
Diffusion Distance for Histogram Comparison

Haibin Ling
Center for Automation Research,
Computer Science Department,

University of Maryland
College Park, MD, 20770, USA

hbling@umiacs.umd.edu

Kazunori Okada
Imaging and Visualization Department,

Siemens Corporate Research, Inc.
755 College Rd. E.

Princeton, NJ, 08540, USA
kazunori.okada@siemens.com

Abstract

In this paper we propose diffusion distance, a new dissim-
ilarity measure between histogram-based descriptors. We
define the difference between two histograms to be a tem-
perature field. We then study the relationship between his-
togram similarity and a diffusion process, showing how dif-
fusion handles deformation as well as quantization effects.
As a result, the diffusion distance is derived as the sum of
dissimilarities over scales. Being a cross-bin histogram
distance, the diffusion distance is robust to deformation,
lighting change and noise in histogram-based local descrip-
tors. In addition, it enjoys linear computational complexity
which significantly improves previously proposed cross-bin
distances with quadratic complexity or higher. We tested
the proposed approach on both shape recognition and in-
terest point matching tasks using several multi-dimensional
histogram-based descriptors including shape context, SIFT,
and spin images. In all experiments, the diffusion distance
performs excellently in both accuracy and efficiency in com-
parison with other state-of-the-art distance measures. In
particular, it performs as accurately as the Earth Mover’s
Distance with much greater efficiency.

1. Introduction

Histogram-based local descriptors (HBLDs) are used

widely in various computer vision tasks such as shape

matching [1, 22, 12, 2], image retrieval [14, 15], and tex-

ture analysis [9]. HBLDs are very effective for these tasks

because distributions capture rich information in local re-

gions of objects. However, in practice, HBLDs often suffer

from distortion problems due to deformation, illumination

change and noise, as well as the quantization effect [20].

Fig. 1 demonstrates an example with shape context [1]. The

deformation between (a) and (b) makes their shape context

histograms significantly different.

(a) (b) (c)

(d) (e) (f)
Figure 1. An example of deformation problem on shape context

histograms. (a), (b) and (c) show three different shapes shown over

log-polar bins. (d), (e) and (f) show the corresponding histograms

of (a), (b) and (c) using the same 2D bins, respectively.

The most often used bin-to-bin distances between

HBLDs (e.g. χ2 statistics, L2 distance and Kullback-

Leibler divergence) assume that the histograms are already

aligned, so that a bin in one histogram is only compared to

the corresponding bin in the other histogram. These meth-

ods are sensitive to distortions in HBLDs as well as quanti-

zation effects. For example in Fig. 1, they falsely state that

(b) is closer to (c) than to (a). Cross-bin distances, such as

the Earth Mover’s Distance (EMD) [20], allow bins at dif-

ferent locations to be (partially) matched and therefore alle-

viate the quantization effect. However, most of the cross-

bin distances are only efficient for one-dimensional his-

tograms (including EMD), which unfortunately limits their

application to the multi-dimensional HBLDs such as shape

context [1], SIFT [14], etc.

Targeting this problem, we propose a new dissimilarity

distance between HBLDs, diffusion distance. The new ap-

proach models the difference between two histograms as a

temperature field and considers the diffusion process on the

field. Then, the integration of a norm on the diffusion field

over time is used as a dissimilarity measure between the

histograms. For computational efficiency, a Gaussian pyra-

mid is used to discretize the continuous diffusion process.
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The diffusion distance is then defined as the sum of norms

over all pyramid layers. The new distance allows cross-bin

comparison. This makes it robust to distortions such as de-

formation, lighting change and noise that often causes prob-

lems for HBLDs. Experimentally we observed that the dif-

fusion distance performs as accurate as EMD. On the other

hand, due to the exponentially decreasing layer sizes in the

Gaussian pyramid, the new approach has a linear time com-

plexity, which is much faster than previously used cross-bin

distances with quadratic complexity or higher.

In summary, the diffusion distance is the main contri-

bution of this paper. It is robust to distortion and quanti-

zation effects in comparing histogram-based local descrip-

tors, while it is much more efficient than previously pro-

posed cross-bin approaches. In our experiments on both

shape features (shape context [1]) and image features (SIFT

[14], shape context [1] and spin image [9, 7]), our method

outperformed other state-of-the-art methods.

