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Abstract— Placing text labels is a common way to explain key elements in a given scene. Given a graphic input and original label
information, how to place labels to meet both geometric and aesthetic requirements is an open challenging problem. Geometry-wise,
traditional rule-driven solutions struggle to capture the complex interactions between labels, let alone consider graphical/appearance
content. In terms of aesthetics, training/evaluation data ideally require nontrivial effort and expertise in design, thus resulting in a lack
of decent datasets for learning-based methods. To address the above challenges, we formulate the task with a graph representation,
where nodes correspond to labels and edges to interactions between labels, and treat label placement as a node position prediction
problem. With this novel representation, we design a Label Placement Graph Transformer (LPGT) to predict label positions. Specifically,
edge-level attention, conditioned on node representations, is introduced to reveal potential relationships between labels. To integrate
graphic/image information, we design a feature aligning strategy that extracts deep features for nodes and edges efficiently. Next, to
address the dataset issue, we collect commercial illustrations with professionally designed label layouts from household appliance
manuals, and annotate them with useful information to create a novel dataset named the Appliance Manual Illustration Labels (AMIL)
dataset. In the thorough evaluation on AMIL, our LPGT solution achieves promising label placement performance compared with
popular baselines. Our algorithm and dataset are available at https://github.com/JingweiQu/LPGT.

Index Terms—Label placement, Graph neural network, Transformer

1 INTRODUCTION

Short text annotations, typically referred to as labels, are a popular
approach to interpreting crucial elements of a scene, and have been
extensively utilized in graphic design [4, 29], information visualiza-
tion [60, 73], and AR/VR [37, 66]. The placement of labels, i.e., the
label layout, greatly affects users’ comprehension of the scene. From
labeling point features such as cities on a geographical map [6, 41],
to placing labels for area features such as tissues in medical illustra-
tions [32, 33], there are many open problems in label placement due to
its NP-hard nature [12].

Manual label placement is a time-consuming process [76], which
has led to ongoing research into automatic label placement for
decades [29, 32, 47, 67]. Recently, a few studies have introduced learn-
ing techniques [6, 11], encouraged by the success of deep learning in
various domains. Nonetheless, the progress in addressing two critical
challenges is still limited. First, the ideal position of a label is strongly
related to the positions of all others, as investigated in previous studies.
However, these studies largely depend on manually designed rules,
which are hard to capture the complicated interactions among labels.
Second, ideal label layouts require nontrivial effort and expertise in
design. Consequently, datasets used in previous work are small or
constructed at the laboratory level. The lack of appropriate bench-
marks poses difficulties for learning-based methods, and partially limits
deeper exploration of the interactions between labels.

In this work, we address both challenges with novel contributions.
First, we propose a novel graph neural network (GNN) solution for
label placement, inspired by recent advances in GNNs [69, 77]. In
this solution, we represent the label layout by a graph, where nodes
correspond to labels and edges to interactions between labels. We then
formulate label placement as a node prediction problem, and design an
iterative solution to predict node displacement for continuously refining
label placement results. Building on the progress in Transformer-based

• Jingwei Qu, Pingshun Zhang, Enyu Che, and Yinan Chen are with College
of Computer and Information Science, Southwest University. E-mail:
qujingwei@swu.edu.cn, z2211973606@email.swu.edu.cn,
enyuche@gmail.com, out1147205215@outlook.com.

• Haibin Ling is with Department of Computer Science, Stony Brook
University. E-mail: hling@cs.stonybrook.edu.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

Cooling

Smart

Signal

Direction

Speed

Mute

Timing

DHM

Ventilation

Heating

Temp

Turbo

A-Heating

Cooling

Smart

Signal

Direction

Speed

Mute

Timing

DHM

Ventilation

Heating

Temp

Turbo

A-Heating

Cooling

Smart

Signal

Direction

Speed

Mute

Timing

DHM

Ventilation

Heating

Temp

Turbo

A-Heating

ℙ Label LayoutLabel Layout ℙ Label Layout

Cooling

Signal

Direction

Speed

Mute
Timing

Temp

Turbo

Graphic/ImageGraphic/Image 𝐈 Graphic/Image 𝐈 Raw Label Information 𝕃 Raw Label Information 𝕃 

A-Heating

Smart
DHM

VentilationHeating

In
p

u
t

G
N

N
-d

ri
ve

n
 M

e
th

o
d

O
u

tp
u

t

Graph Construction Label Placement Graph Transformer

... ...

Fig. 1: GNN-driven label placement. For a set of labels to be placed in a
graphic, the proposed Label Placement Graph Transformer predicts the
label layout given the graphic and raw label information.

architectures of GNNs [18, 78], we design a Label Placement Graph
Transformer (LPGT) to predict label positions (Fig. 1). An edge-level
attention conditioned on node representations is introduced, and com-
bined with a node-level attention conditioned on edge representations
to explore potential label relationships. To capture graphic/image infor-
mation, we present a feature aligning strategy that effectively extracts
deep features for nodes and edges. In particular, the edge features
are extracted based on the characteristic that edges traverse different
regions of an image.

Second, to alleviate the shortage of high-quality benchmarks, we
construct a new dataset, named Appliance Manual Illustration La-
bels (AMIL) dataset, based on illustrations from commercial product
manuals. The labels in these illustrations are created by professional de-
signers and thus have excellent readability, unambiguity, compactness,
and aesthetics [2]. Additionally, we introduce a metric for evaluating
the quality of label layouts.

In summary, our main contributions include: 1) We formulate label
placement as a graph node prediction problem. This novel formulation
allows not only natural encoding of interaction among different labels,

https://github.com/JingweiQu/LPGT


but also more effective inference techniques such as GNNs (Sec. 3).
2) We develop a novel Label Placement Graph Transformer solution,
which we believe is the first GNN solution for label placement. In
LPGT, a feature aligning strategy is introduced to efficiently extract
appearance features for nodes and edges; and an edge-level attention
is proposed to be combined with a node-level attention to encode rela-
tionship between labels (Sec. 4). 3) We build, to our best knowledge,
the first high-quality label placement dataset named Appliance Man-
ual Illustration Labels, which contains professionally designed label
layouts (Sec. 5). 4) In our carefully designed experiments, LPGT
achieves promising performance, both quantitatively and qualitatively,
in comparison with other solutions (Sec. 6).

2 RELATED WORK

2.1 Label Placement

According to label positioning, label placement tasks are generally
categorized into two types: internal and external. Internal labels are
typically placed within the regions of target elements to reduce inter-
ference with other elements [33, 47]. However, when elements are
not completely mutually exclusive, the label of one element can still
obscure other elements, such as labels in hierarchical 3D biological
environments [32]. With the significant developments in deep learning
across various domains, some recent studies incorporate deep learn-
ing architectures for label placement [6]. Overall, internal labeling is
constrained by the geometric structures of the target elements.

