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Wavelet Domain Multi-fractal Analysis for Static
and Dynamic Texture Classification

Hui Ji, Xiong Yang, Haibin Ling and Yong Xu

Abstract—In this paper, we propose a new texture descriptor
for both static and dynamic textures. The new descriptor is
built on the wavelet-based spatial-frequency analysis on two
complementary wavelet pyramids: the standard multi-scale one
and the so-called wavelet leader one. The introduced wavelet
pyramids essentially capture the local texture responses in
multiple high-pass channels in a multi-scale and multi-orientation
fashion, in which there exists a strong power-law relationship for
natural images. Such a power-law relationship is characterized
by the so-called multi-fractal analysis. In addition, two more
techniques, scale normalization and multi-orientation image av-
eraging, are introduced to further improve the robustness of the
proposed descriptor. Combining these techniques, the proposed
descriptor enjoys both high discriminative power and robustness
against many environmental changes. We apply the descriptor
for classifying both static and dynamic textures. Our method
has demonstrated excellent performance in comparison with the
state-of-the-art approaches in several public benchmark datasets.

Index Terms—Texture, dynamic texture, wavelet, wavelet
leader, multi-fractal analysis.

I. INTRODUCTION

Understanding visual textures, either static or dynamic,
plays an important role in many computer vision and image
processing tasks such as image and scene classification, video
understanding, visual retrieval and image-guided diagnosis.
Despite decades of research efforts on texture modeling, it
remains a challenging problem, partly owing to the geometri-
cal and/or photometric variations in texture patterns caused by
environmental changes (e.g. [14], [22], [58]) including non-
rigid surface deformation, viewpoint changes, illumination
variation, rotation, scaling, occlusion and etc. Thus, a desired
texture descriptor should not only capture highly discrimina-
tive information but also be robust to environmental changes.

The existing texture analysis methods are performed in
either spatial domain, or frequency domain, or both of them.
In the spatial domain, texture descriptors are often built on
the top of some statistical measures of local texture patterns
in terms of textons ([29]). These methods have achieved
certain degree of insensitivity to occlusions and cluttering by
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sacrificing some holistic texture information. An alternative
solution is to seek such holistic information in the frequency
domain, which has been shown to be effective on capturing
essential characteristics of scene textures in [36]. To use
information in both frequency and spatial domains, wavelet-
based representations have been proposed by many researchers
for texture analysis, retrieval and classification (Sec. II).

In this paper, we propose a novel texture descriptor that
combines wavelet-based representation and multi-fractal anal-
ysis to gain both strong descriptive power and robustness
against environmental changes. In the proposed approach, we
first represent texture patterns by using traditional low-pass
and high-pass wavelet coefficients, as well as the recently
proposed wavelet leaders [48]. Then, instead of directly using
these measurements, we apply multi-fractal spectrum (MFS)
analysis on these wavelet coefficients to extract robust texture
descriptors. Two additional processes: scale normalization and
orientation averaging are introduced to further improve the ro-
bustness of our approach to scale and orientation changes. In-
tegrating all these ingredients, the proposed texture descriptor,
named wavelet-based MFS (WMFS), encodes rich descriptive
information while enjoying strong robustness against environ-
mental changes. The WMFS is applied to the classifications
of both static and dynamic textures. Experimental evaluations
on four public static texture datasets and one public dynamic
texture dataset (with five different breakdowns) show clearly
the effectiveness of the proposed method.

In summary, we make several contributions in this work.
First, the novel combination of wavelet, wavelet leaders and
MFS makes the proposed WMFS texture descriptor very pow-
erful for texture classification tasks. Second, the introduced
scale normalization and rotation averaging further improves
the robustness of our approach. Third, the WMFS is applicable
to both static and dynamic textures. In the experiments, WMFS
performs better than or at least as good as other previously
reported texture descriptors. In the rest of the paper, Sec. II
reviews related works and overviews the proposed texture
descriptor. Sec. III introduces background knowledges of the
wavelet, wavelet leader and multi-fractal spectrum. Then, the
proposed texture representation, for both static and dynamic,
is detailed in Sec. IV. At last, the experimental evaluations are
reported in Sec. V and the conclusion is drawn in Sec. VI.

II. RELATED WORKS AND OUR APPROACH

There has been an abundant literature on texture classifica-
tion. In the following, we only summarize recent studies that
are most relevant to our work.
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A. Static Texture Classification

Many modern texture classification systems (e.g. [9], [31],
[50], [57], [27], [55]) model texture patterns using the statistics
of spatial texton distribution. The basic idea is to extract local
patches through robust feature detectors or random sampling.
Then these patches are quantized into a texton dictionary and
from which some statistical measurements (mostly histogram
based) are derived. The main advantage of such local feature
based descriptors lies in the robustness of local features to geo-
metric and illumination changes, as well as partial occlusions.
One representative work is the texture description proposed
by Lazebnik et al. [28] which is based on the histogram
of affine-invariant regions. Such a texture descriptor shows
strong robustness to in-plane image rotations, scale changes
and affine transformations. The promising performance has
been shown on the applications of texture classification and
retrieval. In Zhang et al. [55], a similar bag-of-words texture
representation has been used for texture classification on
several benchmark datasets.

Besides the histogram, an alternative statistical tool is the
fractal/multi-fractal analysis (e.g. [23], [43], [44], [51], [52],
[53]). One main attractive property of fractal/multi-fractal
analysis is its ability of capturing the self-similarities [33]
of spatial distribution of textons, which is another essential
characteristic of texture patterns. Varma and Garg [43] pro-
posed to use dense local fractal features to represent textons.
In [51], [53], Xu et al. proposed to use multi-fractal analysis to
characterize the spatial distribution of pixels of different types.
In their approaches, pixels are first partitioned into different
sets using either local density measurements or the SIFT-
based orientation templates. Then the fractal dimension for
each pixel set is estimated and combined together to form a
multi-fractal spectrum that encodes statistical characterizations
on how different types of pixels are distributed.

Spectral information of texture images has also been studied
in the past for texture analysis, especially after the invention
of wavelet transform (e.g. [2], [11], [24], [40], [45], [46],
[47], [48]). Do et al. [11] used the marginal distribution of
wavelet coefficients for texture retrieval. Arivazhagan et al.
[1] used some advanced statistical features extracted from
both low- and high-frequency components of discrete wavelet
transform (DWT) for texture classification. Arneodo et al.
[2] proposed the modulus maxima of a continuous wavelet
transform (MMWT) for image analysis. For multi-component
texture images including color images and multispectral im-
ages, various similarity measures are proposed for wavelet-
based statistics of images, e.g., the Kullback-Leibler diver-
gence measure [45] and Rao geodesic distance [46]. Coupled
with a Bayesian framework, a joint statistical model is pro-
posed in [24] to utilize the magnitudes of the dual complex
wavelet coefficients for texture retrieval. In these approaches,
the wavelet coefficients are used as the local features and then
the texture retrieval and analysis is done via different statistical
measurements or via different distance functions.

