
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 1

Joint Headlight Pairing and Vehicle Tracking by
weighted Set Packing in Nighttime Traffic Videos

Qi Zou, Haibin Ling, Yu Pang, Yaping Huang, Mei Tian

Abstract—We propose a Set Packing (SP) framework for
joint headlight pairing and vehicle tracking. Given headlight
detections, traditional nighttime vehicle tracking methods usually
first pair headlights and then track these pairs. However, the
poor photometric condition often introduces tremendous noises
in headlight detection and pairing, which leads to unrecoverable
errors for vehicle tracking. To overcome the challenge, we
propose to jointly model these two tasks in a weighted SP
framework. Specifically, a graph is built which takes candidate
pair track hypotheses as nodes and encodes in edges both the
disjoint constraints for tracking and the no-sharing-headlight
constraints for pairing. Solving a weighted SP problem on such
a graph produces vehicle trajectories, and facilitates pairing
with temporal context and in turn produces high quality vehicle
trajectories. The solution, however, raises the issue of unman-
ageable graph scale since the number of track hypotheses grows
exponentially over time. To address this issue, pruning strategies
are developed to solve the joint model efficiently. The proposed
system is evaluated on two traffic datasets including videos under
various challenging conditions. Both quantitative and qualitative
results show that our method outperforms other tested methods,
both in nighttime vehicle tracking and in multi-target tracking,
confirming the benefits of jointly modeling the two tasks.

Index Terms—Vehicle tracking, set packing, joint pairing-
tracking model, nighttime traffic surveillance

I. INTRODUCTION

Nighttime vehicle tracking plays an important role in traffic
surveillance. It is a core module in many applications such
as intelligent headlight control [1], illegal parking detection
and traffic flow estimation [2]. It also provides techniques for
general traffic behaviour analysis and prediction. In the dark
condition, headlights or taillights are almost the only salient
features for identifying vehicles. Therefore, nighttime vehicle
tracking is often converted into headlight group tracking (or
headlight pair tracking in most situation). The special case
that targets have identical or very similar appearance requires
developing methods relying less on appearance. This Pairing,
together with pair tracking, becomes one of the main problems
of nighttime vehicle tracking. This also makes nighttime
vehicle tracking different from general multi-target tracking
(MTT).

Tracking multiple vehicles in nighttime traffic is challeng-
ing. First, there is a large ambiguity among vehicle headlights
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Fig. 1. Benefit of joint headlight pairing and pair tracking. Pairs are in yellow
boxes, and trajectories indicated by links. (a)(c)temporal context. (b)pairing
ambiguity. Top: traditional methods that perform headlight pairing and pair
tracking separately may produce false pairs (dashed yellow links). Bottom:
the proposed joint model resolves pairing ambiguities by considering temporal
context in trajectories (solid red links).

since they share similar appearances and shapes. Second,
headlight detections are noisy. Reflections cause false positives
since they are often as salient as headlights and sometimes
move consistently with headlights. Such noises in turn bring
troubles to tracking-by-detection methods that rely on accurate
detections. Third, in dense or fast traffic scenarios, headlights
often spatially interact with each other, causing ambiguities
in pairing and data association. Sometimes an illusion of
interaction is caused by reflections. The problem is more
complicated in the cases of congested traffic and rainy night.
Previous works either pair headlights in each frame first
and then associate the pairs to form trajectories [1]–[5], or
alternatively, track individual headlights first and then discover
groups based on tracklet analysis, similar to pedestrian group
detection and event detection [6]–[8]. All these methods treat
headlight pairing and pair tracking as two separate modules.

In this paper we incorporate headlight pairing and pair track-
ing in a unified framework. We believe the two tasks are tightly
related: vehicle tracking performance is dependent on pairing
quality, meanwhile pairing performance can be improved by
considering temporal information and constraints in vehicle
trajectories. Fig. 1 exemplifies the benefit of joint headlight
pairing and pair tracking. Separate pairing and tracking lead
to false pairs, as shown in the middle frame at the top row.
A joint model can avoid such errors by considering temporal
context to resolve pairing ambiguities. In this case, the pairing
decision in the bottom row is preferred with the knowledge that
the track hypothesis in the bottom row has a higher probability
than the track hypothesis in the top row.

The core of our joint pairing and tracking system is the
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Fig. 2. Framework of our weighted SP-based nighttime vehicle tracking
system.

weighted Set Packing (SP) model, which brings two main
benefits. First, it simultaneously handles the inter-frame dis-
joint constraints for data association and the intra-frame no-
sharing-headlight constraints for pairing. Second, SP exploits
high-order motion information by defining track hypotheses
as nodes of the SP model. However, this leads to a problem:
hypothesis space will grow exponentially over time. To solve
the joint model efficiently, we adopt pruning strategies to keep
the number of track hypotheses manageable. The framework
of our weighted SP-based nighttime vehicle tracking system
is in Fig. 2.

Our contribution can be summarized as: (1) We propose
an integrated nighttime vehicle tracking system that jointly
optimizes headlight pairing and pair tracking, rather than treats
them separately. The standard pipeline which gets robust pairs
first and then makes data associations needs more intermediate
processes and thus is less efficient. Whats more, errors in any
intermediate process will accumulate and have no chance to
be recovered. Our joint optimization has less intermediate pro-
cesses and can get more robust pairs due to the delay decision.
(2) We model the joint problem by a weighted SP framework,
and adopt effective pruning strategies to control the scalability
issue. Besides, perspective projection is considered to get
precise geometry features and motion models, and hence to
improve the reliability and compactness of candidate pairs and
track hypotheses. To evaluate the effectiveness of the proposed
system, we test it on three nighttime traffic datasets involving
various challenges. Our algorithm demonstrates excellent per-
formance in comparison with state-of-the-art solutions for both
nighttime vehicle tracking and general MTT.