In contrast, external labels do not overlap with target elements [5].
The connections between them and the elements are represented by
leader lines. Two typical groups of labeling approaches have been
studied, boundary and flexible labeling. Boundary labeling approaches
place labels along a predefined boundary of a target object, such as
rectangle [4, 29], circle [66, 79], and contour [13]. Flexible labeling
methods place labels in all available spaces [11,22,27,34,35,38,44,45,
49, 57–59, 65, 67, 68]. In addition, some studies employ both internal
and external labeling to explore more layout styles [14].

Despite the advances in label placement, it remains challenging to ef-
fectively capture the interactions between labels, as well as a shortage of
high-quality benchmarks. In this paper, we overcome these limitations
by modeling label placement with GNNs and collecting professionally
designed label layouts from commercial product illustrations.

2.2 Graph Neural Networks

GNNs have achieved remarkable improvements in various graph-
related tasks [51, 64, 77]. According to the approach of computing rela-
tionships between nodes and implementing graph convolution, GNNs
can be divided into two groups: Spectral GNNs [1, 15, 31, 39, 70]
and Spatial GNNs [3, 9, 21, 24, 43]. The former leverage the eigenval-
ues and eigenvectors of the graph Laplacian to define graph convolu-
tion, while the latter perform convolution operations directly between
a node and its neighbors. The impressive success of Transformer
in various domains [17, 19, 36, 40, 62] also encourages the introduc-
tion of attention mechanisms or Transformer-based architectures in
GNNs [8, 18, 50, 52, 55, 56, 63, 75, 78]. Among them, the most related
work to ours is [18], which proposes relational attention, a node-level
attention that incorporates edge vectors. We introduce this node-level
attention into our LPGT with a modification to layer normalization
for better optimization, as inspired by [71]. Furthermore, unlike ag-
gregating representations of two associated nodes to update each edge
representation in [18], we design an edge-level attention conditioned
on node representations to explore label interactions more effectively.
Combined with the feature aligning strategy, our LPGT is the first GNN
solution for label placement.

3 PROBLEM FORMULATION

3.1 Problem Definition

In this paper, we adopt external labels for graphics. The key components
of an external label include (Fig. 2): 1) Text: annotations that illustrate
the target element. 2) Label box: a rectangular box that contains the

Anchor Wiring

Label Box

Text

Fig. 2: Components of an external label: text, label box, and anchor.

Table 1: Symbol notations.

Symbol Meaning

L,P,D sets of label information, positions, displacements
G,V,E,N complete graph, sets of node vectors, edge vectors, neighbors

R,S sets of real numbers, pixel points sampled along an edge
I,F,W input image, convolutional feature maps, weight matrix

a,s,p,δ ,o anchor, box size, position, displacement, box vectors of a label
d distance vector between two labels

f,z,e deep feature, node representation, edge representation
q,k,v,r,b QKV vectors of attention, image patch, bias vector

N ,E ,D ,L GNN module, fusion function, output layer of decoder, loss function

n,d quantity, dimensionality
z,e, f ,g superscripts or subscripts of node, edge, deep feature, geometric feature

text. 3) Anchor: a 2D point that indicates the representative position
(e.g., the center) on the target element.

Given a set of labels to be placed in a graphic, we define the label
placement problem as follows:
Input: A graphic/image I ∈ RH×W×3 and raw label information de-
noted by L =

{(
ai ∈ R2,si ∈ R2)}nl

i=1, where ai and si describe the
anchor position and box size of the i-th label, respectively, and nl is the
number of labels.
Output: Expected label positions P=

{
p̂i ∈ R2}nl

i=1, where p̂i is the
final position of i-th label. The labels and corresponding anchors are
linked by standard leader lines [5] to form the label layout. A trivial
solution is to place labels at the anchor, i.e., p̂i = ai, but coming with
poor aesthetics such as label overlap or blocking important information.

3.2 Graph Formulation
We associate each label with a node. A complete graph G is constructed
to capture the relationship between any pair of labels. Specifically, we
define it as an attributed graph G= (V,E), where V= {zi}nl

i=1 denotes
a set of node vectors; zi =

[
ai,si, fz

i
]
, where fz

i is the deep features of
node i, extracted from the image I [26], and [·] denotes the column-
wise concatenation. Similarly, E=

{
ei j
}

denotes a set of edge vectors,

where ei j =
[
ai−a j,si,s j, fe

i j

]
, fe

i j denotes the deep features of edge

(i, j), and ne = |E| denotes the number of edges. Key symbols are
explained in Tab. 1.

Based on the above graph representation, we can transform the label
placement problem into a node position prediction problem. While a
straightforward strategy is to predict the final positions of labels directly,
it is hard to learn such models due to the large variation in the absolute
positions. Alternatively, we propose learning the iterative displacements
relative to initial positions, a more controllable approach. This is
because, in each iteration, we only need to predict small displacement
vectors for each label.

With the above idea, we design a Label Placement Graph Trans-
former network to estimate the displacements D between the initial and
final positions of each label. The displacement of each label consists of
multiple steps:

D=
{
D̂k
}ns

k=1
=
{{

δ̂
k
i ∈ R2

}nl

i=1

}ns

k=1
(1)

where ns denotes the number of iterations, δ̂ k
i denotes the displacement

of the i-th label at the k-th step, and D̂k denotes the corresponding
displacement set. The initial position of each label is set as its anchor,
i.e., the central point of its box is aligned with the anchor. The final
predicted label layout is achieved by accumulating the displacements:

p̂i = ai +
ns

∑
k=1

δ̂
k
i (2)
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Fig. 3: Architecture of LPGT. First, a complete graph G is constructed to capture the relationship between labels. Its node and edge features are
generated from the label information and image features. Next, given the graph G as input, LPGT iteratively learns the displacements of the nodes
by a sequence of GNN modules. The graph is updated by each module and taken as input for the next module. For clarity, some edges are omitted
in the graph G.

4 METHODOLOGY

The proposed LPGT, as shown in Fig. 3, contains two main stages:
graph construction and displacement estimation.

• Graph Construction. A graph is constructed to represent labels
and their relationships. Graphic/image and raw label information
are utilized to generate the features of nodes and edges. A feature
aligning strategy is designed to extract deep features for nodes
and edges. Specially, edge features are constructed by integrating
visual information between labels, based on the characteristic that
edges traverse diverse areas of an image.

• Displacement Estimation. LPGT takes the graph as input, and
iteratively predicts displacements for nodes by sequential GNN
modules with the same architecture but different weights. Each
GNN module estimates displacements for all nodes, and the graph
is updated according to these displacements. In the GNN module,
a feature fusion mechanism is utilized to jointly incorporate label
information and image features into node and edge representa-
tions. Besides, node-level attention conditioned on edge represen-
tations is used to learn relationships between labels. Edge-level
attention conditioned on node representations is specifically de-
signed to explore interactions between label relationships.

