF is more beneficial for revealing
the latent structures within the heterogeneous samples, which
can well characterize the native relations between data samples
within the same modality and correlate the semantics between
heterogeneous samples. Accordingly, the hash codes learned by
the MTFH are more semantically meaningful than that generated
by traditional matrix bi-factorization methods [9], [27]. 3) The
hash functions learned from the discriminative hash codes are
more efficient for mapping from features to hash codes, whereby
the hash codes for out-of-sample data can be well computed.

As suggested in [35], we further utilize mAP@K and topK-
precision to measure the retrieval performances within the top-
ranked K retrieved items. Specifically, topK-precision reflects the
change of precision with respect to the number of top-ranked K
instances presented to the users. For these two metrics, larger value
generally indicates the better retrieval performance. As displayed
in Table 2, we record the representative mAP @350 values in typical
MIRFlickr and NUS-WIDE-100k datasets. It can be found that
the proposed MTFH approach yields the comparable mAP@50
values with DCH when tested on MIRFlickr, and outperforms the
state-of-the-art baselines on NUS-WIDE-100k. Meanwhile, the
representative topK-precision curves (i.e., 32 and 128 bits) are
shown in Fig. 5, it can be seen that the proposed MTFH method
always yields the highest precision scores than the baselines with
the number of retrieved instances (K) changes. This indicates
that the proposed MTFH approach is capable of returning much
more similar samples at the beginning, which is very important
for a practical retrieval system. Therefore, the proposed MTFH
associated with equal hash length setting is very competitive to

TABLE 2
Representative cross-modal retrieval performance (mMAP@50) obtained
by different approaches, and the best results are highlighted in bold.

MIRFlickr NUS-WIDE-100k

Method 1-T T—1 1-T T—1

32 128 32 128 32 128 32 128

CMFH [27]
SMFH [33]
FSH [29]
SCM_orth [12]
SCM_seq [12]
SePH_rnd [30]
SePH_km [30]
GSePH_rnd [9]
GSePH_km [9]
DCH [35]
SRLCH [48]

0.5257 0.5798
0.6915 0.7052
0.6804 0.6960
0.6510 0.6593
0.7061 0.7217
0.7260 0.8546
0.7237 0.8563
0.6773 0.8370
0.6679 0.8398
0.7723 0.8885
0.7480 0.7849

0.5701 0.5846
0.6691 0.6928
0.6744 0.6951
0.6682 0.6394
0.7160 0.7395
0.8301 0.8652
0.8276 0.8703
0.8106 0.8655
0.8119 0.8727
0.8923 0.9013
0.8284 0.7675

0.4026 0.4200
0.4291 0.4327
0.5734 0.5706
0.5168 0.4540
0.6230 0.6464
0.5813 0.5993
0.5798 0.5956
0.5996 0.6133
0.6082 0.6166
0.6396 0.6301
0.7670 0.8645

0.4052 0.4267
0.4025 0.4240
0.6024 0.5883
0.5124 0.4594
0.6366 0.6509
0.7299 0.7635
0.7335 0.7681
0.7702 0.7873
0.7808 0.7936
0.8231 0.8171
0.7510 0.8495

TMFH_rnd
TMFH_km

0.7713 0.8932
0.7739 0.8887

0.8619 0.8992
0.8624 0.8935

0.7337 0.7723
0.7272 0.7753

0.8687 0.8766
0.8616 0.8814

the state-of-the-art cross-modal retrieval baselines.

4.4 Results of Unequal Hash Length Encoding

The proposed MTFH framework is the first attempt to generate
varying hash codes of different lengths for multi-modal data
representation. To validate the flexibility and effectiveness of
the proposed framework, we set g1 7#qo and conduct a series of
experiments with unequal hashing length settings, e.g., the hash
lengths corresponding to image and text modalities are set at 16
(I-16) and 32 (T-32) bits, respectively. The mAP values obtained
by unequal hash length settings are displayed in Fig. 6, it can be
seen that the best retrieval performances are not always achieved
by the equal hash length representations, and varying hash length
encoding scheme has also delivered very competitive cross-modal
retrieval performance. For instance, if the MTFH_rnd method is
selected, the best I—T retrieval results tested on the MIRFlickr
and NUS-WIDE-100k datasets are generated by hash pair [-64&T-
128. The similar results can be also found in their average retrieval
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64 and 128 bits, are selected for evaluation.
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Fig. 5. The representative topK-precision curves tested on MIRFlickr and