In the rest of the paper, after summarizing related works in
Sec. II, we first introduce the proposed framework in Sec. III.
Then, we describe the joint problem formulation and its solver
in Sec. IV. Sec. V describes the implementation and Sec. VI
the experiments. Finally, we conclude the paper in Sec. VII.

II. RELATED WORKS

A. Nighttime Vehicle Tracking

Previous studies of nighttime vehicle tracking can be di-
vided into two classes according to whether vehicles or
headlights are taken as primitives. The former does not require
headlight grouping, while the latter does.

Taking vehicles as primitives, [9] directly detects nighttime
vehicles based on contrast analysis and tracks vehicles based

on nearest neighbor matching. [10] extracts vehicle proposals
using an objectness measure and trains a convolutional neural
network to recognize vehicle types. In their work, nighttime
scenes accommodate the same vehicle detection model as that
for daytime conditions. Its robustness to illuminations and
noises in nighttime scenes depends on a large-scale training
dataset covering different situations.

Taking headlights as primitives, a nighttime traffic surveil-
lance system usually consists of headlight/taillight detection,
headlight pairing and vehicle tracking. The main difficulty of
headlight detection is to discern headlights from reflections
from roads, water, vehicle surfaces and/or lane markings.
Methods addressing this issue can be roughly classified into
three groups. (1) Rule-based methods: prior knowledge and
statistical laws are used on color [3], position, size and
shape [2], [11]. (2) Physical-model-based methods: in [12], the
Retinex model is used to remove the reflections; in [4], [13]
light attenuation law is used to discriminate reflections and
headlights. (3) Learning-based methods: decision tree [11],
support vector machines (SVM) [14] and AdaBoost [1], [5]
are learned from training samples and are powerful in dis-
crimination and generalization.

Usually pairing is based on the symmetry of a pair of
headlights [3], [15], for example, the proximity, similarities in
areas and shapes [2], [11]. These spatial correlations can match
headlight pairs but are sometimes sensitive to noises. To get
stable pairs, motion cues are often integrated. [2] first obtains
headlight trajectories, and then pairs two trajectories if they
move coherently over a period of time. [4] estimates vanishing
points and uses bidirectional reasoning to pair effectively.

The most commonly used tracking methods in nighttime
vehicle tracking include the Kalman filter [3], [11] and nearest
neighbor matching [2], [4], [13]. A tracking-based detection
strategy is employed in [3] to improve vehicle detection
accuracy. Some recent advances in MTT, which is not specially
designed for nighttime vehicle tracking but for general object
tracking, is out of the scope of this paper.

The proposed system shares the same headlight detection
with [5], but is otherwise completely different. [5] follows a
sequential pipeline: “headlight detection–headlight tracking–
headlight pairing–pair tracking”. It alternatively optimizes
context-based headlight tracking and temporal-information-
based pairing. Then pair tracking serves as a post-processing
of headlight pairing. By contrast, we pair headlights and track
the pairs simultaneously by a weighted SP.

B. Set Packing and MTT

Using set packing (SP) in MTT can be traced back to the
work by Morefield on using 0-1 programming for data asso-
ciation [16]. The Maximum-Weight Independent Set (MWIS)
problem, as a special case of SP, is used for tracking in [17].
The data association is formulated as a union of two-frames
MWIS on each independent subgraph and then a linking
operation. [18] proposes to associate detections by a relaxed
network flow algorithm, which is equivalent to an SP problem.
Unlike traditional network flow methods, it can encode motion
smoothness on three frames into the cost function.
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Fig. 3. System core part overview (best viewed in color). (a) Candidate pairs of detected headlights in a new frame t. (b) Joint pairing and tracking. Our
online system works in a sequentially forward way: candidate pairs in the frame t update existing pair track hypotheses, seeking for (c) the best subset of
non-conflicting tracks up to t. The selected subset is used to prune the track hypotheses and progressively build into (d) final vehicle tracks.

Our work differs from these works in two aspects: firstly,
MTT does not consider grouping/pairing, so it alone cannot
solve our problem. Secondly, our joint framework uses SP in a
different way. Previous works use SP to solve data association
over determined detections, but we use it for data association
over undetermined pairs where the pairing decision is delayed
until ambiguities are resolved by temporal context. Additional
constraints on pairing and the dependence between pairing and
tracking have to be handled in our joint formulation.

In delaying decision, Multiple Hypothesis Tracking
(MHT) [19] can be an alternative to SP, but MHT does not
consider pairing. It has to be modified to solve our problem.
Recently, [20] presents a MHT method which uses features
from deep convolutional neural networks for appearance mod-
eling, and achieves good performance.

Group discovery and group behaviour analysis are of great
interest recently as an extending topic of tracking. Our work is
different from the method in [6] which aims to discover groups
by clustering individual trajectories, and those in [7], [8],
[21], which improve individual tracking performance using
grouping behaviour as context. Our work focuses on pair
tracking, rather than pair discovery and individual tracking.

III. BACKGROUND AND FRAMEWORK OVERVIEW

A. Weighted Set Packing

Since the weighted SP is our basic model, we first provide
a formal definition. Suppose we are given a universe set
consisting of n elements U = {ei : i = 1,· · ·, n}, a family
of m subsets S = {si : si ⊆ U, i = 1, · · · ,m}, and each
subset si has a weight ai. The weighted SP problem [22]
is to find a maximum weighted subfamily from S such that
any two subsets in the subfamily are mutually disjoint. Using
a binary vector Π=(πi)∈{0, 1}m to represent a solution, in

which πi=1 if si is in the solution, the weighted SP can be
formulated as

Π̃ = argmax
Π

m∑
i=1

aiπi (1)

s.t.

{
πi+πj≤1, ∀si ∩ sj ̸= Ø
πi∈{0, 1}, ∀i∈{1, · · · ,m}

(2)

There are two ways to use SP in our task. One is to perform
pair selection by taking the headlight set as a universal set
and each candidate pair as a subset. The other is to perform
data association by modeling an observation sequence from
consecutive frames as a subset. In this paper, we use SP in
the second way for the ultimate aim is vehicle tracking and
the second way is suitable for the joint pairing and tracking
framework.