4.1 Graph Construction
Given the raw label information L, a complete graph G is constructed
to encode the interaction between labels. To generate informative and
distinctive node and edge features, we take full advantage of label
information and image features. The labels are expected to move
from the anchors to the final positions. Therefore, for each node i, we
concatenate the 2D label anchor point ai =

(
xa

i ,y
a
i
)

and the box size
si = (hi,wi) as the geometric part [ai,si] of its features. To capture
the image features for node i, we first extract convolutional feature
maps F ∈Rh f×w f×d f from the entire image I by a convolutional neural
network (CNN), where h f and w f denote the spatial size of deep
features, and d f denotes the dimensions. Deep features contain high-
level semantic information in the image, including its shapes, textures,
and other visual attributes [26]. It is worth noting that direct application
of standard CNNs may be ineffective for line drawings in manual
illustrations. To alleviate this issue, we apply Gaussian blur to the input
image before feeding them into the feature backbone.

Intuitively, the deep features fz
i ∈ Rd f of node i can be naturally

recovered by a node-to-pixel correspondence on the feature maps F.
This node-to-pixel mapping requires that the features fz

i , which are
themselves local feature vectors, are well aligned to preserve the ex-
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Fig. 4: (a) The straightforward strategy for deep feature extraction causes
the misalignment (bxa

i /sc− xa
i /s,bya

i /sc− ya
i /s) between a node and its

selected feature vector. (b) Our feature aligning strategy mitigates the
misalignment by the node-to-patch correspondence and the bilinear
interpolation shown in (c).

plicit visual information per node. A straightforward nearest neighbor
strategy is to extract local feature vectors on the feature maps by co-
ordinate quantization. Node i is mapped onto the feature maps F at(
xa

i /s,ya
i /s
)

based on its anchor coordinates, where s is the scaling fac-
tor between the image I and the feature maps F. Then, the floating point
coordinates of each node are quantized to the discrete granularity, i.e.,(
bxa

i /sc,bya
i /sc

)
, where b·c is the flooring operation. The feature vec-

tor located at this position is selected as fz
i . However, the quantization

introduces misalignment between a node and its selected feature vector
(e.g., the offset in Fig. 4(a)), and fails to ensure the well-alignment
requirement. In addition, the selected feature may not embed effective
visual information due to blank areas in the input line drawings.

Therefore, we utilize a feature aligning strategy to avoid the harsh
quantization (Fig. 4(b)), inspired by the RoI align strategy [25]. For
each node i, we construct a patch ri =

(
hr

i ,w
r
i
)

centered on it, where
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Fig. 5: Feature extraction for edges. A set of pixel points Si j is uniformly
sampled along an edge (i, j). Then, their image features are extracted
through the feature aligning process, forming a feature matrix FSi j . Finally,
an average pooling is applied to FSi j to obtain the deep edge features fe

i j.

hr
i and wr

i denote the patch size. Then, the patch is mapped onto the
feature maps F, and centered on

(
xa

i /s,ya
i /s
)

with the size scaled to(
hr

i /s,wr
i /s
)
. Next, the patch is equally divided into four bins, and

each bin is further evenly split into four regions. The local feature
vector located at the center of each region is bi-linearly interpolated
from the neighboring feature vectors, as described in Fig. 4(c). Finally,
we apply a max pooling over the obtained four feature vectors of each
bin to obtain the deep features with the shape R2×2×d f of the patch ri.
The deep node features fz

i ∈ Rd f are generated by applying an average
pooling over the patch features, followed by L2 normalization. Through
this node-to-patch correspondence, the feature aligning strategy extracts
the accurate and rich visual information of the target elements for labels.
The deep features fz

i and the aforementioned geometric features [ai,si]

constitute the features of node i, i.e., zi =
[
ai,si, fz

i
]
.

To build the features of each edge (i, j), the distance between its
two nodes i and j is computed, and concatenated with the sizes of two
corresponding boxes as the geometric part

[
ai−a j,si,s j

]
of its features.

The distance reveals the spatial relation between the two labels.
For the deep features on an edge, we extract rich visual information

from its bridge across the two anchor points by sampling and average
pooling. Specifically, for an edge (i, j) in Fig. 5, we first use the
Bresenham’s line algorithm [7] to compute the pixel points along the
edge (i, j). Then, seven points are uniformly sampled from them to
form a point set Si j = {pk}7

k=1, including the two end nodes i and j,
i.e., p1 and p7. Next, the image features of these samples are extracted
by the feature aligning process, and then stacked to form a feature
matrix FSi j ∈ R|Si j |×d f . Finally, we apply an average pooling over FSi j

to obtain the deep edge features fe
i j, followed by L2 normalization.

The features of edge (i, j) consist of the above geometric features[
ai−a j,si,s j

]
and the deep features fe

i j, i.e., ei j =
[
ai−a j,si,s j, fe

i j

]
.

4.2 Label Placement Graph Transformer

Using the graph representing the labels, LPGT iteratively learns the
displacements of nodes to construct the label layout. It consists of
sequential GNN modules

{
N k}ns

k=1 with the same architecture but
different weights, adapted to the multi-step estimation of the node
displacements. For the k-th GNN module (as shown in Fig. 6), it
takes the graph Gk−1 as input and predicts the k-th step displacement
for each node, D̂k = N k (Gk−1). Then, the position of each node is
updated to p̃k

i ∈ R2 according to Eq. (2), i.e., adding the accumulated
displacements ∑

k
m=1 δ̂ m

i to the initial position ai. Consequently, the
graph is updated to Gk for the next step. Note that the initial graph G0

is constructed based on the anchor point of each node and the approach
described in Sec. 4.1. The graph update is also achieved in this way by
simply replacing anchor points with new node positions.

Each GNN module comprises three main components: encoder, core,
and decoder. The details are introduced using the first GNN module
N 1 that takes the initial graph G0 as input.

4.2.1 Encoder

To jointly integrate label information and image features into the rep-
resentation learning of nodes and edges, we design a feature fusion
mechanism in the encoder. The geometric and visual features of nodes
are fused by a fusion function E z, which is implemented by linear pro-
jections of the two feature parts based on the respective weight matrices
Wz

g ∈R4×dz and Wz
f ∈R

d f×dz . The geometric and visual edge features
are fused in the same way by a function E e with the corresponding
weight matrices We

g ∈ R6×de and We
f ∈ Rd f×de :

zi = E z (ai,si, fz
i
)

:= [ai,si]Wz
g + fz

i W
z
f

ei j = E e
(

ai−a j,si,s j, fe
i j

)
:=
[
ai−a j,si,s j

]
We

g + fe
i jW

e
f

(3)

where dz and de denote the hidden dimensions of the node and edge
representations, respectively.

4.2.2 Transformer Layers

The core block consists of several Transformer layers, and each Trans-
former layer contains a node Transformer (sub)layer and an edge Trans-
former (sub)layer.