performances. The main reason lies that the feature dimensions
corresponding to the image and text modalities are different, and
such difference makes the varying hash length encoding scheme
to be efficient for heterogeneous data representation. Further, we
record the mAP scores by fixing the hash length of one modality
to be constant and varying the hash bits of another modalities to
be different. Typical examples are shown in Fig. 7, it can be found
that the larger code length does not always improve the cross-
modal retrieval performance and the optimum retrieval results are
not usually achieved by the equal hash length encoding scenarios.
It is noted that the varying hash length encoding of different
modalities has delivered the comparable and even better retrieval
performances. For instance, the hash pair [-80&T-100 has achieved
the better retrieval performances (i.e., larger mAP scores) than that
obtained by hash pair I-100&T-100, when tested on MIRFlickr
dataset. That is, the proposed MTFH method can shorten the
hash bits of one modality to index relevant samples without
degrading the performances. Therefore, the hash representations
of heterogeneous modalities encoded by different code lengths are
feasible and meaningful, especially when the feature dimensions
of heterogeneous modalities differ sharply.

Number K of Retrieval Instances

NUS-WIDE-100k datasets.

Number K of Retrieval Instances

Further, we evaluate the recall rates by using unequal hash
lengths. As the feature dimension of text modality in the Wiki
dataset is only equal to 10, we fix the hash length of image
modality to be 128, and report the recall rates by varying the hash
bits of text modality from 16 to 128. Meanwhile, we also record
the recall scores with equal hash length encoding scenarios, i.e.,
1-16&T-16, I-32&T-32 and I-64&T-64. As shown in Table 3, it can
be found that the best recall rates are not achieved by the equal
hash length representations. For instance, the hash pair [-128&T-
64 has achieved the best recall rate of =T task when the top 500
instances are searched. The main reason lies in that the image-text
pairs are not always optimally encoded by the equal hash lengths
due to their different sample size and distinct feature dimensions,
thereby the strictly equalized hash length setting cannot guarantee
the learned binary codes to be semantically discriminative for
heterogeneous data representation. Another possible reason is that
a bit long hash representation of low-dimensional text data may re-
sult in low recall, since the collision probability that two codes fall
into the same hash bucket may decrease exponentially as the code
length increases. It is noted that the recall rates are not improved
when we search the relevant samples with higher number of bits,
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Fig. 6. Cross-modal retrieval results obtained by the proposed MTFH with varying hash length settings, and the best results are highlighted in bold.

Wiki dataset (hash length for image: 50 bits) MIRFlickr dataset (hash length for text: 100 bits)

TABLE 4
Retrieval results (mAP) of unpaired multi-modal data collections, and
the best results are highlighted in bold.
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Fig. 7. Cross-modal retrieval results by fixing the hash length of one

modality and varying the hash length of another modality.

TABLE 3
Recall rates obtained by MTFH and tested with different hash lengths
on Wiki dataset. The best results are highlighted in bold.

Recall rates of I—T task with different ranking instances.

50 100 | 250 | 500 | 750 | 1000 | 1500 | 2000
0.048910.0981(0.2370{0.3781{0.4891|0.59520.7802(0.9440
0.05070.1021(0.2401{0.3828{0.5109|0.6199|0.8134(0.9536
0.0530/0.1058(0.2499{0.3959{0.5185|0.6302|0.8116(0.9587
0.0542|0.1076(0.2515{0.3876|0.5131|0.6288 |0.8121 |0.9554
0.0366(0.0741{0.1807|0.3041]0.4117{0.5272|0.7423]0.9444
0.0514(0.1028{0.2417]0.3935[0.5241{0.6340 |0.8327 [ 0.9640
0.0565(0.1133{0.2669|0.40930.5240{0.6263|0.8007 |0.9503

Bit length

I-16&T-16

1-32&T-32

1-64&T-64
I-128&T-128
I-128&T-16
1-128&T-32
1-128&T-64

e.g., [-128&T-128. Under the circumstances, the proposed MTFH
method incorporating with less hash bits could save the storage
memory, which we will discuss it in Section 4.10. Therefore, the
proposed varying hash length encoding scheme is beneficial to
produce more effective hash code for heterogeneous data repre-
sentation and performance improvements. More importantly, the
proposed cross-modal retrieval framework is particularly adaptive
to an even more challenging scenario, i.e., the hash representations
from heterogeneous modalities are encoded and stored by different
lengths in the database. The experimental results have shown its
flexibility with outstanding performances.

