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LIME: Low-light Image Enhancement via
Illumination Map Estimation
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Abstract—When one captures images in low-light conditions,
the images often suffer from low visibility. Besides degrading
the visual aesthetics of images, this poor quality may also sig-
nificantly degenerate the performance of many computer vision
and multimedia algorithms that are primarily designed for high-
quality inputs. In this paper, we propose a simple yet effective
low-light image enhancement (LIME) method. More concretely,
the illumination of each pixel is first estimated individually by
finding the maximum value in R, G and B channels. Further,
we refine the initial illumination map by imposing a structure
prior on it, as the final illumination map. Having the well-
constructed illumination map, the enhancement can be achieved
accordingly. Experiments on a number of challenging low-light
images are present to reveal the efficacy of our LIME and show its
superiority over several state-of-the-arts in terms of enhancement
quality and efficiency.

Index Terms—Illumination Estimation, Illumination (Light)
Transmission, Low-light Image Enhancement

I. INTRODUCTION

UNDOUBTEDLY, high-visibility images reflect clear de-
tails of target scenes, which are critical to many vision-

based techniques, such as object detection [1] and tracking [2].
But, images captured in low-light conditions are often of low
visibility. The visual quality of images captured under low-
light conditions, for one thing, is barely satisfactory. For an-
other thing, it very likely hurts the performance of algorithms
that are primarily designed for high-visibility inputs. Figure 1
provides several such examples, from which, we can see that
many details, such as the paintings on the wall in the first case,
the distant field on the bottom-left corner in the third case and
the reflection on the floor in the last one, have almost been
“buried” in the dark. To make the buried information visible,
low-light image enhancement is definitely demanded.

Directly amplifying the low-light image is probably the
most intuitive and simplest way to recall the visibility of dark
regions. But, this operation gives birth to another problem,
say relatively bright regions might be saturated and thus loss
corresponding details. Histogram equalization (HE) strategies
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[3], [4], [5] can avoid the above problem by somehow forcing
the output image to fall in the range [0, 1]. Further, variational
methods aim to improve the HE performance by imposing
different regularization terms on the histogram. For instance,
contextual and variational contrast enhancement (CVC) [6]
tries to find a histogram mapping that pays attention on large
gray-level differences, while the work [7] achieves improve-
ment by seeking a layered difference representation of 2D
histograms (LDR). However, in nature, they focus on contrast
enhancement instead of exploiting real illumination causes,
having the risk of over- and under-enhancement. Another
solution is Gamma correction that is a nonlinear operation
on images. The main drawback is that the nonlinear operation
of Gamma correction is carried out on each pixel individually
without considering the relationship of a certain pixel with
its neighbors, and thus may make enhanced results vulnerable
and visually inconsistent with real scenes.

In Retinex theory [8], the dominant assumption is that
the (color) image can be decomposed into two factors, say
reflectance and illumination. Early attempts based on Retinex,
such as single-scale Retinex (SSR) [9] and multi-scale Retinex
(MSR) [10], treat the reflectance as the final enhanced result,
which often looks unnatural and frequently appears to be over-
enhanced. The method proposed in [11] tries to enhance con-
trast while preserving naturalness of illumination. Although it
prevents results from over-enhancement, in our experiments,
it performs less impressive than our method in terms of both
efficiency and visual quality. Fu et al. proposed a method to
adjust the illumination by fusing multiple derivations of the
initially estimated illumination map (MF) [12]. The perfor-
mance of MF is mostly promising. But, due to the blindness
of illumination structure, MF may lose the realism of regions
with rich textures. The most recent work of [13] proposed
a weighted variational model for simultaneous reflectance and
illumination estimation (SRIE). With the estimated reflectance
and illumination, the target image can be enhanced by ma-
nipulating the illumination. As noticed in [14], inverted low-
light images look like haze images, as shown in Fig. 2. Based
on this observation, the authors of [14] alternatively resorted
to dehaze the inverted low-light images. After dehazing, the
obtained unrealistic images are inverted again as the final
enhanced results. Recently, Li et al. followed this technical
line and further improved the visual quality by first over-
segmenting the input image and then adaptively denoising
different segments [15]. Even though the above dehazing-like
methods can provide reasonable results, the basic model they
rely on is lacking in physical explanation. By contrast, our
method has clear physical intuition.
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Fig. 1: Top Row: Natural low-light images. Middle Row: The illumination maps estimated by our method. Bottom Row:
The results enhanced by our method.

Fig. 2: The inverted versions (unrealistic images) of images shown in the top row of Fig. 1.

Contribution Our method belongs to the Retinex-based
category, which intends to enhance a low-light image by
estimating its illumination map. It is worth noting that, differ-
ent from the traditional Retinex-based methods like [13] that
decompose an image into the reflectance and the illumination
components, our method only estimates one factor, say the
illumination, which shrinks the solution space and reduces the
computational cost to reach the desired result. The illumination
map is first constructed by finding the maximum intensity of
each pixel in R, G and B channels. Then, we exploit the
structure of the illumination to refine the illumination map.
An Augmented Lagrangian Multiplier (ALM) based algorith-
m is given to exactly solve the refinement problem, while
another sped-up solver is designed to intensively reduce the
computational load. Experiments on a number of challenging
images are conducted to reveal the advantages of our method
in comparison with other state-of-the-art methods.