One closely related work that combines the wavelet trans-
form and the fractal analysis is the so-called wavelet leader
method by Wendt et al. [47], [48]. Instead of using the standard

wavelet coefficients, they used wavelet leaders defined as the
maximum of the neighboring high-pass wavelet coefficients in
spatial-scale space. Three measurements are derived from the
wavelet leaders: scaling exponents, multi-fractal spectra and
Hölder exponents. However, some important texture primitives
in these approaches are missing, e.g. low-frequency informa-
tion. Also, the sensitivity to environmental changes is not well
addressed. As a result, its performance is inferior to many
state-of-the-art texture descriptors. Therefore, we propose a
new wavelet-fractal approach that combines the information of
textures in both spatial and spectral domains with the strong
robustness against environmental changes. In our approach, a
multi-orientation wavelet pyramid is used as the representation
of texture images to combine both wavelet coefficients and
wavelet leaders, which provides a solid foundation for multi-
fractal analysis with rich information. With the additional help
from the scale normalization process, the proposed wavelet-
based multi-fractal analysis generates texture descriptors that
are insensitive to geometrical and photometric changes.

A preliminary conference version of this work appeared
in [54]. The main extensions in this journal version include
the extension of WMFS to dynamic texture along with related
evaluations, the evaluation of WMFS on two more datasets,
and some other experiments to validate the use of wavelet
leaders and the use of ‘averaging’ for rotation invariance.

B. Dynamic Texture Classification

Dynamic texture (DT) is defined as video sequences of
moving scenes that exhibit certain stochastic stationary prop-
erties. Such video sequences are pervasive in real world, e.g.,
sequences of rivers, waterfall, foliage, smoke, clouds and fire.
Compared with static texture, DT is more challenging to
analyze, owing to the additional difficulties of characteriz-
ing the stochastic dynamic behavior of DT. Traditional DT
classification systems (e.g. [6], [7], [12], [41], [42]) often
explicitly model the underlying physical process and then
distinguish different DTs by the values of the associated
model parameters. For example, the linear dynamical system
(LDS) is used in [42] to characterize DT processes via the
analysis on the resulting Stiefel manifold. Then the LDSs
of textures are compared using the Martin distance. In Chan
and Vasconcelos [7], probabilistic kernels are combined with
both the appearance and motion components for classifying
DT sequences. Dynamic characteristics of DT are usually
measured using normal flow (e.g. [8], [37], [38]). In [37] and
[38], normal flow based statistical measurements have been
used for DT analysis. Ghanem and Ahuja [18] introduced
a Fourier phase based model to capture both motion and
appearance information for DT recognition.

The development of a universal physical process for all DTs
certainly is a very difficult task. Another type of methods by-
pass such difficulties by using appearance and structure based
discriminative methods for DT classification ([10], [17], [41],
[49], [56]). Wildes and Bergen [49] constructed spatiotemporal
filters specifically tuned up for local DT structures with a
small number of image patterns and motion patterns. Zhao and
Pietikäinen [56] proposed a DT descriptor that extends local
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binary pattern (LBP) from the 3D volume by computing LBP
of a DT sequence in three orthogonal planes. Ravichandran
et al. [41] combined both local DT structure analysis and
generative models of DT for DT classification. Derpanis and
Wildes [10] proposed an approach for DT recognition by
matching distributions of spatial-temporal orientation struc-
ture. Chan and Vasconcelos [6] used kernel PCA to learn
a non-linear kernel dynamic texture and applied it to video
classification. In [5], an approach based on the hierarchical EM
algorithm is used for clustering DTs. Ghanem and Ahuja [17]
combined elementary distances using the maximum margin
distance learning (MMDL) for DT classification.

Our solution can be viewed as an appearance-based discrim-
inative approach. The main difference from previous studies
lies in that the discriminative information used in our approach
is closely associated with stochastic self-similarities existing
in a wide range of dynamic processes that generate those
dynamic textures. It is noted that the effectiveness of multi-
fractal analysis on capturing such self-similarities in dynamic
processes has been demonstrated in various dynamic processes
in nature (see e.g. [4], [19]).

C. Overview of the Proposed Approach

In this section, we give an overview of the structure of the
proposed approach. See Fig. 1 for an illustration of the basic
procedure of computing the proposed texture descriptor.
Scale normalization. The first component aims at improving
the robustness of the wavelet coefficients to scale changes.
Motivated by recent progresses in invariant feature detection
(e.g. [16]), we propose to use scale-normalized texture images
as the input for wavelet transform. The estimate of the texture
scales is derived from the statistics of scale-invariant patches.
In our implementation, the Laplacian blob detector [13] is used
to collect scales of local patches, followed by a global scale
estimation of the whole textured image.
Multi-orientation wavelet and wavelet leaders. Wavelet
coefficients are known to encode both low-frequency and high-
frequency information of textures in a multi-scale manner.
However, some statistical measurements on wavelet coeffi-
cients, such as negative moments, can be unstable since a
significant percentage of wavelet coefficients of natural images
tend to be small. Thus, in addition to traditional wavelet coeffi-
cients, a modified version of the so-called wavelet leaders [26]
technique is included as one additional measurement of texture
images. The purpose is for facilitating the robust computation
of multi-fractal spectrum of textures that relies on both positive
and negative moments. Moreover, to suppress the orientation
sensitivity of wavelet transform, we propose to average the
wavelet coefficients over multiple oriented instances of texture
images. In summary, the above multi-orientation wavelet and
wavelet leader pyramids provide two complementary measure-
ment sources that are stable for statistical computation and
encode rich information regarding texture patterns.
Multi-fractal analysis. Based on the above representation, a
multi-fractal spectrum (MFS) is estimated for each individual
wavelet domain, including the low-frequency domain, the
high-frequency domain and the wavelet leader domain. The

texture descriptor is then defined as the combination of the
multi-fractal spectra estimated in all three domains.
Temporal analysis for dynamic texture. Dynamic texture
analysis differs from static texture analysis on its addi-
tional temporal dimension. Most of the previous systems (see
Sec. II-B) study DTs using methods radically different from
those for static textures. In our approach, we show that the
proposed framework for static texture can be easily extended
to analyze dynamic textures with small modifications. We
treat a DT sequence as three different sequences, and each of
them composes 2D slides along different spatio-temporal axis.
The wavelet-based MFS descriptors of these three orthogonal
sequences are combined together to form a texture descriptor
for the given DT sequence.

III. WAVELETS AND MULTIFRACTAL ANALYSIS

Before presenting the detailed description of our approach,
we first give an introduction of two mathematical tools upon
which our approach is built.