B. Framework Overview

In this paper we study the online nighttime vehicle tracking
problem, with focus on robust headlight pairing and pair
tracking. Specifically, after a new frame is observed, headlights
are first extracted (not the focus in this paper); the detected
headlights are then paired and tracked by our system.

The core idea of our framework is to jointly model headlight
pairing and pair tracking, so as to make them benefit each other
and produce high quality vehicle trajectories. As summarized
in Fig. 3, from the detected headlights in a new frame It, we
first produce a candidate pair set Pt, which is much larger than
the set of true headlight pairs. This process will be explained
in Sec. IV-A. Let pt

kt
denote a candidate pair from Pt. Then a

candidate pair sequence pt−τ
kt−τ

pt−τ+1
kt−τ+1

· · ·pt
kt

defines a pair
track hypothesis over τ + 1 frames. From a set of such
pair track hypotheses, we use a weighted SP to select the
best subset, which means the subset of pair track hypotheses
that has no conflict (i.e. does not share any observations
at any time) and has the highest total reliability. Therefore,
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Fig. 4. Illustration of the perspective projection. (a) The geometric model
of (b) average vehicle width (approximated by dk) in the image coordinate
system is proportional to the vertical image coordinate y. (c) Statistical data
of dk vs. y from real videos.

the solution of the weighted SP determines true pairs from
candidate pairs and simultaneously produces pair tracks.

Specifically, our online system works in a sequentially for-
ward way: after reading in a new frame, pair track hypotheses
are updated, from which the best subset is selected to prolong
current trajectories and prune current track hypotheses. Then
the system proceeds to the next frame.

IV. PROBLEM FORMULATION

In this section, we first introduce candidate pair generation
and then give the joint pairing and tracking model. The asso-
ciated joint problem solver is derived in the last subsection.

A. Candidate Pair Generation

We use the AdaBoost+Haar detector [23] for headlight ex-
traction. The training set contains patches extracted from early
fractions of all sequences. Positive samples are headlights
and negative ones are reflections on vehicle bodies or road
(water) surfaces, reflective lane markings and traffic signs. The
AdaBoost+Haar detector is chosen due to its excellent balance
between accuracy and efficiency. Note that though the detector
removes most reflections, some false or missing detections
survive or escape inevitably. Since most headlights around the
margin of traffic scenes are of little use in real applications, we
follow a popular strategy in the traffic surveillance to define
a region of interest (ROI) for each traffic scene. Such ROI
excludes the margin part of traffic scenes and covers only the
lanes where vehicles are coming towards the camera.

For a frame at time t, denoted as It, let Ht = {ht
i =

(xt
i, y

t
i , a

t
i, e

t
i) : i = 1, · · · , N t

h} be the detected headlights
(may contain false positives), where (xt

i, y
t
i) is the position, ati

the area, eti the aspect ratio, and N t
h the number of detected

headlights.
We apply a perspective-projection-aware proximity criterion

to get candidate pairs. This makes the set of candidate pairs
compact, discarding unreliable candidates. Let the candidate
pair set at time t be Pt = {pt

k =
(
pt
k(1),p

t
k(2)

)
: k =

Fig. 5. A toy example of headlight pairs and conflict sets where H =
{h1,h2,h3,h4}, P = {p1,p2,p3} = {(1, 2), (2, 3), (3, 4)} and C =
{C1,C2,C3,C4} = {{1}, {1, 2}, {2, 3}, {3}}

1, · · · , N t
p, 1 ≤ pt

k(1) < pt
k(2) ≤ N t

h}, where pt
k(1) and

pt
k(2) denote the two headlights in the pair pt

k such that

(dk − βypt
k(1)
− µ0)

2/σ2
0 ≤ ρ1 (3)

|ypt
k(1)
− ypt

k(2)
| ≤ ϵ (4)

where dk = ∥(xpt
k(1)

, ypt
k(1)

)− (xpt
k(2)

, ypt
k(2)

)∥2 denotes the
between-headlight distance. β and µ0 account for the linear
relation between dk and y due to perspective projection trans-
formation. The difference between dk and the linear function
of y is assumed to be normally distributed with variance σ0.
ρ1 is the distance threshold. ϵ is assigned to be the headlight
height. We assume the view angle of the camera is oriented to
the driving lanes. Under such a setting, the two headlights of
a vehicle have similar vertical coordinates, with a distance not
more than the height of that headlight. The geometric model
for perspective projection is illustrated in Fig. 4. The intuition
is that the mean vehicle width (approximated by dk) in the
image coordinate system is proportional to its distance to the
camera, and also proportional to the vertical image coordinate
y. This law is verified statistically by data from real videos,
as shown in Fig. 4(c). β, µ0 and σ0 are learned from a small
training set for each video using model fitting.

Within frame It, the pairing problem is to select from Pt a
subset of pairs that maximizes the total pairing affinity, subject
to the no-sharing-member constraint (i.e., one headlight can be
paired at most once). For this purpose, we define the conflict
set Ct

i for each headlight ht
i as

Ct
i = {k : pt

k(1) = i or pt
k(2) = i, k = 1, · · · , N t

p}.

Note that if a headlight is claimed by only one candidate pair,
it has no conflict, and its conflict set contains only one pair.
Such trivial conflict sets can be ignored in our algorithm. For
notation conciseness, however, we keep these trivial sets so the
total number of conflict sets is N t

h. An illustrative example is
given in Fig. 5.

A traditional solution is to first pair headlights in each
frame and then track the pairs. However, pairing in a single
frame may not be reliable. Therefore, we propose to leave
headlight pairing undetermined until the pairing ambiguities
can be resolved in the following joint formulation.