II. METHODOLOGY

Our method is built upon the following (Retinex) model,
which explains the formation of a low-light image:

L = R ◦T, (1)

where L and R are the captured image and the desired recov-
ery, respectively. Furthermore, T represents the illumination
map, and the operator ◦ means element-wise multiplication.
In this paper, we assume that, for color images, three chan-
nels share the same illumination map. With slight abuse of
notations, we use T (T̂) to represent one-channel and three-
channel illumination maps interchangeably. The model (1) is
with clear physical meaning, say the observed image can be
decomposed into the product of the desired light-enhanced
scene and the illumination map.

The model of our problem is similar with that of the intrinsic
image decomposition [16], [17], [18], [19], which attempts
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(b) Reflectance
 (c) Our desired
(a) Input


Fig. 3: Different purposes of intrinsic image decomposition
and low-light image enhancement.

(b) DeHz
(a) Low-light Input
 (c) LIME


Fig. 4: Comparison of (6) and (3) with the same illumination
map. The atmospheric light a estimated by [20] is larger than
0.95. Even though, the difference is still noticeable.

to decompose the input into two components1. However, the
goal of the intrinsic image decomposition is to recover the
reflectance component and the shading one from the given
image. As shown in Fig. 3 (b), the reflectance loses the shape
of the box (the ground truth reflectance is from [16]), which
does not satisfy the purpose of low-light image enhancement.
The expectation of our work is to recall the visual content of
dark regions as well as keep the visual realism, as shown in
Fig. 3 (c). Some researchers noticed the unrealism of using
the reflectance as the enhanced result, for example [9], [10],
and tried to project the modified illumination back to the
reflectance [13] by R̂◦f(T̂), where R̂ and T̂ are the recovered
reflectance and illumination respectively, and f(·) stands for a
manipulation operator such as Gamma correction. We can see
that the desired result of enhancement is obtained by somehow
combining the decomposed components again. Further, due to
the ill-posedness of the decomposition problem, more priors
are required to help constrain the space of solution. But if the
task is just to lighten low-light images, which is this paper
concentrates on, it is not necessary to decompose the input
image into two components. Because, by slightly transforming
(1), we have R = L/T, where the division is element-wise.
It is apparent that the estimation of T is key to the recovery
of R. In this way, the problem is simplified, only demanding
the estimation of T. Please notice that L/T̂ can directly act
as the light-enhanced result.

A. Illumination Map Estimation

As one of the first color constancy methods, Max-RGB [8]
tries to estimate the illumination by seeking the maximum
value of three color channels, say R, G and B. But this

1The intrinsic image decomposition originally involves three factors includ-
ing Lambertian shading (T), reflectance (R) and specularities (C), formally
expressed as L = R ◦T+C. As pointed out in [16], the simplified model
with the component C discarded can also work well. And many works, such
as [17], [18] and [19], are based on this simplified model.

estimation can only boost the global illumination. In this paper,
to handle non-uniform illuminations, we alternatively adopt
the following initial estimation:

T̂(x)← max
c∈{R,G,B}

Lc(x), (2)

for each individual pixel x. The principle behind the above
operation is that the illumination is at least the maximal value
of three channels at a certain location. The obtained T̂(x)
guarantees that the recovery will not be saturated, because of

R(x) = L(x)/(max
c

Lc(x) + ε), (3)

where ε is a very small constant to avoid the zero denominator.
We point out that the goal of this work is to non-uniformly
enhance the illumination of low-light images, instead of elim-
inating the color shift caused by light sources.

As mentioned, another widely used model is based on the
observation that inverted low-light images 1−L look similar
to haze images, which is thus expressed as [20], [21], [22]:

1− L = (1−R) ◦ T̃ + a(1− T̃), (4)

where a represents the global atmospheric light. Although the
visual effect of inverted low-light images 1− L is intuitively
similar to haze images, compared to the model (1), the physical
meaning of the above remains vague. Below we intend to show
the relation between (4) and (1).

Let us here recall the dark channel prior, a commonly used
prior to estimate the transmission map for dehazing [20], on
1− L as follows:

T̃(x)← 1−min
c

1− Lc(x)

a
= 1− 1

a
+ max

c

Lc(x)

a
. (5)

Accordingly, substituting (5) into (4) yields:

R(x) =
L(x)− 1 + a

(1− 1
a + maxc

Lc(x)
a + ε)

+ (1− a). (6)

We can see that when a = 1, both (3) and (6) reach the same
result. But, if a gets away from 1, the equivalence between the
model (6) [14] and (3) breaks. As can be seen from Fig. 4, even
though the atmospheric light is greater than 0.95, the visual
difference between using (6) and using (3) is still conspicuous.
The dark regions in Fig. 4 (b) are less enhanced than those
in Fig. 4 (c), please see the zoomed-in patches for details.
In this work, we rely on the model (3) without involving the
atmospheric light a.