A. Wavelets and Wavelet Leaders

There has been extensive literature on wavelet and its
applications. Interested readers are referred to [32] for more
details. Given an image I , the discrete wavelet transform
(DWT) decomposes I into one low-frequency channel DS(I)
at the coarsest scale and multiple high-frequency channels
at multiple scales Wo,s(I), o = 1, 2, 3, s = 1, 2, . . . , S,
where S is the number of scales (S = 3 is used in our
work) and o indicates the index of three filter orientations,
i.e., horizontal, vertical and diagonal. Thus, we have three
high-frequency channels (o = 1, 2, 3) at each scale s, which
encode the discontinuities of the image along horizontal,
vertical and diagonal directions in a multi-scale fashion. In our
implementation, the 2D tensor product of Daubechies’ DB2
wavelet ([32]) is chosen for its nearly anti-symmetry.

To improve the robustness of certain statistical measure-
ments of regular wavelet coefficients, we use the additional
wavelet-based measurements, the so-called wavelet leaders
([48]) which is first proposed for multi-fractal analysis of
images. Following [48], the wavelet leaders are defined as the
maximum of all wavelet coefficients in terms of magnitude
in the local spatial neighborhood and scale neighborhood at
coarser scales. More specifically, for a pixel x ∈ R2 at scale
s0, its corresponding wavelet leader coefficient is defined as

Ls0(I; x) = max
1≤s≤s0

max
1≤o≤3

max
y∈Ω(x)

|Wo,s(I; y)|, (1)

where Ω(x) is the square neighborhood of x, and Wo,s(I; y)
is the wavelet coefficient at y. Thus, for an input image I , the
wavelet and wavelet leader transformations produce a set of
two-dimensional outputs denoted as

WL(I) = {DS(I),Wo,s(I), Ls(I) : 1 ≤ o ≤ 3, 1 ≤ s ≤ S}.

Fig. 2 illustrates the high-frequency wavelet coefficients
and wavelet leaders of a sample texture image. It is seen
that a large amount of small wavelet coefficients are removed
when converting wavelet coefficients to wavelet leaders, which
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Fig. 1. Flow chart of the proposed wavelet-based multi-fractal spectrum texture representation.

Fig. 2. The high-pass wavelet coefficients and wavelet leaders of a
sample textured image Each row represents wavelet coefficients of
horizontal, vertical, diagonal directions and wavelet leader respec-
tively.

makes some statistical measurements applicable to the data,
e.g. the negative-order moment. It is mathematically justified
that the wavelet leaders enable an accurate measurement
of the multi-fractal properties of 2D measuring fields [21].
Meanwhile, such a conversion from wavelet coefficients to
wavelet leaders does not remove too much information of
texture images thanks to the multi-scale maximum nature of
the edgels in the wavelet domain (See [48] for more details).

B. Multi-fractal Analysis

Fractal dimensions ([33]) have been widely used in physics
and geophysics to capture self similarities in many real world
phenomena. Based on the concept of “measurement at scale
δ”, fractal dimensionality studies the irregularity of a given
point set E in the space by measuring its power-law behavior
with respect to the scale δ: m(δ) ∝ δp, where m(δ) is some
measurement of the given point set E at scale δ. The exponen-
tial quantity p is the so-called fractal dimension and denoted
by dim(E). One popular definition of the fractal dimension is
the box-counting fractal dimension ([15]) defined as follows.
Given a `-dimensional point set P = {p1,p2, . . . ,pn} ⊂ R`,
let the space R` be covered by a mesh of `-dimensional

hypercubes with side length r (i.e., r-mesh `-dimensional
hypercubes) and a counting function c(P, r) is defined as the
number of r-mesh `-dimensional hypercubes that intersect P .
Then the box-counting fractal dimension dim(P ) is defined as

dim(P ) = lim
r→0

log c(P, r)

− log r
. (2)

In practice, for a point set coming from an image of size
m×m1, to approximate the process of r → 0, we estimate the
slope of log c(P, r) for a side-length sequence, rn > rn+1 >
· · · > rm > 0, (n < m), using the least squares method. In
our texture classification context, we define ri = m−i+1

m , i =
n, n+ 1, . . . ,m.

As a generalization of fractal dimension, multi-fractal spec-
trum (MFS) analysis is a powerful tool to describe more
complex patterns mixed by multiple objects with different
fractal dimensions. In the multi-fractal analysis, an image
domain Λ (e.g., the m×m grid points in the above example)
is first divided into multiple point sets Pαs according to some
categorization term α, i.e., Λ =

⋃
α Pα and Pα1

⋂
Pα2 = ∅,

for α1 6= α2. The MFS is then given by the multi-fractal
function dim(Pα) vs. α. In the classical definition of the MFS,
the categorization term α is defined according to the “density”
function, such as the image intensity, to guide the partition of
Λ (See [53] for more details).

For a texture image I defined on Λ, given a 2D coefficient
matrix X ∈ WL(I), d disjoint point sets P1, P2, . . . , Pd are
first generated from X using different thresholds α0 < α1 <
. . . < αd, i.e., Pi = {p ∈ Λ : αi−1 ≤ X(p) < αi}. Then the
MFS of X is calculated as

MFS(X) = (dim(P1),dim(P2), . . . ,dim(Pd))
> . (3)

For implementation, we use the algorithm introduced in [53]
that generates a d-dimensional MFS feature, where d = 26,
[α0, αd] = [1, 4], and the interval [1, 4] is equally divided into
26 subintervals with breakpoints {αi}, i = 0, 1, 2, . . . , d.

It is noted that there are many other types of fractal
dimensions defined for the point sets. Our approach is not

1For simplicity, we assume that the image has equal length in each
dimension, otherwise we can normalize it to make so.
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Algorithm 1 Multi-orientation wavelet and wavelet leader-
based MFS

Input: texture image I
Output: descriptor WMFS(I)

1) Estimating scale of I using statistics from local scale
invariant features (Sec. IV-A)

2) J ← scale normalization of I
3) {J1, J2, . . . , JN} ← multiple orientations of J
4) Compute the multi-orientation wavelet and wavelet

leader pyramids WL(Jk), k = 1, . . . , N (Sec. IV-B)
5) Compute the MFSs {M(Jk) : 1 ≤ k ≤ N} using the

box-counting method (Sec. IV-C) and formula (6)
6) WMFS(I)← average over {M(Jk)} (Sec. IV-C)

(a) (b) (c)

Fig. 3. (a) Three textures in different scales, the top and the middle
texture images are nearly in the same scale; (b) images of twenty
detected local scale invariant patches; (c) scale-normalized images.

limited to the box-counting fractal dimension. The main rea-
son we choose the box-counting fractal dimension is for its
implementation simplicity and computational efficiency.

IV. OUR PROPOSED TEXTURE DESCRIPTOR

Our proposed texture descriptor is built upon the multi-
fractal analysis in the wavelet pyramid domain. It can be
viewed as the collection of multiple MFS vectors extracted
from components of the multi-orientation wavelet pyramids,
which include both wavelet coefficients and wavelet leaders
of multiple oriented instances of a given texture image. The
proposed approach is illustrated in Fig. 1 and outlined in
Algorithm 1. In the rest of this section, we will detail each
step in the algorithm.