4.5 Results of the Unpaired Scenario

The experiments reported in Section 4.3 and 4.4 mainly focus
on the paired multi-modal data collections. For the unpaired data
collections, we further evaluate the proposed MTFH method on
both single-label unpaired (SL-U) and multi-label unpaired (ML-
U) scenarios. That is, multi-modal data from different modalities
may not have one-to-one correspondence, e.g., 100 images and 90
text documents share the same semantic tag “flower”.

For SL-U, each data point is associated with a single label,
but there does not exist one-to-one correspondence between the
data of two modalities. In this case, the Wiki dataset is selected
for evaluation. Similar to [9], we keep the text modality unchanged
and randomly select 90% of images as ‘unpair-1’ and vice verse as
‘unpair-2’. For ML-U, each data point is associated with multiple
labels, but there also does not exist one-to-one correspondence
between the data of two modalities. In this case, MIRFlickr dataset

Wiki (I-T/T—1) MIRFlickr I—-T/T—I)
Method - : - -
unpair-1 unpair-2 unpair-1 unpair-2
CCA [15] 0.176/0.156 | 0.178/0.154 | 0.581/0.579 | 0.581/0.579
IMH [6] 0.176/0.156 | 0.178/0.154 | 0.581/0.579 | 0.581/0.579
16 | 0.196/0.496 | 0.205/0.452 | 0.567/0.564 | 0.567/0.563
CMFH [27] 32 | 0.204/0.509 | 0.231/0.491 | 0.568/0.566 | 0.568/0.564
64 | 0.215/0.532 | 0.232/0.492 | 0.568/0.565 | 0.568/0.564
128 | 0.220/0.534 | 0.240/0.507 | 0.568/0.566 | 0.568/0.564
16 | 0.257/0.453 | 0.268/0.422 | 0.651/0.631 | 0.653/0.645
GSePH [9] 32 10.273/0.477 | 0.279/0.438 | 0.648/0.633 | 0.658/0.635
64 | 0.283/0.483 | 0.298/0.456 | 0.665/0.665 | 0.675/0.663
128 | 0.288/0.490 | 0.292/0.466 | 0.676/0.670 | 0.681/0.668
16 | 0.324/0.692 | 0.304/0.636 | 0.661/0.745 | 0.675/0.741
DCH [35] 32 10.336/0.717 | 0.354/0.668 | 0.657/0.738 | 0.673/0.737
64 | 0.349/0.716 | 0.379/0.683 | 0.666/0.760 | 0.679/0.750
128 | 0.347/0.723 | 0.384/0.690 | 0.686/0.796 | 0.690/0.771
16 | 0.329/0.711 | 0.316/0.727 | 0.733/0.759 | 0.754/0.808
MTFH 32 | 0.342/0.727 | 0.343/0.736 | 0.757/0.811 | 0.757/0.819
64 | 0.355/0.734 | 0.330/0.749 | 0.761/0.820 | 0.759/0.827
128 | 0.340/0.707 | 0.365/0.742 | 0.765/0.832 | 0.767/0.824

is selected for evaluation, and we follow the same organizing
way as SL-U to form the unpaired data from MIRFlickr dataset.
Specifically, the training set itself serves as the retrieval set while
the query set is kept unchanged as in the paired cases. Except
for GSePH [9], other cross-modal retrieval algorithms developed
for paired multi-modal collections are not applicable to handle
this unpaired scenario. We follow the data processing ways in [9]
to artificially construct the paired training sets and heuristically
implement the CCA [15], IMH [6], CMFH [27] and DCH [35] for
meaningful comparison. In GSePH and MTFH, the random (rnd)
sampling scheme is selected in kernel logistic regression.

The cross-modal retrieval performances tested on unpaired
data are shown in Table 4. It can be observed that CCA and IMH
methods have delivered relatively lower mAP scores, while CMFH
and GSePH approaches have also degraded their retrieval perfor-
mances in unpaired multi-modal data collections. By contrast, our
proposed MTFH method significantly outperforms these baseline
methods. For I=T task, the mAP values obtained by GSePH and
tested on MIRFlickr dataset drop slightly on both unpaired tasks,
which are all less than 0.69. Relatively speaking, our proposed
MTFH method yields the very competitive I—T performances and
the corresponding mAP values are higher than 0.73. By artificially
pairing the training samples, we notice that DCH has achieved the
promising retrieval performances, especially for the T—1 task on
the Wiki dataset. However, the mAP scores obtained by DCH
were relatively unstable when tested on MIRFlickr dataset. In
contrast to this, our proposed MTFH has achieved very stable
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TABLE 5
Results (mAP) of single-modal retrieval on paired multi-modal data,
and the best results are highlighted in bold.
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Fig. 8. The illustration of different hash representation for single-modal
retrieval and cross-modal retrieval tasks.

performance on MIRFlickr dataset and the corresponding mAP
values are always higher than the results obtained by DCH. That
is, our proposed MTFH approach can not only handle various
unpaired multi-modal data collections, but also produce relatively
stable retrieval performance on different retrieval tasks.

