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Abstract

Conventional contour tracking algorithms with level
set often use generative models to construct the energy
function. For tracking through cluttered and noisy back-
ground, however, a generative model may not be dis-
criminative enough. In this paper we integrate the dis-
criminative methods into a level set framework when
constructing the level set energy function. We train a
set of weak classifiers to distinguish the object from the
background. Each weak classifier is designed to select
the most discriminative feature space and integrated via
AdaBoost according to their training errors. We also
introduce a novel interaction term to explore the cor-
relation between pixels near the object edge. This term
together with the discriminative model both enhance the
discriminative power of the level set. The experimental
results show that the contour tracked by our approach
is more accurate than the conventional algorithms with
the generative model. Our algorithm successfully tracks
the object contour even in a cluttered environment.

1. Introduction

Contour tracking, as one of the fundamental tasks in
computer vision, aims to obtain the contour of the ob-
ject in each frame rather the location. It receives more
and more attention due to its crucial value in many ap-
plications such as action recognition, human-computer
interfaces, and augmented reality.

Level set [1] is an implicit way to represent the con-
tour of the object. The basic idea is to represent con-
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tour as zero level set with an implicit function defined
in a higher dimension. Due to its efficiency in obtaining
the contour of the object, recently years witness greatly
advance of applying the level set into contour tracking
area. Paragios el al. [2] use the Geodesic Active Region
to track the contour of moving object. Mansouri el al.
[3] propose a novel method to formulate contour track-
ing as a Bayesian estimation problem, with no motion
model assumed. In [4], the probability density func-
tion (PDF) of texture and color features is fused in a
Bayesian inference framework to construct the energy
function for the level set evolution. In general, these
methods share the following characters: 1) a region and
edge term are combined together to design a energy
function; 2) the region term incorporates the motion or
color information, while the edge term explores the gra-
dient constrain of the object. However these algorithms
can not provide a reliable contour when the background
is cluttered and noisy. They are apt to be distracted by
similar background regions around the contour.

In [5],[6],[7], researchers consider a global shape
consistency to constrain the level set evolution. The
statistical property of shape prior for the object to be
tracked is learned before tracking. This shape prior term
is combined into the energy function to improve the per-
formance of the level set in a cluttered and noisy back-
ground. However the shape consistency does not always
hold and the learning process is time-consuming. Cre-
mers [8] employs a dynamical statistical shape priors as
the constrain of the level set. It explores the temporal
coherence of the silhouettes to obtain the shape prior of
current frame. This approach is only suitable for the
human tracking with a regular movement. Parts of the
sequence are needed before tracking to train the shape
transition matrix.

Recently, discriminative models have received more
and more attention because their effectiveness [9, 10].



Inspired by Avidan’s work [10], we employ the discrim-
inative model to increase the discriminative power of
level set in a cluttered and noisy background. A set of
weak classifiers are combined into a strong one based
on their discriminative ability between the object and
the background. Each weak classifier corresponds to a
selected feature space which is a linear combination of
R,G,B color space. So the strong classifier integrates
the most discriminative feature space together to distin-
guish the object from the background. With this strong
classifier, the probability of each pixel belonging to the
object and background is computed. Then we integrate
the strong classifier into the level set energy function to
obtain the contour.

The main contribution of this paper concentrates on
the following two parts. (1) We introduce a novel dis-
criminative model into the level set based contour track-
ing. (2) A novel interaction term is proposed to take the
pixel dependence into consideration. This term further
increases the discriminative power of our algorithm.

The rest of the paper is organized as follows. Sec-
tion 2 presents the definition of weak classifier and the
AdaBoost algorithm to boost them. In section 3, we
present a new level set energy function integrated with
the AdaBoost algorithm and the novel interaction term.
The experimental results are shown in section 4, which
is followed by the conclusion in section 5.

2. Discriminative Model

The discriminative model focuses on maximizing the
difference between the object and the background. In
this paper, the difference is mainly embodied in weak
classifiers. Each weak classifier is composed by a
hyper-plane of a certain feature space to distinguish the
object and the background. AdaBoost is adopted to
boost the weak classifiers into a strong one. The weak
classifiers selected by the AdaBoost are complimentary
to each other.

2.1. Weak Classifier

In order to increase the discriminative power of the
weak classifier, we consider each weak classifier as a
feature selector. If a weak classifier is selected as a can-
didate for the ensemble in the AdaBoost algorithm, the
feature connected with this weak classifier is the one
possess the highest discriminative power. The feature
pool used in this paper is a linear combination of the
R,G,B color space.

F ∈ {α1R+α2G+α3B}, αi ∈ {−2,−1, 0, 1, 2} (1)

After eliminating some redundant features, the feature
set can finally be reduced to 49. This feature set is not
casually defined. Many common features are included
in this set such as intensity R+G+B, approximate
chrominance feature R−B, excess color feature 2G−
R−B. The effectiveness of this feature pool is validated
in [13].