The rest of the paper is organized as follows. Sec. 2

reviews related work. Sec. 3 presents the proposed dif-

fusion distance and discusses its relationship to EMD and

previously proposed pyramid-based approaches. Sec. 4

describes experiments comparing the diffusion distance to

other methods on shape matching and interest point match-

ing tasks. Sec. 5 concludes the paper.

2. Related Work
Dis/similarity measures between histograms can be cat-

egorized into bin-to-bin and cross-bin distances. Our ap-

proach falls into the latter category. In the following, we

discuss the cross-bin distances that are most related to our

study.

The Earth Mover’s Distance (EMD) proposed by Rubner

et al. [20] defines the distance computation between distri-

butions as a transportation problem. EMD is very effec-

tive for distributions with sparse structures, e.g., color his-

tograms in the CIE-Lab space in [20]. However, the time

complexity of EMD is larger than O(N 3) where N is the

number of histogram bins. This prevents its application to

multi-dimensional histogram-based descriptors such as the

HBLDS.

Indyk and Thaper [6] proposed a fast (approximative)

EMD algorithm by embedding the EMD metric into a Eu-

clidean space. The embedding is performed using a hier-

archical distribution analysis. EMD can be approximated

by measuring the L1 distance in the Euclidean space af-

ter embedding. The time complexity of the embedding is

O(Nd log Δ), where N is the size of feature sets, d is the

dimension of the feature space and Δ is the diameter of the

union of the two feature sets to be compared. The embed-

ding approach is effectively applied to retrieval tasks [6] and

shape comparison [2].

Most recently, Grauman and Darrell [3] proposed using

the pyramid matching kernel for feature set matching. In

[3], a pyramid of histograms of a feature set is extracted as

a description of an object. Then the similarity between two

objects is defined by a weighted sum of histogram intersec-

tions [21] at each scale.

Our work differs from the above works in several ways.

First, we model the similarity between histograms with

a diffusion process. Second, we focus on comparing

histogram-based local descriptors such as shape context [1]

and SIFT [14], while the above works focus on feature dis-

tributions in the image domain. The difference between the

proposed approach and the pyramid matching kernel in [3]

is studied in Sec. 3.

Previously, we proposed a fast EMD algorithm, EMD-

L1 [13], for histogram comparison. EMD-L1 utilizes the

special structure of the L1 ground distance on histograms

for a fast implementation of EMD. Therefore it still solves

the transportation problem, which is fundamentally differ-

ent from the motivation of this paper. The diffusion distance

is much faster than EMD-L1 and performs similarly in the

case of large deformations. However, in a preliminary ex-

periment with only small quantization errors, EMD-L1 per-

formed better than the diffusion distance. More comprehen-

sive comparisons between them remains as an interesting

future work.

Other histogram dissimilarity measures and an evalua-

tion can be found in [19]. In [19], the authors also de-

scribe two other cross-bin distances: early work by Peleg

et al. [17] and a heuristic approach, quadratic form distance

[16, 4].

The diffusion process has widely been used for the pur-

pose of data smoothing and scale-space analysis in the com-

puter vision community. Some earlier work introducing this

idea can be found in [23, 8]. These works axiomatically

demonstrated that a PDE model of the linear heat dissi-

pation or diffusion process has Gaussian convolution as a

unique solution. More recent well-known diffusion-based

methods include anisotropic diffusion for edge-preseving

data smoothing [18] and automatic scale selection with γ-

normalized Laplacian [11]. It also provides a theoreti-

cal foundation to other vision techniques such as Gaussian

pyramids and the SIFT feature detector [14]. Despite its

ubiquitousness, to the best of our knowledge, this is the first

attempt to exploit the diffusion process to compute a his-

togram distance.