B. Joint Formulation of Pairing and Tracking

The key idea is to make pairing and tracking decisions
respecting temporal context. We illustrate the joint formulation
with an undirected graph G = (V,E,A) constructed from a
simple example of a three-frame problem as in Fig.6(c). Each
node in V is a pair track hypothesis Tl=pt−τ

kt−τ
pt−τ+1
kt−τ+1

· · ·pt
kt

and associated with a binary variable zl, l∈V . Each edge (l, i)
in E connects two conflicting nodes Tl and Ti. Conflicts come
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Fig. 6. Illustration of the proposed joint formulation by weighted SP. (a) Pairs and associations in three frames; (b) a simplified flow model for the example
of (a). A cross marks an example of track hypothesis pruning. The flows in red denote optimal tracks selected in the final solution. Pruning at t − 2 cuts
flows that sharing any headlight with the optimal tracks at t − 2; (c) a graph G = (V,E,A) representing the weighted SP model for the example of (a)
where a node is a pair track hypothesis and an edge connects two nodes which are conflicting. This figure is best viewed in color.

from two aspects: (1) two tracks share the same pair, or (2) two
pairs from two tracks share the same headlight. Each node has
a weight al ∈ A describing the pair track affinity. The solution
of the joint problem is a subset of V where any two nodes are
non-conflicting and the total weight reaches maximum.

argmax
z

∑
l

alzl (5)

s.t.

{
zl + zi ≤ 1, ∀(l, i) ∈ E
zl ∈ {0, 1}

(6)

This classic weighted SP problem can be further formu-
lated as a multidimensional assignment problem. We use an
indicator vector X = (xkt−τ:t

) 1 to represent a subset of V ,
where a binary variable xkt−τ:t indicates whether a pair track
hypothesis pt−τ

kt−τ
pt−τ+1
kt−τ+1

· · ·pt
kt

(a node in V ) is selected in
the subset or not. Note that a track hypothesis may not claim
any pair in some frames due to occlusion or missing detection,
so we allow dummy pairs pt

0 as kt = 0. Now the joint pairing
and tracking problem can be formulated as

X̃ = argmax
X

Nt−τ
p∑

kt−τ=0

Nt−τ+1
p∑

kt−τ+1=0

· · ·
Nt

p∑
kt=0

akt−τ:txkt−τ:t

where

akt−τ:t =
t∑

i=t−τ+1

(wki−1ki + αski) (7)

such that

xkt−τ:t

t∏
i=t−τ

(πi
ki
− 1) = 0 (8)

Nt−τ
p∑

kt−τ=1

· · ·
Ni−1

p∑
ki−1=1

Ni+1
p∑

ki+1=1

· · ·
Nt

p∑
kt=1

xkt−τ ···ki···kt ≤ 1,

ki = 1, · · · , N i
p; i = t− τ, · · · , t (9)∑

q∈Ci
u

πi
q ≤ 1, u = 1, · · · , N i

h; i = t− τ, · · · , t (10)

1For conciseness, we use the notation kt−τ :t for kt−τkt−τ+1 · · · kt.

where akt−τ:t is the weight of a track hypothesis, which is
a combination of all between-frame association affinities and
pair affinities in that track. wkiki+1 is the association affinity
(Eq.16) between pair pi

ki
and pair pi+1

ki+1
, and ski is the pair

affinity (Eq.11) of pi
ki

. πi
ki

is a binary variable indicating
whether a pair pi

ki
exists in the final solution (πi

ki
= 1) or

not (πi
ki

= 0). N i
h and N i

p denote the numbers of headlight
and candidate pairs at time i respectively.

The first constraint Eq.8 connects headlight pairing and
pair tracking together. More specifically, a track hypothesis
(xkt−τ:t = 1) implies two things: (1) a candidate pair pt−τ

kt−τ

from the frame It−τ , pt−τ+1
kt−τ+1 from It−τ+1,· · · , and pt

kt

from It are selected (πt−τ
kt−τ

= 1, πt−τ+1
kt−τ+1 = 1, . . . , and

πt
kt

= 1), and (2) these pairs form a track hypothesis. By
contrast, xkt−τ:t = 0 indicates either some candidate pairs
are not selected or corresponding track hypothesis does not
exist. The second constraint Eq.9 is for data association.
There is one constraint for each pair in each frame, ensuring
one pair is assigned to at most one track. For example,(
(1, 2) − (6, 7) − (13, 14)

)
and

(
(1, 2) − (7, 8) − (14, 15)

)
in Fig.6 can not be in the solution simultaneously. The third
one Eq.10 is the no-sharing-headlight constraint for pairing.
We have one constraint for each conflict set in each frame
such as {(1, 2), (2, 3)} in It−2 and {(7, 8), (8, 9)} in It−1 in
Fig.6. It enforces that in any frame one headlight can join
at most one pair. The last two constraints illustrate the cases
when two nodes are connected by an edge.

Note that, the first and third constraints render the problem
in Eq.7 no longer a classic linear assignment problem. The
data to be associated is now the undetermined pairs which
may have conflict. Besides, the pairing and tracking processes
interwind with each other.

C. Affinity Definitions

Between-headlight affinity: for a candidate pair pt
kt

, we
define the affinity between the two headlights in pt

kt
as a

combination of proximity, area similarity, shape similarity and
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Fig. 7. Illustration of the bidirectional error. Solid arrow lines denote actual
associations, and dashed lines denote predicted positions. Forward error mea-
sures difference between actual position yt+1

kt+1
and predicted position based

on forward velocity −→y t−τ
kt−τ

; similarly backward error measures difference

between yt−τ
kt−τ

and predicted position based on backward velocity ←−y t+1
kt+1

.

motion similarity.

skt =


ρs, kt = 0

smkt
+

3∑
i=1

ci exp{−
1

2σ2
i

(dikt
− µi)

2}, otherwise
(11)

We assign a constant ρs for a dummy pair’s affinity.
When pt

kt
is not a dummy pair, its affinity is a combination

of headlight motion similarity smkt
, headlight proximity d1kt

,
headlight area similarity d2kt

and shape similarity d3kt
. cis are

the weights; µi and σi are learned for different traffic scenes.
More specifically, let (u, v) =

(
pt
kt
(1),pt

kt
(2)

)
, these items

are defined as:

d1kt
= ∥(xu, yu)− (xv, yv)∥2 (12)

d2kt
= min(au/av, av/au) (13)

d3kt
= min(eu/ev, ev/eu) (14)

Headlight motion similarity is computed as similarity in
velocity derived from headlight tracklets. Let d⃗u and d⃗v be
velocities of two headlights, then smkt

is computed as:

smkt
= γ

2∥d⃗u∥ ∥d⃗v∥
∥d⃗u∥2 + ∥d⃗v∥2

+ (1− γ)
d⃗ud⃗v

∥d⃗u∥ ∥d⃗v∥
(15)

where γ is the weight to balance between velocity magnitude
and orientation.