Assume that {xi, yi}Ni=1 are examples and their la-
bels, yi ∈ {0, 1}, xft is the value in feature space
ft ∈ F , N and T are the number of sample and weak
classifier respectively. The weak classifier is defined as
a hyperplane to separate the object from the background
for feature ft:

ht(xft) = sign(hTxft) (2)

The parameter h is solved using the least square regres-
sion:

h = (ATwTWA)−1ATwTWy (3)

where W is the matrix of the weights for each example
and A is the matrix of the examples.

2.2. Strong Classifier

AdaBoost [11] is validated to be one of the most ef-
fective discriminative models at separating the positive
samples from negative samples. The weak classifier se-
lected by AdaBoost compensates the previously chosen
one through adjusting the weights of the samples. The
weight of each sample is computed according to the er-
ror rate of previously selected weak classifier. At the be-
ginning of the training, each sample is initialized with a
equal weight {wi}Ni=1. The training error of each weak
classifier is defined as follows:

errort =
N∑
i=1

wisign(h(xi,ft) ̸= yi) (4)

The weight αt of each weak classifier is given by:

αt =
1

2
ln(

1− errort
errort

) (5)

At each iteration, the weak classifier with the minima
error rate is chosen as the candidate one for boosting.
At the end of tth iteration, we update the weights of the
samples:

wi ← wi exp{−αtyisign(errort)} (6)

After T weak classifiers are selected, the strong clas-
sifier is constructed according to their weights.

H(x) =
T∑

t=1

αtht(xft) (7)



3. Discriminative Level Set

We introduce a new energy function integrated with
the discriminative model. Meanwhile, a novel interac-
tion term which considers the correlation between pix-
els is introduced.

3.1. Energy Function With Discriminative
Model

The level set representation of the contour evolving
with time t is given by:

ϕ(x, t) =

 0 x ∈ C(t)
−d(x,C(t)) x ∈ Rout(t)
d(x,C(t)) x ∈ Rin(t)

(8)

where x ∈ R2 is the position of a pixel, d(x,C(t) is the
Euclidean distance from the point x to contour C(t).

Denote Ωobj ,Ωbck as the object and background re-
gions, v(x) as the value of a pixel x. The energy func-
tion is defined from the region competition view [12]:

E = ΣΩ∈Ωobj ,Ωbck

∫
Ω

log p(v(x)|Ω)dx+λ

∫
C

ds (9)

where the first term is the probability of the current con-
tour, the second term is the smoothness regulation, λ is
the regularization parameter. The contour C is the re-
sult of the competition between the object and the back-
ground regions.

We use the sigmoid function to define probability of
each pixel x given the contour:

p(v(x)|Ω) = 1

1 + exp{−
∑T

t=1 αtht(xft)}
(10)

For each iteration of contour evolution, only the pix-
els around the contour contribute to the evolution. A
narrow band around the contour instead of the whole
object and background regions is adopted for the con-
struction of the energy function. Thus the energy func-
tion with level set representation is defined as follows:

E(ϕ,Ωobj ,Ωbck) =

∫ k

0

Υ(ϕ) log p(v(x)|Ωobj)dx+∫ 0

−k

(1−Υ(ϕ)) log p(v(x)|Ωbak)dx+λ

∫
Ω

∇|Υ(ϕ)|dx

(11)
where k is the size of band, Υ is a Heaviside function.

3.2. The Interaction Term

In the conventional level set energy function, pixels
are treated as independent of each other. However the
value of each pixel is always influenced by the pixels

around it. The values between two nearby pixels can not
vary too much due to the consecutive constrain. So we
introduce a novel interaction term into the energy func-
tion to explore the dependence between pixels. This
term further increases the discriminative power of our
algorithm which is validated in the experiments.

The probability of each pixel is revised with:

p̃(v(xi)|Ω) =
1

1 + exp{−1
2 (H(xi) +

1
N

∑
j∈Ni

yi,jH(xj))}
(12)

where Ni is the 8-neighborhood of pixel i, yi,j = |yi −
yj | is a edge label, yi is defined as follows:

yi = sign(
T∑

t=1

αtht(xift)) (13)

From the definition of the interaction term, the proba-
bility of pixel x is influenced by the pixels around it.
If the pixels near x possess the same label with it, the
probability changes little. However if the pixels near x
are not identical with it, pixel x is considered as a noisy
one. Its probability is changed according to the pixels
near it.

3.3. Evolution Function

Differentiating the energy function with respect to C
results in the evolution equation of the level set func-
tion:

dϕ(x, t)

dt
=

dE

dC
= δ(ϕ)(2 log p̃(v(x)|Ω) + λk)| ▽ ϕ|

(14)
where k is the curvature of the contour.