In this work, we employ (2) to initially estimate illumination
map T̂, due to its simplicity, although various approaches (e.g.
[23], [24], [25]) have been developed to improve the accura-
cy in past decades. Most of these improvements essentially
consider the local consistency of illumination by taking into
account neighboring pixels within a small region around the
target pixel. Two representative ways are:

T̂(x)← max
y∈Ω(x)

max
c∈{R,G,B}

Lc(y);

T̂(x)← mean
y∈Ω(x)

max
c∈{R,G,B}

Lc(y),
(7)

where Ω(x) is a region centered at pixel x, and y is the
location index within the region. These schemes can somewhat
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enhance the local consistency, but they are structure-blind. In
the following, we provide a more powerful scheme to better
achieve this goal.

A “good” solution should simultaneously preserve the over-
all structure and smooth the textural details. To address this
issue, based on the initial illumination map T̂, we propose to
solve the following optimization problem:

min
T
‖T̂−T‖2F + α‖W ◦ ∇T‖1, (8)

where α is the coefficient to balance the involved two terms
and, ‖ · ‖F and ‖ · ‖1 designate the Frobenious and `1 norms,
respectively. Further, W is the weight matrix, and ∇T is
the first order derivative filter. In this work, it only contains
∇hT (horizontal) and ∇vT (vertical). In the objective (8),
the first term takes care of the fidelity between the initial map
T̂ and the refined one T, while the second term considers
the (structure-aware) smoothness. Prior to discussing possible
strategies of constructing W, we give two solvers in the next
two sub-sections to resolve problem (8).

B. Exact Solver to Problem (8)

Traditionally, the problem (8) can be effectively solved via
the alternating direction minimization technique. As can be
seen from the objective in (8), both two terms, say `2 and
`1 terms, involve T. An auxiliary variable G is introduced to
replace ∇T for making the problem separable and thus easy
to solve. Accordingly, ∇T = G is added as a constraint. As a
result, we have the following equivalent optimization problem:

min
T,G
‖T̂−T‖2F + α‖W ◦G‖1 s. t. ∇T = G. (9)

The augmented Lagrangian function of (9) can be naturally
written in the following shape:

L = ‖T̂−T‖2F + α‖W ◦G‖1 + Φ(Z,∇T−G), (10)

with the definition Φ(Z,∇T − G) = µ
2 ‖∇T − G‖2F +

〈Z,∇T−G〉, where 〈·, ·〉 represents matrix inner product, µ
is a positive penalty scalar, and Z is the Lagrangian multiplier.
There are three variables, including T, G and Z to solve. The
ALM technique is a common choice to solve the problem (8).
The solver iteratively updates one variable at a time by fixing
the others, and each step has a simple closed-form solution.
For conveniently analyzing and comparing the exact solver and
the sped-up one (proposed later), we provide the solutions of
the sub-problems below:
T sub-problem: Collecting the T involved terms from Eq.
(10) gives the problem as follows:

T(t+1) ← argmin
T

‖T̂−T‖2F + Φ(Z(t),∇T−G(t)). (11)

As can be seen from Eq. (11), it is a classic least squares
problem. Thus, the solution can be computed through differ-
entiating (11) with respect to T and setting it to 0:

2(T− T̂) + µ(t)DT (DT−G(t)) + DTZ(t) = 0

⇒(2I + µ(t)DTD)T = 2T̂ + µ(t)DT (G(t) − Z(t)

µ(t)
),

(12)

where I is the identity matrix with proper size. And D
contains Dh and Dv , which are the Toeplitz matrices from the
discrete gradient operators with forward difference. We note
that, for convenience, the operations DX and DTX represent
reshape(Dx) and reshape(DTx), respectively, where x is
the vectorized X, and reshape(·) stands for the operation
of reshaping vectors back to their matrix forms. Directly
calculating the inverse of 2I + µ(t)DTD is an intuitive
way to accomplish this job. However, the matrix inverse is
computationally expensive, especially for large matrices like
DTD. Fortunately, by assuming circular boundary conditions,
we can apply 2D FFT techniques on the above problem, which
enables us to compute the solution fast. Consequently, we have

Tt+1 ← F−1

( F
(
2T̂ + µ(t)DT (G(t) − Z(t)

µ(t) )
)

2 + µ(t)
∑
d∈{h,v} F(Dd) ◦ F(Dd)

)
(13)

where F(·) is the 2D FFT operator, while F−1(·) and F(·)
stand for the 2D inverse FFT and the complex conjugate of
F(·), respectively. The division performs element-wise. In
addition, 2 is the matrix with proper size, all the entries of
which are 2.
G sub-problem: Dropping the terms unrelated to G leads to
the following optimization problem:

G(t+1) ← argmin
G

α‖W ◦G‖1 + Φ(Z(t),∇T(t+1) −G).