A. Scale Estimation and Normalization

The global scale variation caused by view-point changes
is very common in practice. In order to gain robustness to
such global scale changes, the feature space upon which
the texture descriptor is built should also be robust to such
variation. Unfortunately, the plain wavelet pyramid is sensitive

to scale changes. Thus, we propose to first scale-normalize
the original texture image before applying the wavelet trans-
form. The basic idea is to estimate the scale of the image
using the statistics of local scale-invariant texture patches.
Thanks to recent progresses in robust local patch extraction,
there are many good local patch detectors with strong scale-
invariance [16], [34], [35]. The scale-invariant blob detector
used in this paper is the affine-adapted version [35] of the
scale-invariant Laplacian-of-Gaussian (LOG) region detector
[30]. We use the implementation from Dorko2 with default
setting. See more implementation details in [13].

Inspired by these works, we estimate the global scale
of given texture image using the average area of detected
invariant elliptic patches. Specifically, for an input texture
image I , we first use the local patch detector to extract local
elliptic patches and keep the T largest patches, denoted as
{p1,p2, . . . ,pT }. Then scale t of the image is estimated as

t =

√
1

T

∑
i=1..T area(pi). (4)

In our implementation, the 20 largest patches are used for each
image to estimate its associated scale t, i.e., T is fixed at 20
for all images. We then compare t with a predefined reference
scale t0. Finally, a scale normalized image J is generated by
scaling I by the factor of t0/t. See Fig. 3 for the illustration
of the scale normalization. The estimated scales of three given
images in Fig. 3 (a) are 1:1:2 respectively. The images are then
rescaled accordingly in Fig. 3 (c) and they appear to be on
the same scale, which illustrates that the scale-normalization
process can effectively remove the scale variations.

B. Multi-orientation Wavelet Pyramid
Another weakness for wavelet transform when used for

texture description is its sensitivity to large image rotations.
We propose a simple approach to overcome the sensitivity. The
basic idea is to use multiple wavelet transforms with different
orientation selectivities to encode images under different ro-
tation views, which is equivalent to apply standard 2D tensor
wavelet transform on multiple instances of the same image
rotated by different angles.

More specifically, given a scale normalized image J , we
generate a sequence of images {J1, J2, . . . , JN} for N uni-
formly sampled orientations. In particular, Jk is generated by
rotating J with angle kθ, where θ is the angle unit chosen in
the implementation. We then calculate the wavelet and wavelet
leader pyramids for each rotated instance:

{WL(Jk) : 1 ≤ k ≤ N} , (5)

where WL(Jk) is the set of wavelet and wavelet leader
coefficient matrices for Jk as defined in Sec. III.

Clearly, the wavelet set {WL(Jk)} defined above is invari-
ant to the rotation up to the tolerance θ/2 when discarding
the element order in the set. For the angle interval θ, it can be
seen that a too large θ decreases the robustness of the resulting
feature while a too small θ decreases the discrimination power
and computation efficiency. In our experiments, we use θ = π

8
as it achieves a good balance.

2http://lear.inrialpes.fr/people/dorko/downloads.html
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F1 F2 F3 F4

Fig. 4. Four fabric textures with rotation, viewpoint, scale, illumina-
tion and non-rigid surface deformation.

C. Wavelet-based MFS

As described in previous sections, given an image I ,
we compute its multi-orientation wavelet and wavelet leader
pyramids {WL(Jk)} from its scale-normalized version for
all sampled orientations. The MFS is calculated for each
component in WL(Jk) using the box-counting method, and
we define:

M(Jk) =
⊎

X∈WL(Jk)

MFS(X), (6)

where
⊎

denotes the concatenation of MFS vectors of all
components of WL(Jk). Thus, we get a bag of MFS for
the given texture image I : {M(J1),M(J2), . . . ,M(JN )}.
Instead of using the bag of MFSs as the texture descriptor, we
construct our wavelet-based MFS (WMFS) by averaging the
MFS over its multiple-orientation instances, i.e.

WMFS(I) =
1

N

N∑
k=1

M(Jk). (7)

Averaging over orientations aims at the robustness of the
descriptor to global rotation. Note that other than ‘average’,
there are other statistics that are rotation invariant such as
‘maximum’. In our empirical study we found that ‘average’
outperforms ‘maximum’ for texture classification, and we
therefore choose it for achieving rotation invariance. In sum-
mary, for each coefficient channel, we get a 26-dimensional
MFS feature vector. Since three scales are used (i.e., S = 3) in
wavelet decomposition, there are total 13 wavelet coefficient
channels, including one low-pass channel and nine high-
pass channels and three wavelet leader channels. Thus, the
dimension of the texture feature WMFS(I) is 26×13=338.

Four texture images are shown in Fig. 4 from the same
class with different viewpoints, different scales and different
surface distortions The associated WMFS with/without scale
normalization and rotation averaging are shown in Fig. 5. The
standard deviation of each feature for each of the 25 randomly
selected dimensions is plotted in Fig 6 (a). The variation of
features across four texture images of the same class is less
when using the scale normalization and orientation averaging,
which demonstrates the invariance of the proposed WMFS
to scale and orientation. This is further demonstrated in the
distance matrices among four features presented in Fig. 6 (b)
and (c), where the intra-class distances are reduced when using
the scale normalization and rotation averaging.

D. Dynamic Texture Classification

In this section, we extend the proposed WMFS descriptor
from 2D static texture to 3D dynamic texture, owing to the

existence of the multi-scale self-similarities, fractal structure
observed in a large spectrum of dynamic nature images. For
example, it is shown in [4], [19] that the amplitudes of tem-
poral frequency spectra of many video sequences, including
camera movements, weather and biological evolution indeed
obey the power-law in terms of the frequency (the scale of
sinusoids).

There are two natural ways to extend the proposed WMFS
for DT. One is to treat a DT sequence as a 3D volume and ex-
tend the WMFS for 2D image data to handle 3D volume data.
This approach, while theoretically sound, faces challenges
such as dealing with varying frame rates or motion speed.
The second method, which we propose here, is to capture the
self-similarity behavior of 2D slices along three orthogonal x,
y and t axes in 3D DT volume. Then we calculate WMFS
for each 2D slice along three axes. For each axis, the mean
of the WMFS of 2D slices is obtained. At last, the WMFS
of DT sequence is defined by concatenating the three mean
fractal dimension vectors with respect to three axes. Here we
only show the calculation of WMFS for DT sequence along t
axis, which is shown in Fig. 7. Suppose there are m 2D slices
along t axis, denoted as Vt = {I1, I2, . . . , Im}, where each Ii
is a 2D slice, we take the mean of WMFS of all slices as the
descriptor for Vt. Specifically, we have

WMFS(Vt) =
1

m

m∑
i=1

WMFS(Ii) . (8)

WMFS(Vx) and WMFS(Vy) can be calculated in the
same manner, that is, WMFS(Vx) and WMFS(Vy)
are the means of WMFS of all slices along x
and y axes in DT volume respectively. Define
WMFSDT (V ) = [WMFS(Vt),WMFS(Vx),WMFS(Vy)].
Then the vector WMFSDT is our proposed descriptor for the
DT sequence V . It is noticed that WMFS(Vt) is about the
average of the DT structure in spatial domain over time and
the temporal information of DT is not used. Since the wavelet
coefficients in the high-pass channels of a 2D slice along x-
or y-axis are obtained by applying high-pass filters on the 2D
slice, these wavelet coefficients can be viewed as the normal
flow along y- and x-axis using multi-scale high-pass filters.
Thus, The vector WMFS(Vx) and WMFS(Vy) are capturing
the variations of the normal flow along y-axis and along
x-axis. The performances of WMFS(Vt) and WMFSDT are
compared in experimental section; see Table V.