With the speed function, the contour evolves to the
desired boundary by modifying ϕ iteratively:

ϕt = ϕt +∆t(log p̃(v(x)|Ω) + λk)| ▽ ϕ| (15)

where ∆t is the parameter to control the speed.

4. Experiments

In order to show the effectiveness of our algorithm
at improving the discriminative power of the level set
evolution, we evaluate the proposed model on three se-
quences. The parameters of the weak classifiers are
trained in the first frame using the contour given by
hand.

In the first experiment, we track the contour of a
pedestrian under an outdoor environment. The legs of
the people share similar color with the ground espe-
cially the shoes. As illustrated in Fig 1, the first row



(a) Our approach

(b) Conventional level set

(c) Our approach without the interaction term

Figure 1. Tracking results of three differ-
ent methods.

is the tracking performance of our algorithm, where the
obtained contour tightly encloses the person we tracked.
The second row gives the results of a state-of-art algo-
rithm [4]. In [4] the generative model is employed to
construct the energy function. In order to give a fair
comparison, the interaction term is also used. It is clear
that the generative model loses the discriminative power
when the object shares the similar appearance with the
background. The leg part of the person is not accurately
tracked due to its similarity with the ground. In the
third row, we implement our algorithm without the edge
term. The tracking results show the contour is distracted
by the bar in the wall and not tightly enclosed.

The second sequence is a Mickey head moving in a
man-made circumstance. This experiment is designed
to show the effect of the interaction term in resisting
the distraction of the noisy background. The contour of
the object is apt to be distracted by bars whose colors
are the same with the object. As shown in Fig 2.(b),
the contour is distracted by the bars in the background
without using the interaction term. On the contrary, the
tracking results in Fig 2.(a) illustrate that the actual con-
tour is available with the interaction term .

The last experiment is designed to show the ability
of our algorithm to track the contour under a noisy en-
vironment. The car is moving in a frog weather and the
background is noisy and cluttered. The tracking results
in Fig 3 show our algorithm successfully tracks the con-
tour of the car.

5. Conclusion

In this paper, the discriminative power of the level
set is increased through introducing the discriminative
model into the level set energy function. Also a new
interaction term is introduced to make the level set ro-
bust against the noisy background. Experiments illus-

(a) Our approach

(b) Our approach without the interaction term

Figure 2. The comparison between our ap-
proach with the edge term and without the
interaction term.

Figure 3. Vehicle tracking against noisy
and cluttered backgrounds.

trate that our algorithm successfully increases the dis-
criminative ability and obtains a better contour than the
generative based one under a complex environment.

References

[1] S.Osher and J.Sethian, ”Fronts propagation with curvature-
dependent speed: algorithms based on Hamilton-Jacobi formu-
lations”, Journal of Computational Physics, vol.79, pp.12-49,
1988.1, 2

[2] N. Paragios and R. Deriche. ”Geodesic active regions and level
set methods fpr motion estimation and tracking”, in CVIU,
2005.

[3] A.R. Mansouri, ”Region tracking via level set pdes without
motion computation”, IEEE Trans.on PAMI, vol. 24, no. 7, pp.
947-961, 2002.

[4] A.Yilmaz, X.Li and M.Shah, ”Contour-based object track-
ing with occlusion handling in video acquired using mobile
cameras”, IEEE Trans.ON PAMI, vol.26, pp.1531-1536, Nov.
2004.

[5] N.Paragios, M.Rousson, ”Shape Priors For Level Set Repre-
sentation”, ECCV, pp.78-92, 2002.

[6] M. Rousson and D. Cremers, ”Efficient kernel density estima-
tion of shape and intensity priors for level set segmentation”,
MICCAI, volume 1, pages 757-764, 2005.

[7] M. Leventon, W. Grimson, and O. Faugeras, ” Statistical shape
influence in geodesic active contours”, CVPR, volume 1,pages
316-323, 2000.

[8] D. Cremers, ”Dynamical statistical shape priors for level set
based tracking” in IEEE Trans”, PAMI, vol.28, pp. 1262-1273,
2006.

[9] X. Zhang, W. Hu, S. Maybank, and X. Li, ”Graph based dis-
criminative learning for robust and efficient object tracking”,
In ICCV 2007.

[10] S. Avidan, ”Support vector tracking”, PAMI, 26:1064C1072,
2004.

[11] Y. Freund and R. Schapire, ”A decision-theoretic generaliza-
tion of on-line learning and an application to boosting”, Journal
of Computer and System Sciences, 55(1):119C139, 1997.

[12] S. C. Zhu, T. S. Lee, and A. L. Yuille, ”Region competition:
unifying snakes, region growing, energy/bayes/MDL for multi-
band image segmentation”, in Proc. ICCV, pp. 416C423,1995.

[13] R. Collins, Y. Liu, and M. Leordeanu, ”Online selection of dis-
criminative tracking features”, PAMI, 27(10):1631C1643, Oct.
2005.