(14)
The closed form solution of (14) can be easily obtained by
performing the shrinkage operation like:

G(t+1) = S αW

µ(t)

[
∇T(t+1) +

Z(t)

µ(t)

]
. (15)

Sε>0[·] represents the shrinkage operator, the definition of
which on scalars is: Sε[x] = sgn(x) max(|x| − ε, 0). The
extension of the shrinkage operator to vectors and matrices
is to simply process data element-wise, say SA[X] performs
the shrinkage on the elements of X with thresholds given by
corresponding entries of A.
Z and µ: The updating of Z and µ can be done via:

Z(t+1) ← Z(t) + µ(t)(∇T(t+1) −G(t+1));

µ(t+1) ← µ(t)ρ, ρ > 1.
(16)

For clarity, the entire procedure of exact solver to problem
(8) is summarized in Algorithm 1. The iteration is stopped
when ‖∇T(t+1) − G(t+1)‖F ≤ δ‖T̂‖F with δ = 10−5 or
the maximal number of iterations is reached. Please refer to
Algorithm 1 for other details that we can not cover in the text.

Remark 1 (Convergence and Optimality) As aforemen-
tioned, the problem (9) is equivalent to (8). We can observe
that every term appears in the objective function of (9) is
convex, and the constraint is affine. The proposed Algorithm
1 follows the framework of Augmented Lagrangian Multiplier
with Alternating Direction Minimizing (ALM-ADM), the the-
oretical guarantee of which has been well established for two-
block convex cases [26], [27]. In other words, our proposed
exact solver converges to a global optimal solution to the
problem (8), and thus to the original (9).
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Algorithm 1: Exact Solver to Problem (8)
Input: The positive coefficient α, and the initial

illumination map T̂ ∈ Rm×n.
Initialization: T(0) = 0 ∈ Rm×n,
G(0) = Z(0) = 0 ∈ R2m×n, t = 0, µ(0) > 0, ρ > 1.

while not converged do
Update T(t+1) via Eq. (13);
Update G(t+1) via Eq. (15));
Update Z(t+1) and µ(t+1) via Eq. (16);
t = t+ 1;

end
Output: Optimal solution T∗ = T(t).

Remark 2 (Computational Complexity) Each iteration of
Algorithm 1 involves three sub-problems. Regarding the T
sub-problem, it requires O(N logN) to finish the computa-
tion, where N is the total amount of pixels. Its dominant cost
comes from 2D FFT and inverse FFT operations. As for the G
and Z sub-problems, they both are linear with respect to N ,
say O(N). Hence, each iteration takes O(N logN). Based
on the above, it is ready to conclude that the complexity
of Algorithm 1 is O(tN logN), where t is the number of
iterations required to converge.

C. Sped-up Solver to Problem (8)
Although the complexity of Algorithm 1 is reasonably low,

we want to further reduce it. Let us take a closer look at the
problem (8). The origin bringing the iterative procedure is the
sparse weighted gradient term, i.e. ‖W ◦∇T‖1. The `1 norm
together with the gradient operation on T makes it somewhat
complex. Clearly, the relationship below holds true:

lim
ε→0+

∑
x

∑
d∈{h,v}

Wd(x)(∇dT(x))2

|∇dT(x)|+ ε
= ‖W ◦ ∇T‖1. (17)

Based on the above, we use
∑
x

∑
d∈{h,v}

Wd(x)(∇dT(x))2

|∇dT̂(x)|+ε
to approximate ‖W ◦ ∇T‖1. As a result, the approximate
problem to (8) can be written as follows:

min
T
‖T̂−T‖2F + α

∑
x

∑
d∈{h,v}

Wd(x)(∇dT(x))2

|∇dT̂(x)|+ ε
. (18)

Although the objective function changes, compared to the
original, the goal of extracting the structure of illumination
from the initial illumination estimate T̂ is consistent with the
original. More specifically, when |∇dT̂(x)| is small, |∇dT(x)|
is about to be suppressed, so is the value (∇dT(x))2

|∇dT̂(x)|+ε . In
other words, the target T is constrained to avoid creating
gradients where the initially estimated illumination map has
small magnitudes of gradient. In contrary, if |∇dT̂(x)| is
strong, the above suppression alleviates, because this location
is more likely on structure boundary than on regular texture.

As can be observed, the problem (18) only involves quadrat-
ic terms. Thus, the problem can be directly obtained by solving
the following:

(I +
∑

d∈{u,v}

DT
d Diag(w̃d)Dd)t = t̂, (19)

Original


Strategy I


DN: 33.6
 DN: 48.9
 DN: 61.9
 DN: 82.1


DN: 36.3
 DN: 49.8
 DN: 61.6
 DN: 81.4


Strategy II


Fig. 5: Difference between the weighting strategy I and II
with varying parameter α. For the first row (Strategy I), we
use α ∈ {0.2, 0.5, 1.0, 3.0} corresponding to the four results,
respectively. While for the second row (Strategy II), we use
α ∈ 0.15×{0.2, 0.5, 1.0, 3.0} to do the test. The choice of the
coefficient 0.15 is based on the observation that the difference
norms (DN), defined as ‖T−T̂‖F , of the two cases are close,
so that the comparison is fair.