To further improve the stability of the resulting descriptor,
the mean of WMFS over all slices is used. The resolution of
the frames of the video sequence is usually much lower than
that of static image. Thus the slices may not contain enough
pixels to yield a stable estimation the MFS. By taking the
mean, it effectively suppresses the variations of the computed
MFS vectors of all slices. Also, the temporal behavior of DT
is characterized by the WMFS of the 2D slices along x and y
axes, but without explicitly using the optical flow information.
Such an approach has its advantages over those optical flow
based approaches since the optical flow field of the sequence
of low resolution is hard to be estimated reliably.

Only two scales are used in wavelet decomposition when
calculating WMFS for DT (i.e., S = 2) due to the limitation
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(a) (b)

Fig. 5. WMFS feature vectors of four texture images shown in Fig. 4, where the x-axis denotes the dimension indices (25 out of 338
are randomly chosen for better illustration) and the y-axis denotes the values of corresponding fractal dimensions. (a) WMFS without scale
normalization and rotation averaging; (b) WMFS with scale normalization and rotation averaging.

(a) (b) (c)

Fig. 6. Comparison of WMFS with and without scale normalization and orientation averaging. (a) The standard deviations of the estimates
shown in Fig. 5, where the blue curve stands for the WMFS without scale normalization and orientation averaging, and the red curve stands
for the WMFS with them; (b-c) the distance matrices of the four texture images in Fig. 4 using the WMFS without(b) and with(c) scale
normalization and orientation averaging.
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Fig. 7. WMFS for dynamic textures along t-axis.

of the dimensions of the slices. In summary, there are nine
wavelet coefficient channels including one low-pass channel,
six high-pass channels and two wavelet leader channels. Thus
the dimension of WMFSDT texture feature is 26×9×3 = 702.

V. EXPERIMENTAL EVALUATION

A. Static Texture Classification

1) Texture Datasets: We evaluate the proposed texture
descriptor on three texture datasets of modest size: the UMD
texture dataset3; the UIUC texture dataset4; the KTH-TIPS
dataset [20], and one large-size dataset the ALOT dataset5

Both the UMD dataset and the UIUC dataset consist of 1000
uncalibrated, unregistered images: 40 samples for each of 25
different textures. The image resolution of the UMD dataset
is 1280×900 and the image resolution of the UIUC dataset is

3http://www.cfar.umd.edu/∼fer/High-resolution-data-base/hr database.htm
4http://www-cvr.ai.uiuc.edu/ponce grp/data/index.html
5http://www.science.uva.nl/∼aloi/public alot

Fig. 10. Sample images from the ALOT dataset.

640×480. Significant viewpoint changes and scale differences
present in both datasets. The sample images from these two
datasets can be found in Fig. 8. The KTH-TIPS texture
dataset [20] consists of 810 images: 81 samples for each of
10 different classes with a low resolution around 200×200.
The dataset has significant viewpoint, illumination and small
scale changes. The sample images of the KTH-TIPS are shown
in Fig. 9. The ALOT dataset is a large-scale dataset, which
consists of 25000 color images: 100 samples for each of 250
different textures with a resolution of 1536× 1024 pixels. To
speed up the computation, we only use the grayscale version
of the images downsampled by half to compute the WMFS
descriptor during the classification. Some sample images from
the dataset are shown in Fig. 10.

2) Experimental Setup: In our classification experiments,
the training set is selected as a fixed size random subset
of the class, and all remaining images are used as the test
set. The reported classification rates are the average over
200 random subsets. We use the support vector machine
(SVM) implemented by Pontil et al. [39] as the classifier with
RBF kernels. The 1-vs-all classification strategy is adopted
in our implementation. The cost factor of the SVM is the
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1

C1: 96.5 C2: 95.8 C3: 99.9 C4: 97.7 C5: 99.9

C6: 99.8 C7: 100 C8: 94.7 C9: 99.8 C10: 99.9

C11: 99.7 C12: 100 C13: 100 C14: 100 C15: 98.4

C16: 100 C17: 98.5 C18: 98.7 C19: 100 C20: 96.4

C21: 97.5 C22: 97.4 C23: 97.5 C24: 99.6 C25: 99.5

1

C1: 97.0 C2: 95.5 C3: 91.0 C4: 97.8 C5: 96.8

C6: 95.3 C7: 100 C8: 94.0 C9: 97.8 C10: 99.3

C11: 99.5 C12: 98.5 C13: 98.3 C14: 95.0 C15: 100

C16: 100 C17: 100 C18: 100 C19: 88.5 C20: 99.5

C21: 97.8 C22: 99.8 C23: 99.8 C24: 99.8 C25: 100

Fig. 8. Classification rates (%) by the WMFS descriptor on the UMD dataset (left) and the UIUC dataset (right).

class 1: 99.87 class 2: 98.01 class 3: 97.23 class 4: 90.82 class 5: 96.58 class 4→8 class 6→4

class 6: 95.10 class 7: 98.51 class 8: 95.54 class 9: 97.23 class 10: 97.55 class 8→10 class 9→2

Fig. 9. Sample images in the KTH-TIPS texture dataset. The first five columns show samples and the corresponding classification rates
(%) from different classes by our WMFS method; while the remained columns (images from different classes) show failed examples. Class
labels before and after “→” indicate true and classified class labels respectively. For example, “4→8” indicates an image from class 4 is
misclassified as in class 8. The same notation is used in other figures as well.

number of images in the dataset, and the the range of the
RBF kernel parameter is [0.001, 0.05]. The parameters used
in the SVM are determined by the standard cross-validation.
The parameters of the proposed texture descriptor are set as
follows. The number of orientations is 16; the wavelet is
’DB2’; the MFS parameters are the same as in [53]. Three
scales (S = 3) are used for the UMD dataset, the UIUC dataset
and the ALOT dataset; and only two scales (S = 2) for the
KTH-TIPS dataset due to its low resolution.

Due to the implementation complexity of many existing
methods and required parameter tune-up for optimal perfor-
mance, we compare our methods against those methods which
either have the code available online, or have classification
results reported on the tested datasets. For the UMD and UIUC
datasets, 20 samples for each class are used for training and the

rest are used for testing. We compared our method (WMFS)
against four existing methods:

• The first one, (H+L)(S+R), proposed in [28], uses a
patch-based approach by clustering elliptic regions fol-
lowed by a normalization to circles. Two types of descrip-
tors, spin image and RIFT (Rotation Invariant Feature
Transform), are then defined on each region. The resulting
descriptor is the histogram of clusters of these local
descriptors, which is compared by earth mover’s distance.