4.6 Results of Single-modal Retrieval

The majority of existing cross-modal hashing methods often learn
unified hash codes to characterize the paired multi-modal data. As
shown in Fig. 8, if the unified hash codes are utilized to represent
the heterogeneous data points, these approaches naturally yield the
same retrieval performance in both single-modal and cross-modal
retrieval tasks. In contrast to this, the hash codes of heteroge-
neous modalities derived from the proposed MTFH approach are
different, and these learned modality-specific hash codes can be
well utilized for single-modal retrieval. As indicated in FSH [29],
the integration of multiple modalities often improves the search
performance, and we further evaluate our learned hash codes
on single-modal retrieval, i.e., image-to-image (I—I) and text-
to-text (T—T). Specifically, the random (rnd) sampling scheme
is adopted in kernel logistic regression. Meanwhile, we select
three competing single-modal hashing baselines, i.e., Iterative
Quantization (ITQ) [49], Scalable Graph Hashing (SGH) [50] and
Fast Supervised Discrete Hashing (FSDH) [14], and one repre-
sentative cross-modal hashing (non-unified hash representation),
i.e., FSH [29], for meaningful comparison. Note that, the other
unified hash representations are not selected because these works
naturally yield the same retrieval performances in both single-
modal retrieval and cross-modal retrieval, as shown in Table 1.
Table 5 shows the single-modal retrieval results on representa-
tive datasets. It can be observed that hash codes of equal lengths
derived from the proposed MTFH method have always delivered a
better single-modal retrieval performance than that generated from
both representative single-modal hashing methods (i.e., ITQ [49],
SGH [50] and FSDH [14]) and non-unified hash representation
method (i.e., FSH [29]). Meanwhile, as compared in Table 1,
the single-modal retrieval performances obtained by MTFH are
generally better than most results that produced by unified hash
representations (e.g., CMFH [27], SePH [30] and GSePH [9]).
This demonstrates that the proposed MTFH framework is able
to produce more distinguished binary codes for both heteroge-
neous modalities, which subsequently improves the single-modal
retrieval performance. That is, the proposed MTFH method not
only exhibits the flexibility in cross-modal retrieval, but also shows
very competitive performance in single-modal retrieval task.
Further, the proposed MTFH framework is able to jointly
learn the modality-specific hash codes with different hash length
settings, and some derived hash codes with varying lengths have
also boosted the single-modal retrieval performance. For instance,
the learned multi-modal hash codes, e.g., [-128&T-64, yield the
best I—1 retrieval performance on the NUS-WIDE-100k dataset.

: Wiki | MIRFlickr | NUS-WIDE-100k
S EIERE Method | Bitlength Iy 1 pr 7 SUTST
EIFIBIE] ) 0.114/0414 [0.573/0.583 | 0.381/0.353
ETR ITQ [49] 64 0.113/0.414 | 0.552/0.578 |  0.381/0.349
e 128 0.111/0.414 | 0.57500.562 |  0.383/0.349
Modality-specific hash codes 2 0.121/0.440 [ 0.582/0.579 | 0.338/0.373
SGH [50] 64 0.120/0.460 | 0.583/0.581 |  0.339/0.371
128 0.120/0.486 | 0.583/0.579 |  0.339/0.369
) 0.215/0.555 | 0.663/0.694 | 0.492/0.523
FSDH [14] 64 0.245/0.610 | 0.661/0.699 |  0.483/0.518
128 0.276/0.667 | 0.672/0.715 | 0.511/0.556
[32&T-32 | 0.161/0.519 | 0.592/0.605 | 0.462/0.521
FSH [29] | I-64&T-64 | 0.165/0.520 | 0.590/0.604 |  0.469/0.538
1-128&T-128 | 0.167/0.536 | 0.593/0.607 |  0.467/0.537
[32&T32 | 0.363/0.738 | 0.748/0.823 | 0.662/0.797
1-64&T-64 | 0.363/0.748 | 0.760/0.820 |  0.675/0.805
[-128&T-128 | 0.373/0.740 | 0.768/0.830 |  0.683/0.795
[32&T64 | 0.355/0.739 | 0.754/0.819 | 0.666/0.793
MTFH | I-32&T-128 | 0.366/0.736 | 0.759/0.827 |  0.665/0.809
1-64&T-32 | 0.362/0.744 | 0.759/0.816 |  0.673/0.780
L64&T-128 | 0.383/0.746 | 0.761/0.832 |  0.678/0.795
[-128&T-32 | 0.378/0.734 | 0.763/0.811 |  0.679/0.782
L128&T-64 | 0.376/0.749 | 0.763/0.823 |  0.690/0.796

That is, the hash codes derived from the couple lengths, i.e., I-
128&T-64, are more semantically meaningful for single-modal
retrieval on NUS-WIDE-100k dataset. The experimental results
have shown its scalability in single-modal retrieval tasks.