(b)
(a)
 (c)
 (d)
 (e)


Fig. 6: Effect of parameter σ for weighting strategy III. From
(a) to (e): the results by setting σ to 10−5, 1, 2, 3 and 4
respectively with fixed α = 0.15× 0.2.

where w̃d is the vectorized version of W̃d with W̃d(x) ←
Wd(x)

|∇dT̂(x)|+ε . Further, the operator Diag(x) is to con-
struct a diagonal matrix using vector x. Since (I +∑
d∈{u,v}D

T
d Diag(w̃d)Dd) is a symmetric positive definite

Laplacian matrix, there are many techniques available for
solving it, for example, [28], [29], [30], [31], [32].

Remark 3 (Computational Complexity) Solvers such as the
multi-resolution preconditioned conjugate gradient can reach
O(N) complexity. Compared to the complexity of Algorithm
1, the sped-up solver eliminates the iteration requirement t as
well as reduces N logN to N .

D. Possible Weighting Strategies

For the structure-aware refinement on the initial illumination
map, the key is the design of W. In this part, we discuss three
possible weighing strategies as follows.

Strategy I: It can be seen that setting the weight matrix as

Wh(x)← 1; Wv(x)← 1, (20)

leads (8) to a classic `2 loss total variation minimization
problem [33].

Strategy II: As discussed in Sec. II-C, it is reasonable to
use the gradient of the initial illumination map as the weight.
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(d)
 (e)


(a)
 (b)
 (c)


Fig. 7: Gamma correction for illumination maps in the range
of [0, 1], denosing and recomposition. (a)-(c) are the recovered
images using Tγ with γ = 0.5, γ = 0.8 and γ = 1,
respectively. The corresponding illumination map is given on
the top of each recovery. Noises appear in the light enhanced
images. (d) is the denoised version of (b), while (e) is the
recomposed result of (b) and (d). It can be seen from the
zoomed-in patches that the recomposition adaptively keeps the
fine details of the bright region and suppresses the noises of
the dark region.

In the sequel, we have:

Wh(x)← 1

|∇hT̂(x)|+ ε
; Wv(x)← 1

|∇vT̂(x)|+ ε
. (21)

Strategy III: Inspired by Relative Total Variation (RTV)
[34], for each location, the weight is set via:

Wh(x)←
∑

y∈Ω(x)

Gσ(x, y)

|
∑
y∈Ω(x)Gσ(x, y)∇hT̂(y)|+ ε

;

Wv(x)←
∑

y∈Ω(x)

Gσ(x, y)

|
∑
y∈Ω(x)Gσ(x, y)∇vT̂(y)|+ ε

,

(22)

where Gσ(x, y) is produced by the Gaussian kernel with the
standard deviation σ. Formally, Gσ(x, y) is expressed as:

Gσ(x, y) ∝ exp

(
− dist(x, y)

2σ2

)
, (23)

where the function dist(x, y) is to measure the spatial Eu-
clidean distance between locations x and y. In fact, the second
weighting strategy is an instance of this one. When σ → 0+,
the two strategies obtain the same weight matrix. We note that,
different from RTV, our weight matrix is constructed based on
the given T̂ instead of being iteratively updated according to
T. That means W only needs to be calculated once.

Algorithm 2: LIME
Input: Low-light Input L, positive coefficient α, Gamma

transformation parameter γ.
Initialization: Constructing weight matrix by Eq. (20),
Eq. (21) or Eq. (22)

Do the job
1. Estimate initial illumination map T̂ on L via Eq. (2);
2. Refine illumination map T based on T̂ via exact
solver Alg. 1 or sped-up solver Eq. (19);
3. Gamma correction on T via T← Tγ ;
4. Enhance L using T according to L = R ◦T;
5. If denoising and recomposing needed, then denoise
R by BM3D (Rd) and recompose via Eq. (24).

Output: Final enhanced result

E. Other Operations

Having the refined illumination map T, we can recover R
by following (3). One can also manipulate the illumination
map through gamma transformation, say T ← Tγ . From the
upper row of Fig. 7, we can see the difference between the
results by setting γ to 0.5, 0.8 and 1. For the rest experiments,
we adopt γ = 0.8. Moreover, possible noises previously hiding
in the dark are also accordingly amplified, especially for the
very low-light inputs (regions), as shown in Fig. 7. Denoising
techniques are required to further improve the visual quality.
Many off-the-shelf denosing tools, such as [35], [36], [37],
can be employed to do the job. Considering the comprehensive
performance, BM3D [35] is the choice of this work. In our
implementation, for further cutting the computational load,
we only execute BM3D on the Y channel by converting R
from the RGB colorspace into the YUV one. In addition, the
magnitude of noises is not the same for different regions of
the input, as the amplification is different. And BM3D treats
different patches equally. Therefore, to avoid the unbalance of
processing, e.g. some (dark) places are well-denoised while
some (brighter) over-smoothed, we employ the following
operation:

Rf ← R ◦T + Rd ◦ (1−T), (24)

where Rd and Rf are the results after denoising and recom-
posing, respectively. The merit of this operation can be viewed
from Fig. 7 (e), compared with Fig. 7 (d). We would like
to mention that the denoising plus recomposing, as a post-
processing step, can be concatenated to any low-light image
enhancing method. The whole procedure of LIME is outlined
in Algorithm 2.