3. The Diffusion Distance Between Histograms
3.1. Modelling Histogram Difference with a Diffu-

sion Process

Let us first consider 1D distributions h1(x) and h2(x). It

is natural to compare them by their difference, denoted as

d(x) = h1(x) − h2(x). Instead of putting a metric on d
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directly, we treat it as an isolated temperature field T (x, t)
at time t = 0, i.e. T (x, 0) = d(x). It is well known that

the temperature in an isolated field obeys the heat diffusion

equation

∂T

∂t
=

∂2T

∂x2
(1)

It has a unique solution

T (x, t) = T0(x) ∗ φ(x, t) (2)

given initial condition T0(x)

T (x, 0) = T0(x)
.
= d(x) (3)

where φ(x, t) is the Gaussian filter

φ(x, t) =
1

(2π)1/2t
exp{−

x2

2t2
} (4)

Note that the mean of the difference field is zero, there-

fore T (x, t) becomes zero everywhere when t increases. In

this sense, T (x, t) can be viewed as a process of histogram

value exchange which makes h1 and h2 equivalent. Intu-

itively, the process diffuses the difference between two his-

tograms, therefore a dissimilarity can be extracted by mea-

suring the process. A distance between h1 and h2 is defined

as

K̂(h1, h2) =

∫ t

0

k(|T (x, t)|)dt (5)

where t is a positive constant upper bound of the integra-

tion, which can be ∞ as long as the integration converges.

k(.) is a norm that measures how T (x, t) differs from 0. In

this paper, we use the L1 norm because of its computational

simplicity and good performance in our pilot studies.

Next we will show how K̂ handles deformation with a

simple 1D example.

Assume a simple case where h1(x) = δ(x) and h2(x) =
δ(x − Δ), as shown in Fig. 2 (a) and (b). This means the

histogram is shifted by Δ ≥ 0. The initial value of T (x, t)
is therefore T0 = δ(x) − δ(x − Δ), as shown in Fig. 2 (c).

The diffusion process becomes

T (x, t) = (δ(x) − δ(x − Δ)) ∗ φ(x, t)

= φ(x, t) − φ(x − Δ, t) (6)

Use the L1 norm for k(.),

k(|T (x, t)|) =

∫
∞

−∞

|φ(x, t) − φ(x −Δ, t)|dx

= 2

∫ Δ/2

−∞

(|φ(x, t) − φ(x −Δ, t)|)dx

= 2

(∫ Δ/2

−∞

φ(x, t)dx −

∫
−Δ/2

−∞

φ(x, t)dx

)

= 2

(
2

∫ Δ/2

−∞

φ(x, t)dx − 1

)
(7)

From (5) and (7), it is clear that k(.) and K̂ are monoton-

ically increasing with Δ. This suggests that K̂ indeed mea-

sures the degree of deformation between two histograms.

(a) (b)

(c)
Figure 2. Two histograms with shift Δ between them and their

difference. (a) h1. (b) h2. (c) d = h1 − h2.

3.2. Relation to the Earth Mover’s Distance

From the above discussion, it is clear that K̂ is a cross-

bin distance, which allows comparison between bins at dif-

ferent locations. In this subsection we will discuss its re-

lation with EMD [20], which is another effective cross-bin

histogram distance.

Given two histograms h1 and h2, EMD models h1 as a

set of supplies and h2 as a set of demands. The minimum

work to transport all supplies to demands is used as the dis-

tance between h1 and h2. In other word, EMD measures

the dissimilarity between histograms with a transportation

problem [20].

Note that bins of h1 and h2 share same lattice locations,

which means that it takes zero work to transport supplies

from a bin in h1 to the same bin in h2. This leads to an intu-

itive interpretation of EMD with the difference d = h1−h2:

EMD is the minimum work of exchanging values in d to

make d vanish everywhere.

This provides an intuition about the difference between

EMD and K̂. EMD seeks the exchanging scheme which

has the minimum work, while K̂ measures a more “natural”

exchanging scheme, i.e. diffusion process. While EMD

has been successfully applied to several vision tasks (e.g.

[20, 2]), the diffusion-based distances have not been evalu-

ated with any vision tasks. Our conjecture is that they may

fit to different tasks. In our experiments (see Sec. 4) on the

HBLDs suffering large deformation, both approaches per-

form quite similarly. Below we demonstrate an example, in

which K̂ performs better than EMD.

Consider three one-dimensional histograms h1, h2 and

h3 as illustrated in the left of Fig. 3. h2 is shifted from h1

by Δ, while h3 can not be linearly transformed from h1.

We want to compare h1 to h2 and h3. Subtracting h2 and

h3 from h1, we get the differences d12, d13 as shown in the

right of Fig. 3. It is clear that the EMD between h1 and h2

are the same as the EMD between h1 and h3. Perceptually,

however, h1 seems to be more similar to h2 than to h3.

Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06) 
0-7695-2597-0/06 $20.00 © 2006 IEEE 



Figure 3. Left: Three 1D histograms. Right: The differences be-

tween them.

Fig. 4 shows the diffusion process T (x, t) at t = 0, 6, 12.

From the figure we see that k(|T (x, t)|) for h1 and h2

is always smaller than that for h1 and h3. Therefore,

K̂(h1, h2) < K̂(h1, h3). This is more consistent with our

perception.

Figure 4. The diffusion process of the difference d12 (left column)

and d13 (right column). Each row shows the diffusion result at a

different time t. k(|T |) is measured using the L1 norm; the values

show that d12 decays faster than d13.

3.3. Diffusion Distance

It is straightforward to extend previous discussions to

higher dimensions. Consider two m-dimensional his-

tograms h1(x) and h2(x), where x ∈ R
m is a vector. The

definition of K̂(h1, h2) is the same as in Sec. 3.1, except

that equations (1) and (4) are replaced by (8) and (9), re-

spectively.

∂T

∂t
= ∇2T (8)

φ(x, t) =
1

(2π)m/2t
exp{−

x
�
x

2t2
} (9)

Now the problem is how to compute K̂. Direct computa-

tion of equation (7) is expensive. Instead, we use an alterna-

tive distance function based on the Gaussian pyramid. The

Gaussian pyramid is a natural and efficient discritization of

the continuous diffusion process T (x, t). It is justified be-

cause smoothing allows subsampling without aliasing. With

this idea, we propose the diffusion distance K(h1, h2) as

K(h1, h2) =
L∑

l=0

k(|dl(x)|) (10)

where

d0(x) = h1(x) − h2(x) (11)

dl(x) = [dl−1(x) ∗ φ(x, σ)] ↓2 l = 1, ..., L (12)

are different layers of the pyramid. The notation “↓2” de-

notes half size downsampling. L is the number of pyramid

layers and σ is the constant standard deviation for the Gaus-

sian filter φ.

Note that as long as k(.) is a metric, K(h1, h2) forms a

metric on histograms. In particular, in this paper we choose

k(.) as the L1 norm, which makes the diffusion distance a

true metric. Equation (10) is then simplified as

K(h1, h2) =

L∑
l=0

|dl(x)| (13)

The computational complexity of K(h1, h2) is O(N),

where N is the number of hitogram bins. This can be eas-

ily derived by two facts. First, the size of dl exponentially

reduces. Second, only a small Gaussian filter φ is required

which makes the convolution take time linear in the size of

dl for each scale l.

3.4. Relation to the Pyramid Matching Kernel

The diffusion distance (13) is similar to the pyramid

matching kernel (PMK) recently proposed by Grauman and

Darrell [3] in that both methods compare histograms by

summing the distances over all pyramid layers.

As mentioned in the related work section, our approach

focuses on histogram-based local descriptors, while PMK

focuses on feature set matching. The two methods have the

following differences.

First, when comparing each pyramid layer, PMK counts

the number of newly matched feature pairs via the differ-

ence of histogram intersection [21]. This is particularly

effective for handling occlusions for feature set matching.

However, this is not an effective strategy for HBLDs be-

cause they are usually normalized. In contrast, we employ

the L1 norm to compare each pyramid layer.
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Second, PMK uses varying weights for different scales

by emphasizing finer scales more. This is reasonable for

feature set matching as mentioned in [3]. However in the

diffusion distance, uniform weights are used - this seems

more natural and performs better than non-uniform weights

in our preliminary experiments.

Third, the diffusion distance uses Gaussian smoothing

before downsampling according to the underlying diffusion

process.

Fourth, PMK requires random shifting when extracting

histograms from feature sets to alleviate quantization ef-

fects. The proposed method avoids such a strategy by using

the intuitive cross-bin referencing imposed by the diffusion.

4. Experiments

In this section the diffusion distance is tested for two

kinds of vision tasks using HBLDs. The first experiment

is for shape features, where the diffusion distance is used

to compare shape context [1] in a data set with articulated

objects. The second experiment is for interest point match-

ing on a data set with synthetic deformation, illumination

change and heavy noise. Both experiments demonstrate that

the proposed method is robust for quantization problems.