4.7 Results of CNN Visual Features

With the development of convolutional neural network (CNN),
the visual features obtained from the pretrained or fine-tuned
CNN models have demonstrated to be effective for cross-modal
retrieval [51], and the improved performance can be achieved
based on classic cross-modal retrieval methods, such as CCA [15]
and three-view CCA [52]. Accordingly, we evaluate the proposed
MTFH on the Wiki, Pascal Sentence [53] and Pascal VOC
2007 [54] datasets, and their CNN visual features are publicly
shared by work [51]. Specifically, the off-the-shelf fine-tuned CNN
visual features, i.e., FT-fc7, are selected for evaluation [51]. Mean-
while, we carefully implement CCA [15], three view CCA (T-V
CCA) [52], deep Semantic Matching (deep-SM) [51], CMFH [27],
SePH [30], GSePH [9] and DCH [35] for comparison. Comparing
with the hand-crafted visual features, the dimensionality of CNN
feature is large, i.e., 4096. Therefore, we typically set the code
length to 32 and 128, and equalize the hash length of two
heterogeneous modalities for fair evaluation.

The representative cross-modal retrieval performances eval-
uated on the fine-tuned CNN visual features are displayed in
Table 6, it can be observed that both of DCH [35] and the
proposed MTFH method yield the better retrieval performances
than the results produced by other competing baselines, i.e.,
CCA [15], T-V CCA [52], deep-SM [51], CMFH [27], SePH [30]
and GSePH [9]. We notice that DCH [35] has delivered very
competitive mAP scores in Pascal sentence dataset (i.e., 128 bits),
but its retrieval performance degrades on the Wiki and Pascal
VOC 2007 datasets. Comparatively speaking, the proposed MTFH
approach often boosts the retrieval performances in different hash
length settings, and significantly outperforms most state-of-the-art
baselines, especially on the Wiki and Pascal VOC 2007 datasets.
For instance, the Wiki dataset is a very popular multi-modal
dataset, and the CNN visual features can further benefit the cross-
modal retrieval performance. If the hash length is set at 128 bits,
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TABLE 6
Results (mAP) of cross-modal retrieval on CNN visual features, and the
best results are highlighted in bold.

Method Wiki Pascal Sentence | Pascal VOC 2007
I->T/T—1 1-T/T—I1 1->T/T—I1
CCA [15] 027200287 | 0307/0372 0.635/0.643
TV CCA [52] [ 03110316 | 0.338/0.438 0.680/0.714
Deep-SM [51] | 03980354 | 0.446/0.478 0.823/0.776
33 [ 0.184/0.265 | 0323/0424 0.382/0.703
CMFH [27] | 198 | 0.187/0325 |  0.361/0.490 0.279/0.339
SePH G0 | 32 | 047600734 [ 049770690 0.749/0.877
128 | 0.5200.774 | 0.543/0.729 0.784/0.912
GsePri (o] | 2 | 04040762 | 042810574 0.763/0.900
128 | 0.508/0.777 |  0.463/0.646 0.802/0.946
DCH (351 | 32 | 04330.782 [ 0.58700.799 0.536/0.838
128 | 0.456/0.793 |  0.605/0.801 0.577/0.876
Ve | 32 | 05440724 | 0.5940.779 0.749/0.883
128 | 0.523/0.809 | 0.604/0.787 0.805/0.961

the mAP scores obtained by MTFH are higher than 0.5 and 0.8,
respectively, evaluated on =T and T—1 tasks. This demonstrates
that the learned hash projection functions can well map the CNN
visual features into compact hash codes. That is, the proposed
MTFH framework is applicable to various kinds of sample features
and the experimental results have demonstrated its efficiency.

4.8 Effects of Discrete Optimization

Within the proposed MTFH framework, an efficient discrete
optimization algorithm is proposed to jointly learn the modality-
specific hash codes without relaxation. Sine the relaxation scheme
may accumulate large quantization error as the code length in-
creases, DCH [35] utilizes a discrete cyclic coordinate decent
(DCC) algorithm to learn and update each hash bit in a cyclic
order, which is evidently an approximate solution to the discrete
hashing and may fall into a local minimum during the learning
process. To alleviate this problem, we improve DCC and utilize
the E-RCD to derive the hash codes more reliably.