Please note that, sometimes other specific techniques are
needed to remedy the complication caused by low-light en-
hancement. For image compression using like JPEG [38], the
blocking effect becomes noticeable in the low-light enhanced
results. Hence, deblocking techniques [39], [40], [41], [42]
may be required. Further, for color distorted images, adopting
some color constancy methods [43], [44] as post-processing
can alleviate the negative effect. In this paper, we do not
consider these issues (and other possible complications caused
by low-light enhancement) for avoiding distraction.



GUO ET AL.: LIME: LOW-LIGHT IMAGE ENHANCEMENT VIA ILLUMINATION MAP ESTIMATION 7
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(a) Initial
 (c) BF
 (d) Our Exact
 (e) Our Sped-up


Fig. 8: Comparison of different illumination maps and corresponding enhanced results. From (a) to (f): Illumination map
estimated individually on each pixel (Initial), refined by local max (7) (Max), bilateral filtering (BF), our results by exact
solver and sped-up solver, respectively.

III. EXPERIMENTS

In this section, we first see the performance difference
between different weighting strategies, and the effect of in-
volved parameters. Next, the analysis of our exact and sped-
up solvers is given. Then, we qualitatively and quantitatively
compare our LIME with several state-of-the-art methods,
including Histogram Equalization (HE), Adaptive Histogram
Equalization (AHE), Gamma Correction (GC), Contextual
and Variational Contrast enhancement (CVC) [6], Layered
Difference Representation (LDR) [7], dehazing based method
[14] (DeHz), Multi-deviation Fusion method (MF) [12], Nat-
uralness Preserved Enhancement algorithm (NPE) [11] and
Simultaneous Reflection and Illumination Estimation (SRIE)
[13]. All the codes are in Matlab2, which ensures the fairness
of time comparison. All the experiments are conducted on a
PC running Windows 7 OS with 64G RAM and 2.4GHz CPU.

2HE and AHE uses histeq and adapthisteq functions integrated in the
Matlab toolbox. GC is achieved by Lγ , while the codes of CVC, LDR,
MF, NPE and SRIE are downloaded from the authors’ websites. The code
of DeHz is not publicly available when this paper is prepared, but it is easy
to be implemented based on [20].

A. Weighting Strategy and Parameter Effect

Here, we evaluate the performance difference brought by
three different weighting strategies with varying parameters
α and σ of our model (8). The relationship between the
weighting strategy II and III, as aforementioned, is that the
former one is a special case of the latter one. Their equivalence
is reached by setting σ → 0+ in (22). To clearly see the effect
of each parameter, we first compare the weighting strategy I
and II by varying the parameter α without σ involved. The
effect of σ in the weighting strategy III is then tested by
keeping α fixed and varying σ. Please notice that, for easier
and better viewing the performance difference, we employ a
color image with good visibility instead of an illumination
map in this test.

Figure 5 provides the comparison of the weighting strategy
I and II. It is worth mentioning that the value scale of the term
‖W◦∇T‖1 may significantly change when applying different
weighting strategies. Thus, for comparison fairness, we need
to eliminate the scale issue. To this end, we alternatively
control the difference norms (DN) of the two cases, defined
as ‖T − T̂‖F , to be sufficiently close. For the upper row
(Strategy I), we use α ∈ {0.2, 0.5, 1.0, 3.0} corresponding to
the four results, respectively. While for the lower row (Strategy
II), we use α ∈ 0.15 × {0.2, 0.5, 1.0, 3.0} to accomplish the
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Fig. 9: Result comparison between HE, AHE, GC, CVC and
LDR. Please see also Fig. 10.

DeHz: 0.97s
 DeHz: 1.49s
 DeHz: 0.89s
 DeHz: 0.85s
 DeHz: 0.91s


MF: 0.71s
 MF: 1.16s
 MF: 0.70s
 MF: 0.57s
 MF: 0.64s
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 SRIE: 13.42s
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 LIME: 0.73s


NPE: 17.4s
 NPE: 34.5s
 NPE: 17.7s
 NPE: 12.4s
 NPE: 16.2s


Fig. 10: Result comparison between MF, DeHz, NPE, SRIE
and LIME. Please see also Fig. 9.

test. It is certain that as α grows, the fidelity between T
and T̂ decreases, as well as the smoothness of the desired T
increases. From the picture pairs shown in Fig. 5, we observe
that the results by the weighting strategy II retain the overall
structure as well as smooth the texture better than those by the
strategy I. This corroborates that the `2 loss TV model is short
of ability to distinguish between strong structural edges and
texture [34]. Further, Figure 6 shows a set of results obtained
by fixing α = 0.15 × 0.2 and varying σ in the weighting
strategy III. The result using σ = 10−5, as shown in Fig. 6
(b), confirms the relationship between the weighting strategy II
and III. From Fig. 6 (a) to (e), we can see the smoothing effect
becomes heavier. This is because increasing σ involves more
neighboring locations taken into account. Even though, the
overall structure is well preserved. For the rest experiments,
we simply adopt the weighting strategy III with σ = 2.