• The second method, VG-fractal, introduced in [43], uses
the local density function of various image measurements
to produce a 13-dimensional local descriptor. The descrip-
tor is the histogram of clusters of these local descriptors.

• The third method, MFS is based on the multi-fractal
analysis framework by [53]. The pixel classification is
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class 1→2 class 8→22 class 2→13 class 20→4 class 22→3

class 19→8 class 3→5 class 8→19 class 14→2 class 6→12

Fig. 11. Examples of the UMD dataset (first row) and the UIUC
dataset (second row) on which the WMFS fails.

using the local density function at each point. Several
measurements are used to define multiple local density
functions. The descriptor is obtained by combining MFSs
defined on these local density functions.

• The fourth method, OTF, is an extension of the above
MFS method [51] by using multi-scale local orientation
histogram for pixel classification.

On the KTH-TIPS dataset, we compare our method with three
texture classification methods from [20], [28], [55] respec-
tively. The method in [20] combines filter bank responses of
images and a SVM for classification, and the method in [55]
uses a bag-of-visual-words framework with SVM. We follow
the experiment setup in [55] and randomly divide the dataset
into a training set and a testing set. Then we report the average
result over 100 runs. On the ALOT dataset, we use the same
parameters as those for the UMD and UIUC datasets, except
that the step of the scale normalization is omitted as there is
little change in the scales of the images in the ALOT dataset.

Our proposed approach is implemented in MATLAB 2007B
and the experiments are done on a computer with a 2 GHz
Intel Pentium Dual CPU and 2G memory. The running time
on the UIUC dataset is as follows. The running time of the
proposed feature extraction is about 37 seconds per image.
After feature extraction, the features are input to a SVM
classifier. Our proposed approach does not require expensive
clustering. Thus, the running time for each trial is about 0.2
seconds with 25 classes. During each trial, we used 20 images
per class for training, and other 20 images per class for testing.

3) Experimental Results: Tables I summarizes the classifi-
cation rates of tested methods on the UMD dataset and the
UIUC dataset. Fig. 12 (a) and (b) show the classification
rates vs. the class indices on both datasets respectively. The
classification rates for individual class are shown in Fig. 8.
Overall, the proposed WMFS performs slightly better than
current state-of-the-art methods on these two datasets. Some
texture images on which our method failed are shown in
Fig. 11. A more close inspection shows that the WMFS
handles the scale and orientation changes better than the others
such as the OTF method. But it performs slightly worse on
those textures with significant underlying surfaces with severe
distorted geometric features than the OTF method, for example
the straight edges are distorted to curvy edges. Such sensitivity
comes from the fact that the local filter based wavelet measure-
ments are less robust to such geometric changes than the the
texton pattern based OTF method. The performances of the

TABLE I
CLASSIFICATION RATES (%) ON THE UMD AND THE UIUC DATASETS.

Dataset VG-fractal MFS (H+L)(S+R) OTF WMFS WMFS
[43] [53] [28] [51] w/o leader

UMD 96.36 93.93 96.95 98.49 97.60 98.68
UIUC 92.31 92.74 97.02 97.40 95.45 97.62

TABLE II
CLASSIFICATION RATES (%) ON THE KTH-TIPS DATASET

Method Hayman (H+L)(S+R) Zhang WMFS
et al.[20] [28] et al.[55]

Rate (%) 94.8± 1.2 91.3± 1.4 96.1± 1.2 96.54± 1.07

WMFS descriptor computed without wavelet leaders shown
in Fig. 12 for the UMD and UIUC datasets illustrate that the
inclusion of wavelet leaders indeed improves the performance
of the WMFS descriptor on the texture classification. Table II
summarizes the classification rates of different methods on the
KTH-TIPS dataset, where our method again achieves the best
classification performance. Examples of correctly and incor-
rectly classified images are shown in Fig. 9. Table III shows
the classification rates of our method and two other methods
on the ALOT dataset. It shows that our method still performs
reasonably well on the large size dataset. We also conducted
the t-test analysis on the recognition results on the UMD and
UIUC datasets to evaluate the statistical significance of the
performance differences between the proposed one and other
methods. The t-statistic values of the results by the methods for
comparison are summarized in Table IV. It is seen that, on both
datasets, the WMFS noticeably outperforms the VG-Fractal
method and the MFS method, but its improvements over the
(H+L)(S+R) method and the OTF method are marginal.

B. Dynamic Texture Classification

We test the proposed texture descriptor on the UCLA
dynamic texture dataset [42], which has been widely used for
evaluating dynamic texture analysis systems. The UCLA DT
dataset contains DT sequences from 50 classes in grayscale.
Each class has four grayscale DT sequences and each sequence
includes 75 frames with 160×110 pixels. To add more chal-
lenges and reduce some ambiguity, the dataset is reorganized

TABLE III
CLASSIFICATION RATE (%) VS TRAINING SIZE ON THE ALOT DATASET

Training size 10 20 30 40 50
WMFS 82.95 89.33 93.57 95.98 96.94

OTF 81.04 89.71 93.45 94.89 95.60
MFS 71.35 78.89 82.57 84.46 85.64

TABLE IV
T-STATISTIC VALUES OF THE RESULTS ON THE UMD AND THE UIUC

DATASETS

Dataset WMFS vs. WMFS vs. WMFS vs. WMFS vs.
VG-fractal MFS (H+L)(S+R) OTF

UMD 3.00 5.51 1.65 0.53
UIUC 3.42 2.97 1.28 0.26
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(H+L)(S+R) MFS (H+L)(S+R) MFS

VG-Fractal OTF VG-Fractal OTF

WMFS without leader WMFS WMFS without leader WMFS
(a) UMD dataset (b)UIUC dataset

Fig. 12. Classification rate vs. class index on the UMD and the UIUC datasets. The number on the top of each sub-figure is the average
rate.

boiling water fire flower fountain sea smoke water waterfall

Fig. 13. Sample key frames in the UCLA DT-8 dataset.

into five different breakdowns in [5], [6], [10], [17], [41],
termed DT-50, DT-SIR, DT-9, DT-8 and DT-7 respectively.
Some sample frames from all five cases are shown in Fig. 13,
Fig. 15 and Fig. 16. Using both NN (nearest-neighbor) and
SVM classifiers, we conduct experiments on five different
breakdowns for evaluation, in comparison with state-of-the-art
methods [5], [6], [10], [17], [41]. For the implementation of
the WMFSDT , the step of scale estimation and normalization
is omitted for computational efficiency as the scale changes are
small in most DTs. The other parameters are set as the same
as those for the static textures, except that two scales are used
(i.e. S=2) since image resolution in DT is much lower than that
of static texture image. Table V summarizes the classification
rates of the proposed method, together with results reported
in the previous works.