4.1. Shape Matching with Shape Context

This subsection compares the diffusion distance for

shape matching with shape context (SC) [1] and the inner-

distance shape context (IDSC) [12]. Shape context is a

shape descriptor that captures the spatial distribution of

landmark points around every interest key point [1]. IDSC

is an extension of SC using the shortest path distance in-

stead of Euclidean distance. In [12], SC and IDSC are used

for contour comparison with a dynamic programming (DP)

scheme. We use the same framework, except for replac-

ing the χ2 distance with the diffusion distance and EMD

(with Rubner’s code1) for measuring dissimilarity between

(inner-distance) shape contexts.

The experiment is conducted on an articulated shape

database tested in [12]. The database contains 40 images

from 8 different objects. Each object has 5 images artic-

ulated to different degrees (see Figure 5). This data set is

designed for testing articulation, which is a special and im-

portant case of deformation. [12] shows that the original

shape context with χ2 distance does not work well for these

shapes. The reason is that the articulation causes a large

deformation in the histogram.

We use exactly the same experimental setup as used in

[12]: 200 points are sampled along the outer contours of

every shape; 5 log-distance bins and 12 orientation bins

are used for shape context histograms. The same dynamic

1http://ai.stanford.edu/∼rubner/emd/default.htm

Figure 5. Articulated shape database. This dataset contains 40 im-

ages from 8 objects. Each column contains five images from the

same object with different articulation.

Table 1. Retrieval result on the articulated dataset with shape con-

text [1]. The running time (in seconds) of using χ2 was not re-

ported in [12].

Distance Top 1 Top 2 Top 3 Top 4 Time

χ2 [12] 20/40 10/40 11/40 5/40 N/A

EMD [20] 37/40 33/40 24/40 16/40 1355s

Diffu. Dist. 34/40 27/40 19/40 14/40 67s

Table 2. Retrieval result on the articulated dataset with the inner-

distance shape context [12]. The running time (in seconds) of us-

ing χ2 was not reported in [12].

Distance Top 1 Top 2 Top 3 Top 4 Time

χ2 [12] 40/40 34/40 35/40 27/40 N/A

EMD [20] 39/40 38/40 26/40 28/40 1143s

Diffu. Dist. 40/40 36/40 37/40 23/40 68s

programming matchings are used to compute distances be-

tween pairs of shapes. The recognition result is evaluated

as following: For each image, the 4 most similar matches

are chosen from other images in the dataset. The retrieval

result is summarized as the number of 1st, 2nd, 3rd and 4th

most similar matches that come from the correct object. Ta-

ble 1 shows the retrieval results using the shape context. It

demonstrates that the diffusion distance works much better

than the χ2 distance.

Table 2 shows the results for inner-distance shape con-

text. In this case, though the inner-distance is already in-

sensitive to articulation, the diffusion distance still improves

the result. From the tables we also see that the diffusion dis-

tance works similarly to EMD, while being more efficient.

4.2. Image Feature Matching

This subsection describes the experiment for interest

point matching with several state-of-the-art image descrip-

tors. The experiment was conducted on two image data sets.

The first data set contains ten image pairs with synthetic

deformation, noise and illumination change, see Fig. 6 for

some examples. The second one contains six image pairs

with real deformation and lighting changes, some of them
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Figure 6. Some synthetic image pairs with synthetic deformation,

illumination change and noise.

Figure 7. Some real image pairs containing deformation and light-

ing change. Two pairs of images with large lighting change

are not shown here due to copyright issues. They are available

at http://www.cs.umd.edu/˜hbling/Research/Publication/data/RD-

cvpr06.zip.

are shown in Fig. 7. The experimental configuration and

results are described below.

Dissimilarity measures. We tested the diffusion distance

along with several popular bin-to-bin distances, as well as

cross-bin distances. The bin-to-bin distances include the

χ2 statistics, the symmetric Kullback-Leibler divergence

(KL), symmetric Jensen-Shannon(JS) divergence [10], L2

distance and Bhattacharyya distance (BT). Cross-bin dis-

tances include EMD, EMD-L1 and quadratic form(QF). For

EMD, we use Rubner’s online code with L2 ground dis-

tance. The quadratic form distance is implemented accord-

ing to [20]. For the diffusion distance, we set the Gaussian

standard deviation σ = 0.5 and use a window of size 3 × 3
(3 × 3 × 3 for 3D histograms). We did not compare with

PMK [3] because it requires random shifting when building

a initial histogram (zero-th layer) and it uses the intersec-

tion focusing on un-normalized histograms extracted from

feature sets.