Node Transformer Layer The node Transformer layer achieves
the aggregation and updating of node representations through a multi-
head self-attention (MHSA) block and a feed-forward network (FFN).
The MHSA block is implemented based on the node-level attention
in [18]. The node-level attention projects QKV vectors from each node
representation, simultaneously conditioned on the edge representation
between two nodes. Specifically, the node and edge representations are
projected using separate weight matrices, and the QKV vectors of the
nodes and edges are then added. Each node i attends to its first-order
neighbors j ∈ Ni, where Ni denotes the neighbor node set:

qz
i j = ziWz

q1
+ ei jWe

q1

kz
i j = z jWz

k1
+ ei jWe

k1

vz
i j = z jWz

v1
+ ei jWe

v1

(4)

where Wz
q1
,Wz

k1
,Wz

v1
∈Rdz×dqkv and We

q1
,We

k1
,We

v1
∈Rde×dqkv are the

weight matrices used for projecting QKV vectors of the node and edge
representations respectively in the node-level attention. dqkv denotes
the dimensions of the QKV vectors.

The multiple self-attention are calculated and concatenated, then
projected to obtain the MHSA. For each node i, the representations of
its neighbors are aggregated in the MHSA block. Its representation is
then updated by the FFN block, consisting of two linear layers with a
ReLU non-linearity.

SAz
h (zi) = ∑

j∈Ni

softmax j

qzh
i j kzh

i j
>√

dqkv

vzh
i j

MHSAz (zi) =
[
SAz

h (zi)
]nz

H
h=1 Wz

o +bz
o

z′i = MHSAz (LN(zi))+ zi

z′′i = ReLU
(
LN
(
z′i
)

W1
)

W2 + z′i

(5)

where Wz
o ∈Rnz

Hdqkv×dz
o and bz

o ∈Rdz
o are the weight matrix and the bias

vector for computing the node MHSA, dz
o denotes the corresponding

output dimensions, nz
H is the number of heads, and h is the head index.

W1 ∈ Rdz×dz
h and W2 ∈ Rdz

h×dz are the weight matrices of the node
FFN block, and dz

h denotes the corresponding hidden dimensions. In
addition, we apply layer normalization (LN) before the MHSA and
FFN blocks instead of after them as adopted in [18]. This modification
has been widely adopted by current Transformer implementations due
to more effective optimization [71]. Residual connections are applied
after each block. The node-level attention captures the dependencies
between all labels due to the complete graph G we model.

Edge Transformer Layer We further propose an edge-level at-
tention conditioned on node representations to explore the interactions



𝒩𝑘  

𝔾𝑘−1 𝐟𝑖
𝑧  

𝐳𝑖
𝑔  

𝐞𝑖𝑗
𝑔  

𝐟𝑖𝑗
𝑒  

Encoderz

ℰ𝑧  

Encodere

ℰ𝑒  

× 𝑛𝑡  

Node Transformer Layer
Edge Transformer Layer

𝐞𝑘𝑙  

𝐞𝑖𝑗  
𝐳𝑖
′′  

𝐳𝑙
′′  

𝐳𝑗  𝑘 
′′  

𝐪𝑖𝑗
𝑒  

𝐤𝑘𝑙
𝑒  

𝐯𝑘𝑙
𝑒  

FFN
e

M
H

S
A

e

FFN
e

M
H

S
A

e

𝐞𝑖𝑗  

𝐳𝑗  

𝐳𝑖  

𝐞𝑖𝑗  

𝐳𝑗  

𝐳𝑖  𝐪𝑖𝑗
𝑧  

𝐤𝑖𝑗
𝑧  

𝐯𝑖𝑗
𝑧  

M
H

S
A

z

FFN
z

Decoderz

𝒟𝑧  

Decoderz

𝒟𝑧  

Decodere

𝒟𝑒  
Decodere

𝒟𝑒  

𝛅 𝑖
𝑘  

𝐝 𝑖𝑗
𝑘  

𝔻 𝑘  

Fig. 6: The k-th GNN module takes the graph Gk−1 as input, and predicts the k-th step displacements D̂k of nodes. The geometric and visual features
are fused in the encoders E z and E e. The node and edge representations are then updated by the nt node and edge Transformer layers. Finally, the
decoders D z and De predict the displacements of nodes and the distances between nodes, respectively.

between label relationships. The edge-level attention projects QKV vec-
tors from each edge representation and associated node representations,
then adds the QKV vectors of edges and nodes:

qe
i j = ei jWe

q2
+ z′′i Wz

q2
+ z′′j Wz

q2

ke
kl = eklWe

k2
+ z′′k Wz

k2
+ z′′l Wz

k2

ve
kl = eklWe

v2
+ z′′k Wz

v2
+ z′′l Wz

v2

(6)

where Wz
q2
,Wz

k2
,Wz

v2
∈Rdz×dqkv and We

q2
,We

k2
,We

v2
∈Rde×dqkv denote

the weight matrices used for projecting QKV vectors of the node and
edge representations respectively in the edge-level attention.

The node-level attention maintains Transformer’s O
(
n2

l
)

complexity.
However, if each edge attends to all edges, the computational com-
plexity increases to O

(
n4

l
)

due to the n2
l edges in G. Therefore, we

introduce neighbors for each edge and restrict its aggregation within its
neighborhood. The neighbors of an edge are defined as edges that share
at least one associated node with it. Since each edge only attends to its
neighbors, the computational complexity drops to O

(
n2

l n̄e
)
, where n̄e

is the average number of neighbors for all edges. Taking advantage of
the reduced complexity, the MHSA and FFN blocks update the repre-
sentation of each edge (i, j) based on the weighted aggregation of the
representations from its neighbors (k, l) ∈ Ni j, where Ni j denotes the
neighbor edge set:

SAe
h
(
ei j
)
= ∑

(k,l)∈Ni j

softmaxkl

qeh
i j keh

kl
>√

dqkv

veh
kl

MHSAe(ei j) =
[
SAe

h
(
ei j
)]ne

H
h=1 Wo

e +bo
e

e′i j = MHSAe (LN
(
ei j
))

+ ei j

e′′i j = ReLU
(
LN
(
e′i j
)

W3
)

W4 + e′i j

(7)

where We
o ∈Rne

Hdqkv×de
o and be

o ∈Rde
o denote the weight matrix and the

bias vector for computing the edge MHSA, de
o is the corresponding

output dimensions, and ne
H is the number of heads. W3 ∈ Rde×de

h and
W4 ∈ Rde

h×de are the weight matrices of the edge FFN block, and de
h

denotes the corresponding hidden dimensions. Edge-level attention
reveals interactions between label relationships.

4.2.3 Decoder

The decoder contains two output layers, D z and De. The node output
layer predicts the displacement of each node, δ̂ 1

i = D z(zi). The edge
output layer estimates the distance vector between the two nodes, d̂1

i j ∈
R2 = De(ei j). To construct the input graph G1 of the second GNN
module N 2, the current graph G0 is updated based on the above
prediction results. Specifically, the position of each node is updated
by adding the displacement to the initial position, p̃1

i = ai + δ̂ 1
i . The

geometric features of each node and edge are updated as
[
p̃1

i ,si
]

and[
d̂1

i j,si,s j

]
, respectively. The visual features are constructed over the

new node positions through the feature aligning strategy.
For each label, the multi-step displacements are predicted by ns GNN

modules, based on the above three components and the graph update.
The final position is then determined by accumulating all displacements
from the initial position.