Pair association affinity: wktkt+1 linking pairs pt
kt

and
pt+1
kt+1

is measured jointly by the motion similarity (wm
ktkt+1

)
and the shape similarity (ws

ktkt+1
) for non-dummy pairs.

wktkt+1 =

{
ln(1− ρD), kt=0 or kt+1=0

λws
ktkt+1

+(1− λ)wm
ktkt+1

, otherwise
(16)

where ρD is the detection confidence. Following [24], we
define the association affinity for a dummy pair as the log
likelihood. For non dummy pairs pt

kt
and pt+1

kt+1
, ws

ktkt+1

is measured by a combination of pair width similarity and
pair height similarity. λ is the weight that is set small for
unreliable headlight sizes, typically for images captured under
an undesirable viewpoint or bad exposure.

The motion model is another key component. In appli-
cations of tracking objects with fixed cameras, constant ve-
locity assumption is the most practical model. Let a pair
track hypothesis Tl = pt−τ

kt−τ
pt−τ+1
kt−τ+1

· · ·pt
kt

has the positions
[yt−τ

kt−τ
,yt−τ+1

kt−τ+1
, · · · ,yt

kt
] with yt

kt
=(cxkt

, cykt
) denoting x and

y coordinates of a pair’s centroid. To reduce noisy interference,
we use bidirectional deviation error, as described in Fig. 7, to
measure motion affinity between Tl and pt+1

kt+1
.

bktkt+1 =
1

2(δ − 1)

δ−1∑
τ=1

∥yt−τ
kt−τ

+−→y t−τ
kt−τ

(τ+1)−yt+1
kt+1
∥2

+
1

2(δ − 1)

δ−1∑
τ=1

∥yt+1
kt+1

+←−y t+1
kt+1

(τ+1)−yt−τ
kt−τ
∥2 (17)

where −→y t−τ
kt−τ

denotes the forward velocity of pt−τ
kt−τ

and
←−y t+1

kt+1
denotes the backward velocity of pt+1

kt+1
. The first part

of Eq.17 computes the deviation error of forward prediction
and the second part computes the error of backward prediction.
The parameter δ = min(4, |Tl|) where |Tl| is the number of
frames in the tracklet Tl. Since strong correlations usually exist
mainly between nearby frames, we use at most four recent
frames for position prediction. We only calculate the prediction
error for track hypothesis of at least two frames. Based on the
bidirectional error bktkt+1 , our motion affinity is computed as

wm
ktkt+1

= exp
{
− 1

2(σt+1
l )2

(bktkt+1)
2
}

(18)

where (σt+1
l )2 is the variance of bidirectional prediction error

for Tl at time t + 1. Its estimation is similar to the velocity
estimation by Kalman filtering.

D. Joint Problem Solver

The joint pairing and tracking problem Eq.7 can be solved
by either a greedy randomized adaptive searching algorithm
(GRASP) [25] or a relaxed continuous algorithm [17]. A
key problem here the salability since the number of nodes
in the graph, i.e., the number of track hypotheses, grows
exponentially with the length of the track hypothesis. It has to
resort to aggressive pruning strategies.

We adopt effective pruning strategies. First, an adaptive
gating technique is used when generating track hypotheses. A
necessary condition for extending a track hypothesis Ti with
a candidate pair pt+1

j from a new frame It+1 is

(dij − ηcyi − µ4)/φ
t
i ≤ ρ2 for dij = ∥yt

i − yt+1
j ∥2 (19)

where yt
i is the position of Ti at time t, yt+1

j is the position
of pt+1

j , and dij measures the distance a vehicle is expected
to move between frames It and It+1. η and µ4 account for
the linear relation between dij and cyi (vertical component
of yt

i) due to perspective projection, similar to Eq. 3. This
linear relation accounts for the fact that vehicles close to
the camera seem to move faster than distant vehicles in the
image coordinate system. φt

i is the velocity variance of track
hypothesis Ti at time t estimated by Kalman filtering. ρ2 is
the distance threshold, whose sensitivity analysis is given in
Fig.11(a). η and µ4 are learned from a training set using model
fitting. All training sets are different from the validation sets.

A gating technique is widely used in the MTT methods
and is crucial to balance efficiency and accuracy. Usually the
gating criterion is fixed for all objects in all situations. In
classical MTT, this criterion is set to not miss candidate tracks
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but at the price of increasing false positives. Our method
uses an adaptive gating technique, which considers velocity
changes of vehicles and perspective projection. This enables
us to effective reduce missing candidates without significantly
increasing the number of hypotheses.

Second, we adopt a standard pruning strategy that is used
in multiple hypothesis tracking. The non-conflicting track
hypotheses of the highest reliability (HRT) are kept and other
hypotheses which share any headlight in the root node of the
HRT are pruned. Specifically, when reading in a frame It,
track hypotheses are maintained from It−τ to It and each
track hypothesis is scored. The best set (having maximal total
weight) of non-conflicting tracks can then be found by solving
the joint optimization problem in Eq.7. Vehicle trajectories
up to frame It−τ are determined. Then the track hypotheses
which share any headlight with the pairs pt−τ

i in the solution
are pruned. Afterwards, the algorithm proceeds to the next
frame. Take the case in Fig.6 for example (τ = 2), after(
(1, 2) − (6, 7) − (13, 14)

)
is identified as one track in the

solution,
(
(1, 2)−(7, 8)−(14, 15)

)
,
(
(1, 2)−(7, 8)−(15, 16)

)
,(

(2, 3)− (7, 8)− (14, 15)
)

and
(
(2, 3)− (7, 8)− (15, 16)

)
are

pruned. This means, we delay pairing and tracking decisions
for frame It until It+τ arrives. After pruning, the number of
hypotheses will not grow rapidly when the track hypotheses
are extended to new frames.