B. Exact Solver vs. Sped-up Solver

Although the theoretical complexity of the exact solver is
given as O(tN logN), it would be more intuitive to see how
many iterations Algorithm 1 needs to converge empirically.
The left picture in Fig. 13 plots four curves. From the plots,
we find that the trends of the four plots are very close. And the
exact algorithm converges within 60 iterations for all the four
tests. In the rest experiments, we set the maximum number of
iterations of Algorithm 1 to 60. Please notice that, to eliminate
the scale difference in the stop criterion, we have normalized
the stop criterion in [0, 1] for different cases.

The second picture shown in Fig. 13 gives the comparison
between the exact and sped-up solvers in terms of time cost.
From the curves, we see that when the image size is smaller
than 400, both the two solvers are sufficiently efficient. But,
after that, the processing time demanded by the exact solver
rapidly grows up while that of the sped-up solver varies gently
and keeps reasonably low. In other words, the benefit of the
sped-up solver compared with the exact one becomes more
conspicuous, as the image size increases.

Figure 8 shows a comparison of the exact solver and sped-
up solver on illumination maps, from which, we can see that
the illumination maps by the exact solver are sharper than
those by the sped-up solver. We adopt α = 0.15 for both the
exact and sped-up solvers in this subsection and for all the rest
experiments. Although there is a gap between the illumination
maps obtained by these two solvers, the visual difference
between their enhanced results is acceptable. Sometimes,
relatively soft illumination maps may provide visually more
comfortable results (see the second case). Considering the
efficiency, the sped-up solver is more attractive for practical
use. Further, compared to the other illumination maps, the
advance of our results is obvious.

C. Comparison

Figures 9 and 10 provide several comparisons. The inputs
are from the top row of Fig. 1. The operations of HE, AHE
and GC are executed on the V channel of images by first
converting it from the RGB colorspace to the HSV one
and then converting the processed HSV back to the RGB
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CVC: 0.5
 LDR: 0.3
 MF: 0.5
 DeHz: 0.8
 NPE: 0.6
 LIME
AHE: 0.3


CVC: 0.3
 LDR: 0.3
 MF: 0.5
 DeHz: 0.6
 NPE: 0.5
 LIME
AHE: 0.3


Fig. 11: Results with GC operation as post-processing. We tune γ (given on the top of each picture) of GC to achieve their
best possible visual quality.

(b) Illumination map
 (c) Without denoising
 (d) With denoising
(a) Input


Fig. 12: Comparison of results without and with denoising.
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Fig. 13: Left: convergence speed of the proposed exact solver
(Algorithm 1). The images used in this experiment are, without
loss of generality, the second and third pictures in Fig. 1
(Image 1 and 2), and the one in Fig. 4 (Image 3), respectively.
Right: time comparison between the exact solver and the sped-
up one with varying image sizes.

Fig. 14: From Left to Right: results by HE, GC and AHE
directly on the RGB colorspace, respectively.

colorspace. Directly manipulating on each channel of R, G and
B leads results to be visually inconsistent with real scenes, e.g.
considerably changing the tone of images, please see Fig. 14
for example. We can observe from Fig. 9 and 10 that AHE,

BabyAtWin


SantaHelper


PianoMan


LadyEating
ChrisRider


Fig. 15: Samples from the HDR dataset

CVC and LDR can not effectively recall the information in
dark regions. This problem almost exist always. HE, DeHz,
MF, SRIE and NPE outperform AHE, CVC and LDR in most
of the given examples, as shown in Fig. 9 and 10, but are
inferior to our method (Strategy III, σ = 2, α = 0.15, Sped-
up solver) in terms of visual quality. In terms of time cost,
although our method spends more than HE, AHE, LDR and
GC, it is comparable to or even more efficient than MF and
DeHz, while much more efficient than NPE, SRIE and CVC.
Most cost of DeHz comes from the estimation of atmospheric
light.

From the pictures shown in Fig. 9 and 10, the lightness
is still somewhat dim for CVC, LDR, AHE, NPE, MF and
NPE, which can be further enhanced by gamma correction
intuitively. We note that SRIE itself has a gamma correction
step on the estimated illumination. Figure 11 depicts the results
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TABLE I: Quantitative performance comparison on the HDR dataset in terms of LOE. LOE has a factor 103.