4.3 Training Objective

To optimize all GNN modules
{
N k}ns

k=1 of LPGT, we use a multi-
phase training strategy based on the iterative solution of the label
displacement estimation. The strategy consists of ns phases. In the
k-th phase, the first k modules of LPGT are trained using the following
losses: displacement loss Lδ , distance loss Ld , and overlap loss Lo.

The displacement loss Lδ is designed to guide labels to the expected
positions. The ground-truth displacements Dgt =

{
δi ∈ R2}nl

i=1 are thus
introduced, which are computed based on the anchor ai and the ground-
truth label position pi ∈ R2 of each label, i.e., δi = pi−ai. We adopt
the Mean Squared Error (MSE) to measure the differences between the
accumulated predicted displacements by the first k GNN modules and
the ground-truth:

L k
δ
=

1
nl

nl

∑
i=1

∥∥∥∥∥ k

∑
m=1

δ̂
m
i −δi

∥∥∥∥∥
2

(8)

For each label, distance vectors to other labels indicate their spa-
tial relations with respect to it. The distance loss Ld is proposed to
optimize the spatial relations between any two labels. We introduce
the ground-truth distance vectors, which are computed based on the
ground-truth label positions, di j = pi−p j . We utilize this supervision

for the predicted distance vectors
{

d̂m
i j

}k

m=1
of all the GNN modules

trained at the k-th phase:

L k
d =

1
k

k

∑
m=1

1
nl

nl

∑
i=1

∥∥∥d̂m
i j−di j

∥∥∥2
(9)

To reduce the overlap between labels, we design the overlap loss
Lo. The degree of overlap between any two labels is quantified by the
size of the overlap area of their label boxes. Therefore, we introduce
Intersection over Union (IoU) to measure the label overlap. It is a metric
widely used in the field of computer vision, such as object detection
task [53]. It evaluates the degree of overlap between the predicted
and ground-truth bounding boxes of an object. The IoU is calculated
through dividing the intersection area between the two bounding boxes
by the union area of them. It ranges from 0 to 1, where 0 indicates no
overlap and 1 denotes perfect overlap. We focus on minimizing the
overlap areas of label boxes. In the k-th training phase, each label box
is represented by its central point and size, ok

i =
[
p̃k

i ,si
]
. We compute

the IoU over all pairs of label boxes to form the overlap loss Lo:

L k
o =

nl

∑
i 6= j

∣∣∣ok
i ∩ok

j

∣∣∣/∣∣∣ok
i ∪ok

j

∣∣∣ (10)

where
∣∣∣ok

i ∩ok
j

∣∣∣ and
∣∣∣ok

i ∪ok
j

∣∣∣ denote the intersection area and the union
area of the two label boxes, respectively.

Finally, we combine the three losses to jointly guide the training of
our LPGT:

L k = L k
δ
+λdL k

d +λoL
k
o (11)

where λd ,λo ≥ 0 control the relative importance of the distance loss Ld
and the overlap loss Lo, respectively. The loss function L is adjusted
to accommodate the current training phase.

4.4 Implementation Details
The iterative displacement estimation employs four steps, ns = 4. To
construct the features for nodes and edges, we adopt ResNet-101 [26]
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Fig. 7: An illustration with its annotations, including appliance category
(i.e., ‘air conditioner’), label texts, label boxes, anchors, and leader lines.

pre-trained on ImageNet [16] as the feature backbone. The CNN feature
maps of layers conv4-23 and conv5-3 are concatenated to form the
features F. The spatial sizes of the input images are set to H =W = 256.
Therefore, the dimension of the deep features of nodes and edges is
d f = 3072. Many illustrations in the AMIL dataset are line drawings
with limited texture information. To extract more effective features,
we apply a Gaussian blur to the images before feeding them into the
backbone. The patch sizes of the feature aligning strategy are set to
hr = wr = 5. We empirically set the number of Transformer layers to
nt = 3, based on the size of the input graphs. The hidden dimensions of
the node and edge representations are both set to dz = de = 192. The
dimensions of the QKV vectors in the node and edge MHSA blocks are
both set to dqkv = 16. The number of heads and the output dimensions
of the two MHSA blocks are both nz

H = ne
H = 12 and dz

o = de
o = 192.

The hidden dimensions of the node and edge FFN blocks are set to
dz

h = 64 and de
h = 32, respectively. We use a grid search to set the

parameters of losses, λd = 0.2 and λo = 0.008.

5 AMIL DATASET

Several datasets have been used in previous studies to evaluate the
effectiveness of label placement methods [6, 14, 57]. However, due
to limited data sources and quality, most of these datasets are either
relatively small in scale or comprise data samples collected in controlled
laboratory environments. The lack of more appropriate benchmarks
poses difficulties for learning-based methods, and also partially limits a
deeper look into the interactions between labels.

To address this issue, we build a new dataset named the Appliance
Manual Illustration Labels dataset. High-quality label layouts typically
exhibit four key characteristics: readability, unambiguity, compactness,
and aesthetics [2]. For commercial purposes, illustrations from house-
hold appliance manuals meet these high standards. To help end-users
better understand the operations and functions of household appliances,
manufacturers often include illustrations in product manuals. The labels
in these illustrations play a crucial role in explaining the functionality
of each component, e.g., the on/off button, thus mitigating the risk of
user injury due to incorrect operation. Given these requirements, the
illustrations are typically created by professional designers, rendering
them a valuable resource for our study. Thus motivated, we manually
extract useful label placement information from each illustration as
depicted in Fig. 7, including appliance category, label texts, label boxes,
anchors, and leader lines.

Table 2 presents the statistics of AMIL. It contains 869 label lay-
outs across 11 appliance categories, including ‘air conditioner’, ‘dish-
washer’, ‘disinfection cabinet’, ‘fridge’, ‘gas stove’, ‘oven’, ‘panel’,
‘remote’, ‘washer’, ‘water heater’, and ‘water purifier’. These layouts
are split into 695 / 174 samples for training and testing, respectively.
On average, each sample contains 9.0 labels, ranging from 1 to 27. In
addition, the dataset offers a relatively balanced distribution between
samples with fewer than 10 labels (529 samples) and those with 10 or
more (340 samples), with a ratio of 1.56 : 1. Typically, each label is
associated with an anchor, but multiple instances of an element each
have their own anchor. In the AMIL dataset, 605 samples feature labels
each with a single anchor, while the remaining 264 samples include at
least one label with multiple anchors, resulting in a ratio of 2.29 : 1.

Table 2: Data statistics of the AMIL dataset.