Further, we compare DCC with the proposed E-RCD in
solving the same objective function, i.e., Eq. (2). We take the
paired Wiki dataset for testing, and learn the hash codes of equal
lengths (i.e., 32 bits and 128 bits) for evaluation. As the solutions
of both DCC and E-RCD depend on the initial values of model
parameters, we run ten times for both optimizations. Note that,
similar results can be also found in MIRFlickr and NUS-WIDE
datasets, as well as other retrieval tasks (i.e., unequal hash length
encoding, unpaired multi-modal data collection, single-modal re-
trieval and CNN visual features). Fig. 9 shows the changes of
the corresponding mAP values tested by DCC and E-RCD within
ten trials, and Table 7 displays their statistical properties. As
compared in Table 1, the proposed MTFH framework solved by
DCC directly also yields satisfactory performance in both retrieval
tasks (I—T and T—I), and always outperforms most state-of-the-
art baselines, i.e., CMFH [27], SMFH [33], FSH [27], SCM [12],
SePH [30] and GSePH [9]. For instance, the average mAP values
derived from 128 bits and computed from ten trials reach up to
0.3342 and 0.7284, respectively, evaluated on =T and T—1 tasks.

As shown in Fig. 9, it can be further found that DCC has
produced a very small mAP value especially for a trial performed
on T—I task (128 bits), while inducing a larger fluctuation on
different trials. That is, the mAP values corresponding to the
maximum-minimum (Max-Min) difference and standard deviation
are a bit large. The main reason lies in that DCC optimization
is an approximate solution and may fall into a local minimum

TABLE 7
Results (mAP) of different optimization schemes on Wiki dataset.

Task (bits) average mAP max-min value | standard deviation
) ) DCC/E-RCD DCC/E-RCD DCC/E-RCD
1T 32 0.3379/0.3555 | 0.0526/0.0248 0.0163/0.0066
128 | 0.3342/0.3418 | 0.0420/0.0227 0.0143/0.0068
TI 32 0.7141/0.7171 | 0.0557/0.0274 0.0163/0.0073
128 | 0.7284/0.7372 | 0.0741/0.0271 0.0218/0.0071

during the learning process, which may produce unstable retrieval
performances. In contrast, the proposed E-RCD algorithm can
not only yield very competitive performance in various retrieval
tasks, but also achieve a relatively stable retrieval performance.
The average mAP values derived from ten trials do not change
significantly, whereby the values of max-min difference and
standard deviation are always lower than the results generated
by the DCC optimization. The experimental results consistently
validate the advantage of the proposed E-RCD scheme in discrete
optimization, and the proposed MTFH learning framework is
beneficial to produce more effective and stable hash codes.

4.9 Parameter Sensitivity Analysis

There are three main parameters involved in MTFH learning
framework, i.e., a, A and (3. Specifically, a balances two learning
items in Eq. (1). A larger o may emphasize more on hash code
learning (g1 length) of modality X, and conversely (g2 length)
of Y. Since our work aims to achieve cross-modal retrieval, it is
natural to set «=0.5 for balancing two modalities. As indicated
in [41], X is insensitive to the least square optimization, and it is
set at 0.1 in most cases. 3 controls the learning influence, and we
further report the performance of changing 5 while fixing v and .
That is, several different values, 5={0.0001, 0.001, 0.01,0.1, 1},
are tested on benchmark datasets (MIRFlickr and NUS-WIDE-
100k). The cross-modal retrieval performances tested with differ-
ent 3 values and obtained by MTFH_rnd are shown in Fig. 9, it
can be seen that the different settings of (§ just induce a minor
fluctuation on the retrieval performance, and yield very stable
retrieval performance on different retrieval tasks. Therefore, [ is
also insensitive to the cross-modal retrieval performance.

Further, similar to SePH [30], we further sample different
training sizes and utilize the learnt hash functions to generate the
hash codes for all instances in training dataset. Typical examples
tested on NUS-WIDE-100k dataset are shown in Fig. 9, it can
be found that the proposed MTFH method requires a bit larger
training set (around 10k for I—T and 30k for T—1I) to produce
promising results (better than SePH). Fortunately, the mAP scores
obtained by MTFH increase consistently as the training set grows
from 200 to 50k, but which tend to converge when the training
set is larger than 60k. Comparing with SePH [30], the proposed
MTFH method is computationally more efficient for very large-
scale datasets and can be adapted to various cross-modal retrieval
tasks, including paired or unpaired multi-modal data collections,
in either equal or varying hash length encoding scenarios.