V. IMPLEMENTATION

A. Track initialization and termination

We use an empirical rule for track initialization. In partic-
ular, a new pair track is initialized once a headlight pair is
identified as a newly appearing pair. However, it is verified as
a vehicle trajectory only if if has been tracked in at least four
consecutive frames.

A track can terminate due to occlusion or moving out of the
scene. In our system, a pair track hypothesis that cannot be
matched to any pair in a new frame is kept using the constant
velocity prediction for a short period of time. However, this
track hypothesis will be deleted if it keeps unmatched in ten
consecutive frames.

B. Handling special vehicles

For vehicles possessing four headlights instead of two, they
are handled by a special rule to avoid being identified as two
vehicles. We group two pairs into one pair if these two pairs
are well aligned and the distance between them is smaller
than the length of a vehicle. This also works for grouping
a headlight pair with a pair of reflected beams as examples
shown in Fig. 8.

Occlusions of one headlight can be handled as follow-
ing. Single headlights that cannot be paired with any other
headlights form a single-headlight set in each frame. Then
track hypotheses are generated for single-headlight sets in
consecutive frames. These hypotheses together with the track
hypotheses formed by headlight pairs are sent to the joint
optimization. And the most reliable non-conflicting tracks are
selected using SP. If a single headlight has been tracked for
at least 20 frames, it is considered to be a vehicle. In this

Fig. 8. Examples of handling false positives. (a) Graphic description of the
special rule. l is the distance between the headlight pair (a,b) and (c,d), o
denotes the overlapping length of (a,b) and (c,d). Two pairs (a,b) and (c,d)
are combined into the same group if o

min(dis(a,b),dis(c,d))
≥ 0.8 and l is

less than a vehicle length. (b)(c) A pair of reflections (marked by red boxes)
accompanying a pair of headlights (yellow boxes). (d) Four-headlight-vehicles
correctly handled by the special rule.

TABLE I
SPECIFICATIONS OF THE NITRA DATASET

Scene Seq. Quty. of Quty. of Density Resolution Frame
type name frames vehicles rate(fps)

Urban s1 1500 42 sparse 640*360 30
s2 581 31 dense 428*240 15
s3 268 15 sparse 428*240 15
s4 451 27 sparse 428*240 15

High- s5 1300 94 dense 640*360 30
way s6 350 7 sparse 280*360 25

Rainy- s7 198 3 sparse 428*240 30
night s8 895 70 dense 596*336 30

s9 1500 44 sparse 960*540 28

way, single-headlight vehicles such as motorbikes can also be
solved.

VI. EXPERIMENTS

A. Experimental setup

Datasets. The first dataset in our experiment is the the NiTra
Dataset2 (short for Nighttime Traffic). It is collected by
ourselves with manually labeled groundtruth. It consists of
three types of nighttime traffic scenes: Urban, Highway and
Rainynight. The Urban subset includes four sequences. They
are characterized by vehicles moving in frequently changing
velocities, intersecting streets and pairs of moving reflections.
The Highway subset includes two sequences, where light-
colored vehicles and glares caused by street lamps are the main
challenges. The Rainynight subset consists of three sequences.
They are characterized by many reflections on the water
surface. One of them has a high density and a curvy road,
which leads to frequent occlusions. The camera was set up on
an elevated platform with a sufficient height to get reliable and
clear features of vehicle headlights. And the view angles of the
camera were adjusted to be oriented to the lanes. Specifications
of the NiTra dataset are listed in Table I.

2http://tdam-bjkl.bjtu.edu.cn/qzou/index.html
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In addition to the NiTra dataset, we also conduct exper-
iments on the ChangeDetection dataset [26] and the UA-
DETRAC dataset [27]. ChangeDetection includes various sce-
narios for motion detection, among which there is a subset
of nighttime traffic videos. UA-DETRAC is a new MOT
dataset, among which two sequences satisfy our assumption
(dark night, salient headlights, front view) and are used for
validation. In experiments, we set ρ1 = 4, ρs = 0.3, ρD = 0.5,
c1 = 0.6, c2 = 0.2, c3 = 0.2, ρ2 = 5 and τ = 4.

TABLE II
QUANTITATIVE EVALUATION OF VEHICLE TRACKING PERFORMANCE

ON THE NITRA DATASET.

Dataset Method FPR↓ a MR↓ MOTA↑ MOTP↓
Urban ours 3.5%b 10.8% 85.0% 27.0%

rul det+SP 5.7% 11.3% 80.3% 27.4%
con det+SP 20.4% 15.8% 61.6% 30.3%

rulc[2] 8.3% 13.5% 75.8% 28.1%
cond[9] 26.0% 19.2% 50.3% 31.3%

MWISe[5] 5.0% 9.5% 82.5% 29.2%
MHT [19] 7.6% 16.4% 73.6% 27.0%

High- ours 1.7% 7.2% 90.1% 18.1%
way rul det+SP 6.2% 8.3% 83.5% 17.3%

con det+SP 15.0% 11.7% 69.2% 22.3%
rul [2] 6.8% 9.7% 81.9% 17.2%
con [9] 20.2% 14.6% 60.7% 25.7%