Category #Samples #Labels #Labelsavg #Labelsmax #Labelsmin

air conditioner 185 1,035 5.6 18 1
dishwasher 21 150 7.1 12 3

disinf. cabinet 4 40 10.0 15 5
fridge 267 2,734 10.2 24 2

gas stove 35 276 7.9 11 4
oven 2 17 8.5 9 8

panel 129 1,175 9.1 20 1
remote 98 1,454 14.8 27 5
washer 9 62 6.9 8 5

water heater 61 266 4.4 12 2
water purifier 58 600 10.3 25 2

Total 869 7,809 9.0 27 1

We also introduce a metric, Probability of Correct Keypoints
(PCK) [74], to evaluate the quality of label layouts. PCK is com-
monly used to assess the accuracy of semantic correspondence [54].
We use it to measure the accuracy of predicted label positions. The
successful placement of a label is determined by the difference between
its predicted position p̂i and ground-truth position pi. Specifically, PCK
is defined as the ratio of successfully placed labels to all labels:

PCK =
1
nl

nl

∑
i=1

1(‖p̂i−pi‖ ≤ τ ·max(hl ,wl)) (12)

The indicator function 1 returns 1 if the distance between the two
label positions (p̂i,pi) is smaller than τ ·max(hl ,wl), i.e., label i is
successfully placed. In (12), hl and wl are the height and width of the
label layout, and τ = 0.05 is the threshold tolerance factor.

6 EXPERIMENTS

We evaluate the performance of LPGT by comparing it with 11 state-
of-the-art GNN models and 4 label placement methods on the proposed
AMIL dataset. We also conduct a user study and ablation studies for
more evaluation and analysis. For all experiments, optimization is
achieved via AdamW optimizer [30] with hyperparameters ε = 1e-8,
(β1,β2) = (0.9,0.999), and weight decay 0.01. The initial learning rate
is set to 2e-4, and halved at regular intervals. The batch size is set to 4.
All experiments are run on a single NVIDIA GeForce RTX 4090 GPU
and an Intel Core i9-13900k CPU. LPGT and other GNN models are
implemented using PyTorch [46] and PyTorch Geometric library [20].

6.1 Evaluation Results
LPGT is compared with 11 GNNs, including GCN [31], MPNN [21],
GraphSage [24], GAT [63], GIN [72], GCN2 [10], UniMP [55],
EGC [56], GATv2 [8], GPS [52], and ASC [23]. For a fair comparison,
we keep the graph construction stage and replace the proposed GNN
with these GNNs in the displacement estimation stage. The required
settings are listed below:

• Some GNNs (GCN, MPNN, GIN and GCN2) have difficulty
placing labels due to the over-smoothing problem and fail to
distinguish between different nodes. To solve this problem, we
incorporate the initial node features into the input representations
of each GNN layer, and add residual connections after each layer.

• Several GNNs are implemented based on attention mechanism or
Transformer architecture, including (1) GAT, EGC, and GATv2
(attention-based) and (2) UniMP and GPS (Transformer-based).
For these GNNs, we set the number of heads in multi-head atten-
tion to 12, which is consistent with our LPGT.

• GCN layers are used for the message passing layers in both GPS
and ASC.

• Most GNNs, except for MPNN, GAT, UniMP, and GATv2, focus
only on node representations. For these models, we implement
encoders with only the node fusion function and decoders with
only the node output layer. While MPNN, GAT, UniMP, and
GATv2 incorporate edge features into the learning of node rep-
resentations, there are no independent outputs for edges. Thus,



Table 3: Comparison of label layout quality PCK@0.05 (%) and efficiency on the AMIL dataset. “Time” indicates the average generation time of
a label layout. “#Param” indicates the number of parameters in a GNN model, i.e., without the feature backbone. Time statistics are over all test
samples. Numbers in bold indicate the best performance.

Model ac d.wash d.cabi fridge g.stove oven panel remote washer w.heat w.puri Avg. Time(ms) #Param

GCN [31] 34.68 64.34 36.67 58.45 57.80 50.00 51.53 42.07 10.00 77.64 19.76 48.75 7.45 2.8 M
MPNN [21] 31.09 59.98 20.00 60.84 53.71 37.50 49.47 39.00 14.29 65.97 13.77 46.41 11.87 33.8 M

GraphSAGE [24] 37.03 55.63 33.33 61.24 57.71 25.00 50.42 39.62 21.43 76.81 18.57 49.25 7.53 3.3 M
GAT [63] 25.10 53.54 23.33 54.84 58.68 0.00 42.32 40.23 0.00 71.67 17.26 42.74 13.04 5.6 M
GIN [72] 25.91 56.45 0.00 33.59 35.56 50.00 25.59 12.20 0.00 20.14 15.45 26.20 7.48 3.3 M

GCN2 [10] 37.20 58.69 23.33 62.06 59.16 12.50 52.00 43.38 10.00 73.19 17.40 49.69 7.91 2.8 M
UniMP [55] 37.96 60.17 46.67 63.34 60.59 50.00 56.96 45.58 17.14 74.17 14.65 51.78 12.62 7.0 M

EGC [56] 35.40 55.44 43.33 64.97 65.55 62.50 48.97 41.85 10.00 80.83 15.55 50.68 7.69 2.6 M
GATv2 [8] 27.14 60.50 40.00 54.61 48.43 25.00 50.87 44.10 0.00 64.31 9.65 43.91 12.07 6.1 M

GPS [52] 20.43 38.07 13.33 41.19 43.99 37.50 37.47 31.45 17.14 30.42 14.70 32.23 10.95 6.4 M
ASC [23] 36.00 64.53 36.67 62.56 60.73 37.50 50.96 42.69 20.00 77.92 15.65 50.18 8.61 3.3 M

LPGT 42.05 76.81 46.67 72.67 73.51 87.50 57.30 50.25 24.29 85.14 34.57 59.27 18.46 11.4 M

for these four models, we adopt the encoder of our LPGT but
continue to use decoders that contain only the node output layer.
For all GNNs, we compute distances between the estimated node
positions to replace the predicted distances of the edge output
layer, i.e., d̂k

i j = p̃k
i − p̃k

j .

Moreover, we compare LPGT with four label placement methods,
including Particle-Based Labeling (PBL) [41], Clutter-Aware Label-
ing (CAL) [42], SmartOverlays [27], and Semantic-Aware Labeling
(SAL) [28]. Since there are no official codes available, we reproduce
these methods based on their papers and adjust the parameter settings.

Quantitative Results The quantitative results, presented in Tab. 3,
show that LPGT surpasses other GNN models with a placement accu-
racy of 59.27%, leading in all categories. Eight models—GCN, MPNN,
GraphSAGE, GAT, GIN, GCN2, GATv2, and GPS—achieve below
50% PCK, indicating that, on average, they incorrectly place more than
half of the labels. While the other three models—UniMP, EGC, and
ASC—generate better label layouts than the aforementioned eight, they
fall significantly short of LPGT, with gaps in PCK values of 7.49%,
8.59%, and 9.09%, respectively. Despite attempts to optimize parame-
ters for the four label placement methods PBL, CAL, SmartOverlays,
and SAL, their performances remain unsatisfactory, with PCK values
of 3.61%, 1.98%, 7.14%, and 3.52%, respectively. This underperfor-
mance likely stems from their design for maps and street views, not
well-suited to the illustrations in the AMIL dataset.