Method BabyAtWin BabyOnGrass ChrisRider FeedingTime HighChair LadyEating PianoMan SantaHelper Ave. LOE
HE 4.536 4.492 2.433 3.117 3.127 3.395 3.759 3.652 3.564

AHE 3.481 2.471 2.127 2.098 1.919 2.648 2.591 2.907 2.530
GC 4.518 4.496 2.430 3.101 3.141 3.401 3.755 3.645 3.561

CVC 4.549 4.488 2.557 3.132 3.148 3.402 3.823 3.695 3.599
LDR 4.501 4.500 2.509 3.120 3.134 3.401 3.775 3.670 3.572
MF 3.626 2.838 2.124 2.005 2.291 2.749 3.113 3.145 2.736
NPE 3.811 4.489 3.191 3.183 3.401 3.250 3.872 3.773 3.621
DeHz 4.591 4.527 2.854 3.114 3.227 3.408 3.837 3.732 3.661
SRIE 4.133 4.224 2.770 3.047 3.201 3.196 3.233 3.497 3.413
LIME 3.263 2.356 1.945 2.091 2.330 2.305 2.513 2.352 2.394

after executing gamma correction. For the pictures obtained by
different methods, we tune the parameter γ to achieve their
possible best visual quality. The lightness is indeed increased,
but similar to using only GC, the visual artifact appears
for all the further enhanced results of AHE, CVC, LDR,
MF, DeHz and NPE. This is mainly because the nonlinear
operation of GC is carried out on each pixel individually
without considering the relationship of a certain pixel with
its neighbors. Although our LIME also employs the GC as
described in Sec. II-E, the estimated illumination map itself is
structure-aware and thus LIME survives from such artifacts.
It is worth noticing that the parameter γ used in LIME is
fixed to 0.8 for all the experiments in Sec. III instead of being
fine-tuned image by image.

Figure 12 gives another test. The very low-light input
hides intensive noises in the dark. After performing LIME,
the details of the scene get enhanced, but the noises also
come out, as shown in the middle of Fig. 12. This is an
inevitable problem encountered by almost all of existing low-
light enhancement algorithms. As we have discussed in Sec.
II-E, denoising is required. The right picture in Fig. 12 is the
denoised result by executing BM3D on the middle of Fig. 12,
from which we can see the improvement in terms of visual
quality. Fig. 17 provides more qualitative results by LIME.

As pointed out in [11], the relative order of lightness
represents the light source directions and the lightness vari-
ation, the naturalness of an enhanced image is related to the
relative order of lightness in different local areas. Therefore,
we employ the lightness order error (LOE) as our objective
metric to measure the performance. The definition of LOE is
as follows:

LOE =
1

m

m∑
x=1

m∑
y=1

(
U(Q(x),Q(y))⊕ U(Qr(x),Qr(y))

)
,

(25)
where m is the pixel number. The function U(p, q) returns 1 if
p >= q, 0 otherwise. ⊕ stands for the exclusive-or operator. In
addition, Q(x) and Qr(x) are the maximum values among R,
G and B channels at location x of the enhanced and reference
images, respectively. The lower the LOE is, the better the
enhancement preserves the naturalness of lightness. Due to the
heavy load of computing LOE, as suggested in [11], down-
sampling is used to reduce the complexity. Similarly, in this
part, we set the resize factor r to 100/min(h,w), where h
and w are the height and width of the image, respectively.

From the definition of LOE, we notice that Qr plays
an important role in quantitatively measuring the quality of
enhancement. Using the low-light input as the reference is
problematic. Because, take an extreme case for example, the
LOE is 0 when no enhancement is performed. While few
datasets with ground truth are publicly available and it is not
easy to construct such datasets, we have to choose reliable
data to do the job for the sake of objectiveness. Different
from [11], we adopt the HDR [45] result as the reference
instead of the input low-light image. The HDR reconstruction
results from a set of bracketed exposures are more proper to
act as the reference. The HDR dataset contains eight groups,
several samples from this dataset are shown in Fig. 15. Table
I contains the LOE numbers of all the competitors on the
HDR dataset. From the numbers, we observe that our LIME
significantly outperform the others. In addition, we give the
visual comparison on two cases in Fig. 16, from which, we
can find that the results obtained by LIME are more visually
pleasant and closer to the references than the others. To allow
more experimental verification and comparisons, we release
our code at http://cs.tju.edu.cn/orgs/vision/∼xguo/LIME.htm.

IV. CONCLUSION

In this paper, we have proposed an efficient and effective
method to enhance low-light images. The key to the low-light
enhancement is how well the illumination map is estimated.
The structure-aware smoothing model has been developed to
improve the illumination consistency. We have designed two
algorithms: one can obtain the exact optimal solution to the
target problem, while the other alternatively solves the approx-
imate problem with significant saving of time. Moreover, our
model is general to different (structure) weighting strategies.
The experimental results have revealed the advance of our
method compared with several state-of-the-art alternatives. It
is positive that our low-light image enhancement technique can
feed many vision-based applications, such as edge detection,
feature matching, object recognition and tracking, with high
visibility inputs, and thus improve their performance.
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