MWIS [5] 6.5% 5.2% 87.6% 19.6%
MHT [19] 8.0% 4.2% 85.2% 20.5%

Rainy- ours 10.2% 9.5% 78.6% 19.6%
night rul det+SP 12.9% 11.3% 72.7% 19.6%

con det+SP 24.5% 18.4% 50.2% 27.4%
rul [2] 14.4% 11.6% 70.8% 19.2%
con [9] 27.3% 19.1% 44.0% 30.4%

MWIS [5] 12.0% 11.2% 75.1% 21.5%
MHT [19] 11.1% 12.3% 71.3% 21.0%

a down arrow means the smaller the better
b bold text means the best in a column
c the rule based method
d the contrast based method
e the MWIS based method

Evaluation Metrics. In order to evaluate tracking performance
of the joint model and investigate the impact of pairing on
individual tracking, four CLEAR metrics [28] are used in our
study: multiple object tracking accuracy (MOTA), multiple
object tracking precision (MOTP), miss rate (MR) and false
positive rate (FPR). They are standard metrics in evaluating
MTT systems. Specifically, FPR is the ratio of false-positives
over the number of groundtruth. MR is the ratio of misses
over the number of groundtruth. The MOTA accounts for all
errors (false positives, misses and mismatches) made by the
tracker over all frames. Higher MOTA means better tracking
performance. The MOTP is the tracking precision defined as
either average overlapping ratio or average distance between
all matched result-groundtruth. It shows the ability of a tracker
to estimate precise object positions. For complex multi-target
scenarios, the MOTA is shown to be more interesting for
overall performance evaluation [28].

Two types of comparisons. We conduct two types of compar-
isons separately for the state-of-the-arts in nighttime vehicle
tracking and for general MTT methods. In particular, the first
one evaluates our joint model in comparison with recently
proposed nighttime vehicle tracking systems. The systems
either follow the standard pipeline as “headlight tracking–per
frame headlight pairing–pair tracking”, or use ordinary multi-
target trackers to detect vehicles as primitives. The second
type of comparison is to investigate the impact of pairing
on individual tracking, by comparing a variant version of
our method with general MTT algorithms. Given headlight
detections, an MTT algorithm outputs headlight trajectories
while the proposed method outputs pair trajectories. So it is
unfair to compare them directly. To deal with this issue, we
compare a variant version of our method (separating headlight
trajectories from the paired ones) with other MTT methods.

B. Comparison with nighttime vehicle tracking systems

Some examples of vehicle tracking results of the pro-
posed system are shown in Fig. 9. Under various challenging
conditions, such as the dense traffic, strong reflections and
occlusions, the proposed system tracks most vehicles reliably.

The proposed method is compared with six methods: a
contrast-based method [9], a rule-based method [2], our SP-
based tracker with the headlight detector used in [2], our
SP-based tracker with the headlight detector used in [9], an
MWIS-based method [5] and MHT [19]. All methods are
compared over same sequences. The algorithm in [9] deals
with vehicles rather than headlights directly and therefore
avoid the grouping procedure. Both [2] and [5] follow the
standard pipeline. [2] applies scene-specific rules for headlight
verification and pairing, and a nearest-neighbor approach for
tracking; [5] uses MWIS for pairing and a context-based
Hungarian algorithm for tracking. [19] uses MHT to solve
data association. In the comparison, we use a modified ver-
sion (incorporating pairing and adding no-sharing-headlight
constraints) of the classical MHT to solve our problem.

The quantitative evaluation of vehicle tracking performance
on NiTra is listed in Table II (performance averaged over all
sequences of each type). We also show examples of pairing
results of the five methods in Fig. 10. From the results we
observe: (1) generic MTT routine which detects vehicles as
primitives is not suitable for nighttime vehicle tracking (as
in Fig. 10(a)(g)). Vehicles in nighttime videos are not as
informative and reliable as in daytime. They cannot provide
accurate input to subsequent tracking, leading to the lowest
MOTA of of 50.3% and 44%. (2) Performance of the standard
pipeline is affected by the performance of each module, since
the standard pipeline is a combination of a headlight tracker,
a pairing approach and a pair tracker. [2] and [5] can get
correct results when each of their modules produces reliable
intermediate results. (3) Our system improves 3% in MOTA
compared with the MWIS-based method, improves 9% in
MOTA compared with the standard pipeline [2], and improves
5%-11% compared with MHT, owing to the joint optimization
framework. (4) The tracking performance will degrade if the
headlight detector quality descends, which is shown by the
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Fig. 9. Examples of vehicle tracking results. Top: input frames. Bottom: output pair trajectories in colored lines (different colors represent different identities).

Fig. 10. Two examples of pairing results where different colors represent
different identities. (a)(g) contrast based method [9]; (b)(h) rule-based method
[2]; (c)(i) MWIS-based method [5]; (d)(j) proposed method; (e)(k) MHT [19].

comparison of ours with ’rul det+SP’ and ’con det+SP’. MOTP
is measured in terms of overlapping ratio with the threshold
0.8.

For the ChangeDetection dataset [26], two sequences are
used in our evaluation: busyBoulvard and fluidHighway. They
present different challenges for nighttime vehicle tracking,
characterized by a special view angle of side view and low
frame rates (about 3-5 fps) which lead to large displacements
between consecutive frames. The ChangeDetection dataset is
designed for motion detection, and may not be ideal for track-

TABLE III
QUANTITATIVE EVALUATION OF VEHICLE TRACKING PERFORMANCE ON

CHANGEDETECTION DATASET.

Sequence Method FPR MR MOTA MOTP

busy- ours 12.3% 18.1% 61.6% 8.7
Boulvard rul [2] 21.9% 29.3% 38.4% 9.2

con [9] 18.9% 25.5% 46.6% 11.4
MWIS [5] 16.3% 20.2% 58.5% 8.2
MHT [19] 14.7% 20.0% 59.2% 8.6

fluid- ours 9.7% 15.9% 72.6% 6.5
Highway rul [2] 10.8% 17.1% 64.9% 6.5

con [9] 21.4% 15.3% 52.5% 8.9
MWIS [5] 11.3% 16.2% 69.3% 7.0
MHT [19] 9.2% 16.8% 70.5% 6.4

ing. However, public datasets that contain nighttime traffic
scenes are rare. Performances on ChangeDetection dataset are
summarized in Table III. The result of [2] on this dataset is
not as good as that on the NiTra dataset, because its data
association is based on overlapping between detections in two
frames. However such overlapping in this dataset is rare. Our
method performs better despite the challenges. Here MOTP
is measured in terms of Euclidean distance. For the UA-
DETRAC dataset [27], our tracking performance is 81.0% in
MOTA, which improves 2.1% compared with the second best
MWIS-based method.