Efficiency Evaluation Further experiments assess the efficiency
of LPGT by profiling the time to generate label layouts and the number
of model parameters (Tab. 3). We report the parameter count excluding
the feature backbone, as it is consistent across all models. To determine
layout generation time, we calculate the average time for all test sam-
ples. MPNN, GAT, UniMP, GATv2, and LPGT show lower efficiency
than other GNNs, attributed to their use of edge features. LPGT, with
its relatively high parameter count, aligns with our expectations due to
the complex node-to-node and edge-to-edge attention mechanisms it
incorporates. Despite LPGT’s slower label layout generation compared
to other GNNs, its efficiency remains suitable for graphic design.

Qualitative Results The predicted label layouts of several illustra-
tions are visualized in Fig. 8. Compared to GCN, GIN, GATv2, and
SmartOverlays, LPGT produces more appropriate layouts with little
sensitivity to label quantity. Most of the label positions predicted by
the four comparison methods are inappropriate, even overlapping with
objects such as the remote sample (the seventh row). GCN outperforms
the other three methods, but there is still a gap between it and LPGT in
terms of label position accuracy.

6.2 User Study
Along with the above qualitative results, we conduct a user study to
explore user preferences for different methods, comparing LPGT with
GCN, GIN, GATv2, and SmartOverlays. We select a sample from each
category in the test set of the AMIL dataset, applying all five methods
to generate label layouts. On average, each sample contains 6.5 labels,

ranging from 3 to 15. This provides a diverse basis for evaluation across
label quantity and types.

Utilizing a psychophysical paired comparison technique [61] and
following the two-alternative forced choice (2AFC) paradigm, we se-
quentially present each participant with label layout pairs generated
by different methods for the same sample, asking them to select their
preferred layout. Each sample has 10 label layout pairs. To reduce
learning effects and fatigue, the sequence and side placement of layouts
are randomized. The study involves 22 participants, consisting of 11
males and 11 females, with an average age of 20.18 years (ranging from
19 to 23). They were recruited through a university forum and were
unaware of any of the evaluated methods. Each participant compared
110 label layout pairs, resulting in 88 scores for each layout. These
measures ensure sufficient and reliable statistical data in the user study.
The participants completed the task in an average time of 21 minutes
and 39 seconds.

Each participant’s choices are quantified in a count matrix C, then
converted into a quality score (z-score) scale for statistical significance
analysis based on Thurstone’s Law of Comparative Judgment (Case
V) [48, 61]. Each element Ci j indicates the preference frequency for
method i over method j. A two-tailed test at a significance level of
α = 0.05 assesses the null hypothesis of no clear user preference
among the evaluated methods. The results, illustrated in Fig. 9, demon-
strate LPGT’s superiority with the highest quality score, significantly
surpassing other methods, thus preferred by users. There are significant
preference differences between SmartOverlays and other four methods,
highlighting the value of developing GNN-driven label placement.

6.3 Ablation Study
We conduct ablation studies to shed light on the impact of each key
design within LPGT. Additionally, the findings from these ablations
open up the potential pathways for future research, creating possibilities
for further optimization of our method.

Key Components First, we implement a model without the feature
aligning (FA) strategy. The deep features of nodes and edges are
recovered directly from the feature maps as mentioned in Sec. 4.1.
The results in Tab. 4 show that the performance improves by 4.18%
from (b) to (a). Then, we define two other models: (1) one without
the edge feature extraction (EFE) strategy; (2) the other without the
edge-level attention (EA). For the former, the deep features of each
edge are computed as the differences of the features of its associated
nodes: fe

i j = fz
i − fz

j. For the latter, we aggregate the local information
of the edge to replace the edge-level attention. The representations
of neighbor edges of the edge are summed, then concatenated with
the associated node representations. Next, these representations are
aggregated by two linear layers with a ReLU non-linearity:

e′i j = ReLU
([

∑(k,l)∈Ni j
ekl ,z′′i ,z

′′
j

]
W5

)
W6 + ei j (13)

where W5 ∈ R(de+2dz)×de and W6 ∈ Rde×de are the weight matrices
used for the aggregation of the edge representations. The results
in Tab. 4 show that the performance decreases by 1.13% (from (a)



Fig. 8: Qualitative results on the AMIL dataset. Solid and dashed label boxes denote the ground-truth and predicted positions of labels, respectively.
Different colors are used to distinguish labels. Label texts are omitted in the predicted label layouts for clarity.

to (c)) and 2.25% (from (a) to (d)), respectively, when the two compo-
nents are removed. The above results demonstrate the effectiveness of
the three key components in exploring the label interactions.

Loss Functions To evaluate the effectiveness of each loss function,
we first train a model using only the displacement loss Lδ . Then, two
other models are trained: (1) one without the distance loss Ld ; (2) the
other without the overlap loss Lo. The PCK 56.94% of (e) in Tab. 4
demonstrates that the displacement loss is effective to guide the learning

of LPGT. Besides, the PCK improvements from (f) to (a) (1.74%) and
from (g) to (a) (1.07%) suggest that the distance loss and the overlap
loss guide the labels to pursue appropriate spatial relations and avoid
overlapping each other.

Visual Features We consider the geometric features as essential
for learning label positions. To achieve more ideal label layouts, we
introduce the visual features based on graphic appearance. The afore-
mentioned experimental findings demonstrate that the combination of



Table 4: Ablation studies of LPGT on the AMIL dataset. Time statistics are over the same setting with Tab. 3. “−” indicates that the component is
removed. “#Param” indicates the number of parameters in the whole model. Numbers in bold indicate the best performance.