4.10 Discussion and Analysis

The computational complexity of the proposed MTFH framework
mainly accumulates from the matrix multiplications, which can be
parallelized with modern computing techniques. In practice, the
size of database may be so large that it is generally impossible
to learn hash functions on the whole database, mainly due to
the limitation of computational resource. One solution to such
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Fig. 9. Effects of different optimization schemes, parameter values and training set sizes.
problem is to learn the hash functions on a smaller training set and TABLE 8
extend it to out-of-sample instances [30]. Although the proposed The retrieval time tested on 100 queries (seconds averaged in five
. . . . runs), and mAP scores recorded under similar memory budget.
MTFH method requires a semantic correlation matrix to perform ;
the retrieval task, the multiplication of a small matrix is very easy Metric | Method | Bit length WIKI MIRFlickr
R R i K 1—-T T—I 1-T T—I1
to implement and the retrieval time has no substantial changes. As SePH [30] C16&T-16 1 0.0335 1 0.0279 | 0.1349 | 0.1867
shown in Table 8, if the equal hash length setting is employed, the ¢ 1-128&T-128| 0.0587 | 0.0583 | 0.3997 | 0.4013
retrieval times (averaged in five runs) of 100 queries obtained by  |Retrieval | GSePH [9]] 1710&1-16 | 0.0334 1/0.0283 1 0.1805 | 0.1843
SePH [30], GSePH [9] and MTFH are within the same range. | time I-128&T 128] 0.058> | 0.0592 | 0.4083 | 04075
et ’ : ge- 4 LT6&T-16 | 0.0340 | 0.0295 | 0.1877 | 0.1916
It is noted that the proposed MTFH method even reduces the | (secon ) MTEH |F128&T-128] 0.0611 | 0.0608 | 0.4148 | 04115
retrieval time when the hash length of one modality is fairly short. [-16&T-128 | 0.0597 | 0.0299 | 0.4103 | 0.1923
For instance, the hash codes derived from the 1-128&T-16 have [128&T-16 | 0.0345 | 0.0588 | 0.1914 | 0.4087
significantly reduced the retrieval time of [-128&T-128 in I=T SePH [30] | 1-64&T-64 | 0.3135 | 0.6570 | 0.6799 | 0.7374
gk b Y he sh d hash cod ire 1 L Retrieval |GSePH [9]| [-64&T-64 | 0.3101 | 0.6679 | 0.6768 | 0.7313
task, ecagsgt es 01ttene ash codes require less processing in result T6A&T64 03454 T 0.7365 107592 T 0.3193
kernel logistic regression and the mapping from 128 bits to 16 bits (mAP) I-32&T-96 | 03572 | 0.7339 | 0.7674 | 0.8213
can greatly reduce the similarity calculations in retrieval process. MTFH | 1-96&T-32 | 0.3588 | 0.7342 | 0.7613 | 0.8186
Further, the shortened hash codes would reduce the amount [-48&T-80 | 0.3416 1 0.7370 | 0.7680 | 0.8224
’ 1-80&T-48 | 0.3390 | 0.7199 | 0.7612 | 0.8280

of storage memory. With the similar retrieval performance, the
competing methods require 2¢; bits to store the paired training
instances, while the proposed MTFH method only needs g1 +¢2
(g2<q1) bits to store such paired instances. For instance, if the
number n of training pairs is very large, performance of I-
32&T-128 is comparable to the result produced by I-128&T-128,
but with significantly reduced storage space, i.e., 96n—320 bits,
{H;, Hy }€R32*128_ Taking the larger NUS-WIDE-AII dataset
for example, the best [ =T and T—I retrieval performances
obtained by the baseline methods are generated by SePH_km with
hash pair [-128&T-128, as shown in Table 1. In contrast to this, the
proposed MTFH approach with hash pair [-32&T-128 has yielded
the improved retrieval performances over SePH_km, while saving
the storage space of around 17M (million) bits. Therefore, the
proposed MTFH method is able to store a smaller number of bits
when there exist a large number of multi-modal dataset.