We also show the effect of our hypothesis pruning strategy.
Without any pruning, the growth in the number of detections
will lead to a rapid growth in the number of track hypotheses,
as shown in Fig. 11(b). Compared with MHT, which adopts
a gating technology and an ”N-scan-back” algorithm [19] to
prune hypotheses, our strategy keeps almost half of the hy-
potheses. MHT has to maintain a considerable amount of hy-
potheses (with a fixed gating criterion) to achieve competitive
performance. Our pruning strategy considers velocity changes
and perspective projection to screen hypotheses. This enables
us to effectively cut hypotheses while keeping competitive
tracking accuracy, as shown in Fig. 11(c). We only compare
tracking performance on the sequences where vehicles are
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Fig. 11. Comparisons of our methods with and without hypotheses pruning
strategies, and with MHT. (a) Sensitivity analysis for the pruning parameter
ρ2. (b) The number of track hypotheses versus the number of detections in
three consecutive frames. (c) MOTA for sequence s7 and averaged by s3 and
s4, compared among three methods.

TABLE IV
COMPARISON OF MTT PERFORMANCE ON HEADLIGHTS

Dataset Methods FPR MR MOTA MOTP

Urban Tensor [30] 10.5% 7.2% 75.3% 28.4%
SMOT [29] 7.5% 9.1% 80.8% 26.1%
Ours 5.9% 8.6% 83.1% 35.9%

High- Tensor [30] 6.6% 6.1% 85.2% 24.3%
way SMOT [29] 6.5% 8.3% 84.7% 21.7%

Ours 4.1% 6.8% 87.6% 37.5%

Rainy- Tensor [30] 15.0% 10.1% 69.6% 25.3%
night SMOT [29] 12.3% 12.0% 71.3% 28.6%

Ours 12.4% 10.2% 74.2% 41.0%

sparse, since without pruning the problem will be untractable
in dense traffic scenarios.

Our method is still challenged in cases of long-term oc-
clusions, vehicles with arbitrary number of headlights and
crossroads.

C. Comparison with State-of-the-arts in MTT

As stated in Sec. I, the proposed method differs from state-
of-the-arts in general MTT, which makes the comparative
tests hard. Thus a variant version of our method in terms of
headlight tracking is reported. Specifically, first vehicles are
tracked using the proposed joint method via SP and then single
headlight tracks are restored. In our task, headlights have
similar appearance, so it is unfair to compare our method with
MTT methods relying on discriminative appearance. To this
end, we select SMOT [29] for comparison which is specially
designed for tracking multiple objects with similar appearance.
Besides, tracking is treated as a multidimensional assignment
problem in our task. This makes it unfair to compare our
method with MTT methods adopting two-dimensional assign-
ment model. So we select a tensor-based method [30], which
also uses multidimensional assignment, for comparison.

All the experiments are conducted using the same headlight
detections, i.e., detections obtained by our AdaBoost-based
detector. For SMOT, the time window parameter is set to 30,
40 and 50 respectively and the best result is selected. For
tensor-based method, the 5th-order tensor is used.

The tracking results are shown in Table IV. Fig. 12 gives
an example of headlight trajectories produced by three MTT
methods. We notice that our method achieves the highest

TABLE V
COMPARISON OF AVERAGE RUNNING TIME

SMOT Tensor Ours
Dense traffic 4-6fps 1-2fps 1-2fps
Sparse traffic 10-16fps 6-10fps 5-10fps

accuracy in terms of FPR and MOTA, while our method may
lose in MR and MOTP. It is due to the fact that assuming
vehicles to be pairs of headlights may miss short-time single-
headlight vehicles. Separating headlight trajectories from the
pair trajectories may decrease location precision (MOTP).

Running time of the proposed method is related to the
number of track hypotheses (n) and the iteration times (k).
In our primitive system implemented in Matlab on a standard
PC (2.1GHz, 8G memory, no multi-thread utilized), it runs at
1-2 frame-per-second on dense traffic scenes (approximate 30
headlights per frame), and 5-10 fps on sparse scenes (less than
12 headlights per frame). The most time-consuming part is the
optimization problem solver whose computational complexity
is O(kn3). In the future, we can optimize the algorithm by
GPU parallel programming. Averagely, our algorithm runs
similarly as Tensor, but a bit slower than SMOT, as listed
in Table V.

VII. CONCLUSION

In this paper we propose a nighttime traffic tracking sys-
tem that jointly models headlight pairing and pair tracking
in a unified weighted SP framework. The system is eval-
uated carefully on two traffic datasets and its effectiveness
is clearly demonstrated in comparison with state-of-the-arts.
The promising performance of our system can be mainly
attributed to three ingredients: (1) it inhibits pairing ambiguity
by exploiting temporal context in the vehicle tracking; (2) it
solves the optimization problem efficiently by using pruning
strategies; and (3) it learns geometric models to encode rich
discriminative information.

Having demonstrated promising results, we will seek im-
provements along several directions. First, while it works well
for tracking and pairing headlights, how to deal with long term
occlusion (e.g., one headlight is occluded) is a challenging
issue. Second, it currently does not consider vehicle type,
while it would be more accurate to build specific models
for different types of vehicles (e.g., big trucks). In addition
to these improvements, we are also interested in extending
the proposed SP model to handle small group discovery and
tracking in crowds, which request scaling the group size to
more than two, or to a dynamically varying size.
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