Model ac d.wash d.cabi. fridge g.stove oven panel remote washer w.heat w.puri Avg. Time(ms) #Param

(a) LPGT 42.05 76.81 46.67 72.67 73.51 87.50 57.30 50.25 24.29 85.14 34.57 59.27 18.46 53.9 M

(b) − FA 40.29 79.00 40.00 70.05 68.83 62.50 48.88 43.00 14.29 84.86 27.73 55.09 17.53 53.9 M
(c) − EFE 45.12 70.97 46.67 72.04 70.62 87.50 56.22 41.62 10.00 87.22 32.21 58.14 15.26 53.9 M
(d) − EA 44.45 76.81 43.33 71.99 72.66 87.50 53.42 44.47 10.00 79.17 24.25 57.02 15.47 52.6 M

(e) −Ld −Lo 39.19 71.54 46.67 73.10 67.90 75.00 52.99 48.79 7.14 86.94 25.56 56.94 18.46 53.9 M
(f) −Ld 44.00 78.49 40.00 71.70 68.70 62.50 54.77 43.36 17.14 88.61 27.20 57.53 18.46 53.9 M
(g) −Lo 41.94 71.86 43.33 73.24 69.81 62.50 54.32 47.72 7.14 88.61 33.19 58.20 18.46 53.9 M

(h) − VF 38.16 46.32 43.33 65.78 76.63 25.00 55.08 39.73 35.71 77.78 9.43 51.89 11.20 6.7 M

(i) −MPT 34.60 72.84 43.33 68.23 64.33 62.50 54.43 49.24 7.14 80.56 27.27 54.22 18.46 53.9 M
(j) − BF 42.76 78.11 43.33 69.06 70.81 75.00 58.45 43.25 52.86 83.89 27.14 57.27 18.46 11.4 M
(k) − GB 47.06 79.79 43.33 71.25 71.01 62.50 54.21 44.82 24.29 80.69 27.46 57.82 18.46 53.9 M

Fig. 9: Results of the user study: quality scores with 95% confidence
intervals. Solid blue brackets highlight statistically significant dispari-
ties between method pairs, annotated with p-values, while red dashed
brackets indicate method pairs lacking statistically significant differences.

both features is effective for label placement. To further analyze the
role of each feature, we conduct experiments by eliminating the visual
features (VF). As shown in Tab. 4, despite a decrease in the PCK value
from (a) to (h), the model still achieves favorable performance com-
pared to other GNNs listed in Tab. 3. These results indicate that the
geometric features support the generation of satisfactory label layouts,
and the visual features are effective for further optimization.

Training Strategies In the proposed multi-phase training (MPT)
strategy, the first k GNN modules of LPGT are trained at the k-th phase.
To study its effect on the optimization of LPGT, we present another
strategy for comparison. In the k-th phase, only the k-th GNN module
is trained. The obvious performance drop from (a) to (i) in Tab. 4
demonstrates the effectiveness of MPT. In addition, we implement
two other models: (1) one without backbone fine-tuning (BF); (2) the
other without Gaussian blur (GB). The PCK improvements from (j)
to (a) (2.00%) and from (k) to (a) (1.45%) in Tab. 4 suggest that both
approaches have positive effects on extracting more effective features.

6.4 Summary
The quantitative comparison demonstrates that LPGT is effective and
robust for placing varying numbers of labels across different object
categories. In terms of aesthetics, LPGT achieves appropriate label
layouts with less overlapping and clutter, as shown in the qualitative re-
sults. The user study suggests that participants prefer LPGT-generated
layouts over those from other methods, aligning with both the quantita-
tive and qualitative results. In addition, the user preference differences
between GNN models and traditional label placement methods high-

light the power of GNNs in label placement. Based on the findings that
variations in the key designs of LPGT influence overall performance,
the ablation studies indicate the effectiveness of these designs.

7 DISCUSSION

It is worth noting that although our learning-based solution is evaluated
on graphics, it may be applied to other labeling tasks with appropriate
extensions. For interactive graph labeling, the changeable label layout
can be represented by a dynamic graph instead of a static one. Addition-
ally, the learning of node and edge representations should incorporate
temporal information by weighting updates based on the recency and
frequency of user interactions. Similarly, our method should be gen-
eralizable to other cases beyond our focus (i.e., external labels). For
internal labels, the iterations of the displacement estimation need to be
reduced since the labels are generally placed within the target regions.
For mixed labeling, the intrinsic differences between internal and exter-
nal labels result in diverse node types and more complex relationships
between labels, which requires a heterogeneous graph.

Based on the rich annotation and the quality metric, the AMIL
dataset could be utilized to train and evaluate learning-based models,
thus contributing to significant advances in label placement. However,
it still has some limitations. First, the labels are not highly dense and
crowded, thus it is not suited to evaluate the performance of methods
that focus on placing dense labels. Second, the sample size of several
categories is small, e.g., ‘oven’. This requires a pre-training procedure
for learning-based approaches that depend on large-scale data. In
addition, some limitations of our method need to be explained despite
its promising performance in label placement. First, to reduce the
computational complexity of edge-level attention, we restrict each edge
to attend to its neighbor edges. In future work, we will explore more
efficient approaches to expand each edge’s receptive field to cover the
entire graph. Second, our method focuses on label position prediction,
and directly uses standard leader lines to connect labels to anchors. It
would be worthwhile to develop learning-based leader line generation
approaches to improve the level of automation in label placement.

8 CONCLUSION

In this paper, we model label layouts with graph representation and
formulate label placement as a graph node prediction problem. Based
on the formulation, we develop a Label Placement Graph Transformer
network, which iteratively predicts and refines label positions. Specifi-
cally, in LPGT, an edge-level attention mechanism conditioned on node
representations is designed and combined with a node-level attention
to explore the interactions between labels. Furthermore, we propose a
feature aligning strategy to effectively integrate graphic/image infor-
mation into node and edge features. The edge features are specially
constructed to enhance the descriptions of the label relationships, based
on the spatial traversing property of edges. In addition, a benchmark
dataset containing high-quality label layouts from product illustrations
is created. Experimental results demonstrate the effectiveness of the
proposed method.
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[6] P. Bobák, L. Čmolík, and M. Čadík. Reinforced Labels: Multi-agent deep
reinforcement learning for point-feature label placement. IEEE Trans. Vis.
Comput. Graph., 2023. doi: 10.1109/TVCG.2023.3313729 1, 2, 6

[7] J. E. Bresenham. Algorithm for computer control of a digital plotter. IBM
Systems Journal, 4(1):25–30, 1965. doi: 10.1147/SJ.41.0025 4

[8] S. Brody, U. Alon, and E. Yahav. How attentive are graph attention
networks? In Proc. of ICLR, 2022. doi: 10.48550/arXiv.2105.14491 2, 6,
7

[9] I. Chami, Z. Ying, C. Ré, and J. Leskovec. Hyperbolic graph convolu-
tional neural networks. In Proc. of NeurIPS, pp. 4869–4880. MIT Press,
Cambridge, 2019. doi: 10.1145/3580305.3599562 2

[10] M. Chen, Z. Wei, Z. Huang, B. Ding, and Y. Li. Simple and deep graph
convolutional networks. In Proc. of ICML, pp. 1725–1735. PMLR, New
York, 2020. doi: 10.48550/arXiv.2007.02133 6, 7

[11] Z. Chen, D. Chiappalupi, T. Lin, Y. Yang, J. Beyer, and H. Pfister. RL-
LABEL: A deep reinforcement learning approach intended for ar label
placement in dynamic scenarios. IEEE Trans. Vis. Comput. Graph.,
30(1):1347–1357, 2024. doi: 10.1109/TVCG.2023.3326568 1, 2

[12] J. Christensen, J. Marks, and S. Shieber. An empirical study of algorithms
for point-feature label placement. ACM Trans. Graph., 14(3):203–232,
1995. doi: 10.1145/212332.212334 1
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