Interest point. We use Harris corners [5] for the match-

ing experiments. The reason for this choice is that, due to

the large deformation, noise and lighting change, it is hard

to apply other interest point detectors. On the other hand,

we focus more on comparing descriptors than the interest

points. For the synthetic data set, we pick 200 points per im-

age pair with the largest cornerness responses. To compute

the descriptors, a circular support region around each inter-

est point is used. The region diameter is 41 pixels, which is

similar to the setting used in [15]).

Descriptors. We tested all the distances on three different

histogram-based descriptors. The first one is SIFT proposed

by [14]. It is a weighted three-dimensional histogram, 4

bins for each spatial dimensions and 8 bins for gradient ori-

entation. The second one is the shape context [1]. The shape

context for images is extracted as a two-dimensional his-

togram counting the local edge distribution in a similar way

to [15]. In our experiment, we use 8 bins for distance and 16

bins for orientation. The third one is the spin image [9, 7]

which measures the joint spatial and intensity distribution

of pixels around interest points. We use 8 distance bins and

16 intensity bins.

Evaluation criterion. For each pair of images with their in-

terest points, we first find the ground-truth correspondence.

This is done automatically for the synthetic data set and

manually for the real image pairs. Then, for efficiency we

removed those points in Image 1 with no correct matches

(this also makes the maximum detection rate to 1). After

that, every interest point in Image 1 is compared with all in-

terest points in Image 2 by comparing the SIFT extracted on

them. The detection rate among the top N matches is used

to study the performance. The detection rate r is defined

similarly to [15] as r = # correct matches
# possible matches

.

Experiment results. A Receiver Operating Characteristic

(ROC) based criterion is used to show the detection rates

versus N that is the number of most similar matches al-

lowed. The ROC curves on synthetic and real image pairs

are shown in Fig. 8. In addition, the running time of each

method is recorded. The average running time over real im-

age pairs is summarized in Table 3. From these results, we

see that the cross-bin distances work better than bin-to-bin

distances. EMD, EMD-L1 and the diffusion distance per-

form consistently better than the quadratic form distance.

For efficiency, it is clear that the diffusion distance is much

faster than all three other cross-bin distances - this is due to

its linear computational complexity.

5. Conclusion and Future Work

We model the difference between two histograms as an

isolated temperature field. Therefore the difference can be
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Figure 8. ROC curves for interest point matching experiments. Left column is for synthetic image pairs and right for real image pairs. First

row is for experiments with SIFT [14], second row for shape context [1], and third row for spin image [9, 7]

studied with a diffusion process. Combining this idea and

the connection between a diffusion process and the Gaus-

sian pyramid, we proposed a new distance between his-

tograms, diffusion distance. We show that the diffusion

distance is robust for comparing histogram-based local de-

scriptors since it alleviates deformation problems as well as

quantization effects that often occur in real vision problems.

In the experiments on both shape features and image fea-

tures, the proposed approach demonstrates very promising

performance in both accuracy and efficiency in comparison
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Table 3. Average time (in seconds) for interest point matching be-

tween a real image pair. SC is short for shape context and SI for

spin image.

Approach SIFT [14] SC [1] SI [9, 7]

χ2 0.055 0.047 0.042

L2 0.007 0.009 0.01

KL 0.161 0.229 0.2

JS 0.317 0.284 0.299

BT 0.044 0.034 0.047

QF 3.622 3.625 3.675

EMD(L2) 603.955 418.419 468.955

EMD-L1 6.041 3.693 3.74

Diffu. Dist. 0.909 0.117 0.112

with other state-of-the-art histogram distances.

We are interested in deepening our understanding of how

the diffusion process models the histogram difference, in-

cluding further theoretical analysis of the deformation prob-

lem and the relationship between the diffusion process and

other cross-bin distances, especially the Earth Mover’s Dis-

tance. We are also interested in applying the proposed ap-

proach to other histogram comparison problems aside from

local descriptors.
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