1) DT-50 and the Results: The original 50 classes of DT
sequences in UCLA DT dataset are used for the experiments
of DT classification. The state-of-the-art recognition rates are,
99.00% using NN [17], and 97.50% using SVM [6]. We follow
the same setup as [17] and [6]. Specifically, the training set

TABLE V
CLASSIFICATION RATES (%) ON THE UCLA DATASET (SUPERSCRIPT “M”

IS FOR RESULTS USING MAXIMUM MARGIN LEARNING AND 1NN [17])

Method DT-7 DT-8 DT-9 DT-50 DT-SIR
Classifier 1NN SVM 1NN SVM 1NN SVM 1NN SVM 1NN

[41] – – 70.00 80.00 – – – – –
[10] 92.30 – – – – – 81.00 – 42.30
[17] – – – – 95.60m – 99.00m – –
[6] – – – – – – 89.50 97.50 –
[5] – – 88.00 – – – – – –

WMFSVt 89.30 96.95 91.89 95.53 91.85 95.15 93.00 99.40 45.50
WMFSDT 96.87 98.45 97.18 96.96 96.95 97.11 99.12 99.75 61.25

is randomly selected using 75% (3 sequences for each class)
of the whole dataset and the rest is used as the testing set.
The experiment contains 200 random trials, and we achieve
the average recognition rates of 99.12% using NN and 99.75%
using SVM, which outperform previously tested methods. See
Table V for the comparison of the results.
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2) DT-SIR and the Results: To eliminate the effects owing
to biases in identical viewpoint selection, the “shift-invariant
recognition (SIR)” is set in [10] as follows. Each of the original
200 DT sequences is spatially divided into left and right, non-
overlapping halves, resulting in totally 400 new sequences.
The experimental setup follows that in [10]. Shown in Table V,
we achieve the average recognition rate of 61.25% using NN,
which is significantly higher than 42.30% in [10].

3) DT-9 and the Results: In the DT-50 breakdown, all four
sequences in each class are captured with the same viewing
parameters (e.g., identical viewpoint). To evaluate the perfor-
mance across viewpoint change, a nine-class breakdown [17],
named DT-9, is created by merging same classes in DT-
50 from different viewpoints. The resultant nine classes are:
boiling water (8), fire (8), flowers (12), fountains (20), plant
(108), sea (12), smoke (4), water (12) and waterfall (16), where
the number denotes the number of DT sequences in each class.

Our experiment is conducted using the same configuration
in [17]. A training set is randomly selected 50% from the
whole dataset (each class has two training sequences) and
the rest is used as the testing set for each class. We run the
experiment on 200 randomly generated training/testing sets.
The average recognition rates are 96.95% by NN classifier
and 97.11% by SVM classifier. See Table V for the classifi-
cation rates of different methods in the DT-9 breakdown. The
confusion matrices by NN and SVM are shown in Fig. 14.

4) DT-8 and the Results: The DT-8 breakdown [41] con-
tains all classes of DT-9 except “plants”, which has much
more sequences than other classes. Our experiment on DT-
8 is configured similarly as that on DT-9: we trained on 50%
of DT-8 dataset and tested on the rest. See Table V for the
classification rates of different methods on UCLA DT-8 dataset
and the confusion matrices of the proposed methods are given
in Fig. 14. The figure clearly shows the superior performance
of the proposed approach.

5) DT-7 and the Results: The last breakdown on which
we evaluate the proposed approach is DT-7 containing seven
classes. It is proposed in [10] by first cutting spatially each
sequence in the UCLA dataset into left and right halves and
then dividing all 400 resulting sequences into seven semantic
categories: flames (16), fountain (8), smoke (8), turbulence
(40), waves (24), waterfall (64), vegetation (240). See Table V
for the comparison of the classification rates of different
methods on UCLA DT-7 dataset. The confusion matrices are
in Fig. 14. Again, our approach shows superior performance.

6) More Discussions on the Proposed DT Descriptor:
Fig. 15 shows the sequences from the two classes that are mis-
classified by our method in DT-50 breakdown: the sequences
in class fire and class smoke are misclassified as the class
water. The main reason is that there exist some flames in
certain fire sequences which are similar to the light reflections
in some water sequences; and the background with smokes in
some fire sequences is nearly the same as the wave patterns
in many water sequences. See Fig. 15 (a) for an illustration.
Also, it is seen from Fig. 15 (b) that the similarity between
the sequences from smoke and water makes it a challenging
task to distinguish sequences from these two classes.

It is seen that the classification rates on DT-SIR are overall

(a) fire → water (b) smoke → water

Fig. 15. (a) Sample sequences of the DT-50 dataset on which our
proposed method fails; (b) sample sequences of DT-50 & DT-9 &
DT-8 datasets on which our proposed method fails.
/

much lower than those on the other four breakdowns. It is
because the DT-SIR eliminates the repetitive instances of
DT sequences under the same viewpoint and significantly
increased the variations of the DT sequences under different
viewpoints. Considering the good robustness of multi-fractal
analysis to view changes, it is not surprising to see that our
method outperforms the other method. However, there are still
a lot of room for future improvement on the robustness to view
changes. Some failed sample sequences from DT-SIR by our
approach are shown in Fig. 16.

For the other cases, Fig. 14 shows the misclassification rates
of our method between any two classes using the confusion
matrices. For the DT-9 breakdown, all the misclassification
rates are below 5% except for the class smoke whose misclas-
sification rate is 7.86%. The reason is the same as that in the
DT-50 breakdown: the sequences in the class smoke are hard to
distinguish from the sequences in the class water. The similar
phenomenon is also observed in the DT-8 breakdown with
misclassification rate 8.43% for the class smoke. The other
seven misclassification rates of the proposed method are less
than 4% in the DT-8 breakdown. For the DT-7 breakdown, the
misclassification rates are below 2% for all classes except for
the class smoke, which is misclassified as the class turbulence
with an error rate 20.17%. The error is mainly due to the high
inter-class similarity between these two.

To demonstrate how the temporal information of DT
will bring additional discriminative information for DT, we
compare the classification performances of WMFS(Vt) and
WMFSDT in Table V. Recall that WMFS(Vt) only captures
the multi-fractal structure of DT sequences in spatial domain
while WMFSDT captures the multi-fractal structure of DT in
spatial-temporal domain. The additional temporal information
captured by WMFSDT significantly improves the classification
performance, especially on the DT-SIR breakdown which
emphasizes the significant viewpoint variations. Such a phe-
nomenon is not surprising as the spatial appearances of the
inner-class DT sequences may vary significantly and only
temporal information can help detecting the similarities of the
inner-class DT sequences on their temporal dynamics.

VI. SUMMARY AND CONCLUSIONS

Motivated by the strong multi-scale power-law relation-
ship in natural texture patterns, in this paper, we propose a
new texture descriptor, wavelet-based multi-fractal spectrum
(WMFS), for both static and dynamic textures. The power-
law relationship is characterized by extracting the multi-fractal
structure from the wavelet and wavelet leader pyramids of
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(a) DT-9: NN (b) DT-8: NN (c) DT-7: NN

(d) DT-9: SVM (e) DT-8: SVM (f) DT-7: SVM

Fig. 14. Confusion matrices of our method on the UCLA DT-9, DT-8 and DT-7 breakdowns.