Also, we evaluate the retrieval performances under the same
memory budget (the storage memory of correlation matrix is ig-
nored due to its very small size). Representative results are shown
in Table 8, it shows that the proposed MTFH with hash pairs I-
48&T-80, I-80&T-48, 1-32&T-96 and [-96&T-32 have yielded the
better retrieval performance than that generated by hash pair I-
64&T-64 in SePH [30] and GSePH [9], while in some cases these
varying hash encoding schemes produce improved retrieval perfor-
mance over equal hash length encoding scenario. For instance, the
hash pair I-48&T-80 has delivered the largest mAP score on I—T
task, when tested on MIRFlickr dataset. Therefore, the proposed
MTFH framework is flexible enough to facilitate different retrieval
tasks. It is pointed out that the unequal hash length encoding of
multi-modal data may produce better cross-modal retrieval per-
formance with appropriate length selection, otherwise it may also
bring the negative effect to the retrieval performance. For instance,

in case of I—>T task on the Wiki dataset, it can be found that
the hash pair [-128&T-16 shows the poor retrieval performance
in comparison with the pair I-16&T-16. The main reason lies
that the unequal hash length encoding with significantly different
bits may degrade the discriminative power of mapping codes,
which subsequently degrade the retrieval performance. Therefore,
the appropriate length selection in varying hash length encoding
scheme is necessary for heterogeneous data representation.

Besides, we notice that the varying hash codes of different
lengths can be generated by separately training two hash functions
for each modality. However, on the one hand, the varying hash
codes learned in a separate way naturally weakens the connection
within the same modality and often fails to preserve the semantic
similarity between the heterogeneous samples due to the accumu-
lated error. On the other hand, the hash codes of different lengths
learned separately cannot be compared directly. In contrast to this,
the proposed MTFH framework exploits an efficient objective
function to jointly learn the modality-specific hash codes with
different lengths, while simultaneously excavating two semantic
correlation matrices to ensure heterogeneous data comparable.

It is observed form the experimental results that the proposed
MTFH framework can well generalize and facilitate cross-modal
retrieval in various challenging scenarios, and the merits of using
unequal hash codes are three-fold: 1) The utilization of unequal
hash codes can adapt to an even more challenging cross-modal re-
trieval scenario, i.e., the hash representations from heterogeneous
modalities are stored by different code lengths in the database; 2) It
is beyond the limitations of equalized hash length representation
of multi-modal data, by allowing varying hash length encoding
for different data modalities; 3) It often produces the improved
retrieval performance under same memory budget, while the
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shorten hash codes could reduce the storage space under similar
retrieval performance. It should be noted that most extensions
to multiple modalities either select the paired multi-modal data
for training or employ the unified hash code for heterogeneous
data representation, e.g., CMFH [27] and SMFH [33]. Specifi-
cally, the semantic affinity matrix with embedding supervision is
constructed only from two modalities [9], [30]. If the data samples
from heterogeneous modalities are paired, the related works can be
extended to three or more modalities, e.g., SePH [30], otherwise it
is impractical to project unpaired data into a common semantic
space and utilize a unified hash code to represent each data
point, e.g., GSePH [9]. The proposed MTFH is, by design, a
flexible cross-modal hashing framework to handle both paired and
unpaired multi-modal data collections, in either equal or varying
hash length settings. Evidently, the proposed MTFH approach is
able to handle all retrieval tasks reported in GSePH, while adapting
to unequal hash length encoding scenario. Remarkably, if the to-
be-learnt code lengths of heterogeneous modalities are different,
it is impractical to unify them in a common representation. In
the current form, the proposed framework has the bottleneck for
extension to more modalities and we will study it in future work.

5 CONCLUSION

This paper has proposed a generalized and flexible Matrix Tri-
Factorization Hashing (MTFH) framework for efficient cross-
modal retrieval, which can seamlessly work in various challenging
tasks including paired or unpaired multi-modal data, and equal
or varying hash length encoding scenarios. More specifically,
MTFH exploits an efficient objective function to jointly learn
the modality-specific hash codes with different length settings,
while simultaneously learning two semantic correlation matrices
to correlate the semantic consistency between two modalities
and ensure the heterogeneous data comparable. Meanwhile, an
efficient discrete optimization algorithm is presented for MTFH
without relaxation such that the learned hash codes are more
effective to preserve the semantic structure of multi-modal data.
As a result, the derived hash codes are more semantically mean-
ingful than those generated by traditional matrix hashing methods.
To the best of our knowledge, this work is the first attempt to
learn varying hash codes of different lengths for heterogeneous
data comparable and efficient cross-modal retrieval. Extensive
experiments on various retrieval tasks have verified its outstand-
ing performance. Our future work will focus on exploiting the
optimum hash length with respect to each modality to carry out
cross-modal retrieval task, as well as the adaptivity on a small
training dataset and the extensions to more modalities.
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