SIR:class 15→ SIR:class 33 SIR:class 24→ SIR:class 22 SIR:class 44→ SIR:class 46 DT7: smoke→ DT7: turb.

Fig. 16. Sample sequences from the datasets DT-SIR & DT-7 on which our proposed method fails.

images. Additionally, two more techniques, scale normaliza-
tion and multi-orientation averaging are introduced to further
improve the robustness of the wavelet-based multi-fractal
analysis to scale and rotation variations, which are not well
addressed by existing fractal analysis based approaches. By
combining these techniques, we developed a texture descriptor
with both high discriminative power and robustness against
many environmental changes. There are several advantages of
the proposed texture descriptor, including (a) high inter-class
discriminability, (b) strong robustness to inner-class variations
and many environmental changes, and (c) easy implementation
as it avoids many complicated processing steps often used by
other modern methods, e.g. clustering, texton generation and
cross-bin comparisons.

Our proposed WMFS texture descriptor is based on the sta-
tistical measure on the distribution of different types of pixels.
Thus, it also suffers from the often seen weakness as many
other statistical methods, that is, it requires sufficient pixels
to have an accurate and stable estimation. As a result, the
WMFS does not work very well on the static texture images
of very low resolution. It is empirically observed that when

the image resolution is less than 64× 64, it does not perform
as well as some state-of-the-art methods such as (H+L)(S+R)
method. However, such a weakness is not severe for DT
recognition. The reason is that we are taking the average of
the WMFSs over many 2D slices as the resulting descriptor
which effectively suppresses the estimation variations. In the
future, we would like to investigate more effective multi-
fractal analysis tools for static texture of low resolution. Also,
we are interested in studying the application of the proposed
WMFS based DT descriptor in object recognition and action
recognition for surveillance videos.
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[13] G. Dorkó and C. Schmid, “Selection of Scale Invariant Neighborhoods
for Object Class Recognition”, in Proc. IEEE ICCV, Nice, France, 2003,
pp. 634-640.

[14] O. Drbohlav and A. Leonardis, “Towards Correct and Informative Eval-
uation Methodology for Texture Classification under Varying Viewpoint
and Illumination”, Computer Vision and Image Understanding, vol. 114,
no. 4, pp. 439-449, 2010.

[15] K. S. Falconer, Techniques in Fractal Geometry, first edition, John Wiley,
1997.

[16] S. Garding and T. Lindeberg, “Direct Computation of Shape Cues Using
Scale-adapted Spatial Derivative Operators”, Int’l J. Comput. Vision, vol.
17, no. 2, pp. 163-191, 1996.

[17] B. Ghanem and N. Ahuja, “Maximum Margin Distance Learning for
Dynamic Texture Recognition”, in Proc. ECCV, Crete, Greece, 2010, pp.
223-236.

[18] B. Ghanem and N. Ahuja, “Phase Based Modelling of Dynamic Tex-
tures”, in Proc. IEEE ICCV, Rio de Janeiro, Brazil, 2007, pp. 1-8.

[19] J. V. Hateren, “Processing of Natural Time Series of Intensity by the
Blowfly Visual System”, Vision Research, vol. 37, pp. 3407–3416, 1997.

[20] E. Hayman, B. Caputo, M. Fritz and S. O. Eklundh, “On the Significance
of Real-world Conditions for Material Classification”, in Proc. ECCV,
Prague, Czech, 2004, pp. 253-266.

[21] S. Jaffard, “Wavelet Techniques in Multifractal Analysis”, Fractal Ge-
ometry and Applications: A Jubilee of Benoit Mandelbrot, M. Lapidus
and M. van Frankenhuijsen Eds., Proceedings of Symposia in Pure
Mathematics, vol. 72, no. 2, pp. 91-152, 2004.

[22] U. Kandaswamy, S. A. Schuckers and D. Adjeroh, “Comparison of
Texture Analysis Schemes Under Nonideal Conditions”, IEEE Trans.
Image Process. , vol. 20, no. 8, pp. 2260-2275, 2011.

[23] L. M. Kaplan, “Extended Fractal Analysis for Texture Classification and
Segmentation”, IEEE Trans. Pattern Anal. Mach. Intell., vol. 8, no. 11,
pp. 1572-1585, 1999.

[24] R. Kwitt and A. Uhl, “Efficient Texture Image Retrieval Using Copulas
in a Bayesian Framework”, IEEE Trans. Image Process. vol. 20, no. 7,
pp. 2063-2077, 2011.

[25] R. Kwitt and A. Uhl, “Image Similarity Measurement by Kullback-
Leibler Divergences between Complex Wavelet Subband Statistics for
Texture Retrieval”, in Proc. IEEE ICIP, 2008, pp. 933-936.

[26] B. Lashermes, S. Jaffard and P. Abry, “Wavelet Leader Based Multifrac-
tal Analysis”, in Proc. ICASSP, Philadelphia, USA, 2005, pp. 161-164.

[27] S. Lazebnik, C. Schmid and S. Ponce, “A Discriminative Framework for
Texture and Object Recognition Using Local Image Features”, in Toward
Category-Level Object Recognition, Springer-Verlag, pp. 423 - 442, 2006.

[28] S. Lazebnik, C. Schmid and S. Ponce, “A Sparse Texture Representation
Using Affine-invariant Regions”, IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 8, no. 27, pp. 1265-1278, 2005.

[29] T. Leung and S. Malik, “Representing and Recognizing the Visual
Appearance of Materials Using Three-dimensional Textons”, Int’l J.
Comput. Vision, vol. 43, no. 1, pp. 29-44, 2001.

[30] T. Lindeberg, “Feature Detection with Automatic Scale Selection”, Int’l
J. Comput. Vision, vol. 30, no. 2, pp. 77-116, 1998.

[31] S. Malik, S. Belongie, T. Leung and S. Shi, “Contour and Texture
Analysis for Image Segmentation”, Int’l J. Comput. Vision, vol. 43, no.
1, pp. 7-27, 2001.

[32] S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, CA:
San Diego, 1998.

[33] B. B. Mandelbrot, The Fractal Geometry of Nature, San Francisco, CA:
Freeman, 1982.

[34] J. Matas, O. Chum, M. Urban and T. Pajdla, “Robust Wide Baseline
Stereo from Maximally Stable Extremal Regions”, in Proc. BMVC,
Cardiff, UK, 2002, pp. 384-393.

[35] K. Mikolajczyk and C. Schmid, “Scale and Affine Invariant Interest
Point Detectors”, Int’l J. Comput. Vision, vol. 60, no. 1, pp. 63-86, 2004.

[36] A. Oliva and A. Torralba, “Modeling the Shape of the Scene: A Holistic
Representation of the Spatial Envelope”, Int’l J. Comput. Vision, vol. 42,
no. 3, pp. 145-175, 2001.
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