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Mobile augmented reality systems are becoming increasingly common and powerful, with applications in
such domains as healthcare, manufacturing, education, and more. This rise in popularity is thanks in part to
the functionalities offered by commercially available vision libraries such as ARCore, Vuforia, and Google’s
ML Kit; however, these libraries also give rise to the possibility of a hidden operations threat, that is, the ability
of a malicious or incompetent application developer to conduct additional vision operations behind the scenes
of an otherwise honest AR application without alerting the end user. In this paper, we present the privacy
risks associated with the hidden operations threat, and propose a framework for application development
and runtime permissions targeted specifically at preventing the execution of hidden operations. We follow
this with a set of experimental results, exploring the feasibility and utility of our system in differentiating
between user-expectation-compliant and non-compliant AR applications during runtime testing, for which
preliminary results demonstrate accuracy of up to 71%. We conclude with a discussion of open problems in
the areas of software testing and privacy standards in mobile AR systems.
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1 INTRODUCTION
Augmented reality (AR) systems are pervasive sensing systems which leverage the contents and
changes in the user’s environment and behavior to generate virtual content such as visual elements,
audio prompts, and even haptic feedback. This content is then integrated back into the user’s
experience of the real world, augmenting that experience with the additional virtual content.Mobile
augmented reality systems are ones in which the system hardware is untethered and able to be
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carried or worn by the user as they move around their environment. The use of mobile AR systems
to solve problems in commercial, industrial, and research settings has exploded in recent years,
with the global market for augmented and virtual reality systems estimated to top 18 billion USD by
the end of 2020 [70]. Originally the province of games and other “toy” applications [60, 102], mobile
AR systems have become key tools in areas such as education [4, 14], manufacturing [30, 51, 97],
tourism [16, 36, 84, 85], retail [19, 58], and military settings [3, 53]. Mobile AR systems have become
particularly helpful for a range of tasks in the healthcare domain, where they have shown promise
when assisting in surgical procedures [9, 59], and as tools for physical or clinical therapy in cases
such as phantom limb pain [25] and exposure therapy for phobias [80]. AR systems have also been
helpful in managing daily interactions for users with autism [17, 47] and dementia [33, 42, 92], by
integrating context-aware prompts for social interaction or task completion into the user’s view of
the real world.
However, as mobile AR systems become more prevalent, there is a correspondingly increased

concern over the privacy risks associated with these apps. The primary benefit of an AR application
is the integration of virtual content directly into the user’s experience of the real world, based on
the user’s behavior and the state of the surrounding environment. In order to do this, mobile AR
apps require direct access to live data streams, such as the camera and microphone feeds. This
level of access poses a significant privacy risk, as always-on pervasive sensors such as cameras
and microphones can capture unintentionally privacy-sensitive content, both from the user and
from bystanders in the user’s vicinity. When the sensors are integrated into mobile systems, such
as smartphones, tablets, and head-mounted displays (HMDs), the potential invasion of privacy is
exacerbated due to the ability to change location and viewing angle freely within the environment.
As serious as these privacy risks are, a blanket ban of such systems is infeasible, as this would
hamstring vital systems such as those used for monitoring patients in assisted living centers [10].

This privacy threat is further amplified by the emergence of powerful commercially-available
libraries for AR and computer vision, which provide pre-trained machine learning mod-
ules out-of-the-box, effectively eliminating any previous knowledge requirements and streamlin-
ing the development process for AR systems. Toolkits such as Google’s ARCore [22], Apple’s ARKit
[21], Microsoft’s Mixed Reality Toolkit for Hololens [52], and PTC’s Vuforia plugin [88] for the
Unity IDE [86], provide AR-specific functionality directly to their targeted platforms. Alternatively,
more general-purpose libraries such as OpenCV [55], TensorFlow [81], and Google’s MLKit [24]
offer a broader range of vision and machine learning operations. The availability of such tools
enables developers to create AR applications without requiring extensive knowledge of computer vision
or machine learning concepts, thereby lowering the bar for malicious developers to collect personal
data from their users while introducing limited processing overhead on their mobile platform of
choice. Further, since the machine learning and computer vision operations are able to be conducted
on-device, a malicious developer need only exfiltrate the results of such operations for aggregation
and analysis, rather than a set of raw images or video clips; an example of this would be offloading
the results of an image labelling operation in the form of an alphanumeric string array, a data
packet with a footprint orders of magnitude smaller than a set of images.

Building on prior work [43], the objective of this paper is to understand the privacy risks associ-
ated with hidden operations within mobile augmented reality applications, given the capabilities of
commercially available AR and vision libraries and the current permissions structures of mobile
operating systems. For the purposes of this paper, we focus on mobile AR applications that run
on smartphones, as this platform has the greatest number of users, and it can be used to simulate
an HMD thanks to products such as the Google Cardboard [87]. As such, we make the following
contributions:
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(1) We present the “hidden operations” privacy threat for mobile augmented reality
systems, in which a developer’s ability to perform machine learning or computer vision
operations behind the scenes of an otherwise honest app, without alerting the user, can result
in the loss of users’ personal information. We present this threat in the context of three
different categories of commercially available AR and vision libraries: integrated AR libraries,
function-level libraries, and general purpose libraries. We then examine the similarity of
honest AR applications with those engaging in two different types of hidden operations:
complementary (e.g. building on the advertised functionality of the application), and orthogonal
(e.g. independent of the advertised functionality of the application).

(2) We propose a new system for AR application development that OS and app market-
place publishers can employ to mitigate the hidden operations threat. This system
consists of three primary components: a trusted signing service for vision models, a trusted
computing environment for executing those models on-device, and an expanded list of run-
time permissions to communicate more effectively to end-users what vision operations an
AR application is actually performing. We follow this proposal with a set of exploratory
experiments to determine the feasibility and utility of our system in assisting with runtime
testing efforts, and differentiating between honest and malicious AR applications.

The rest of the paper is organized as follows. Section 2 describes the current related work. Sections
3 and 4 respectively describe our threat model and the approach for inserting malicious logic into
an AR application. Sections 5 and 6 describe our proposed system and exploratory experiments,
respectively. Section 7 discusses limitations and open problems, and Section 8 concludes.

2 RELATEDWORK
In this section, we discuss current work related to the problems of visual privacy for camera-
based mobile and wearable systems, the context-sensitive nature of user and bystander privacy
preferences, the use of machine learning concepts for testing mobile systems, and the difficulty of
testing machine learning modules themselves.

2.1 Visual Privacy in Mobile and Wearable Systems
There has been extensive work recently in exploring visual privacy implications of mobile and
wearable camera-enabled systems. Work by Koelle et. al. [38] proposes a gesture-controlled pri-
vacy framework; bystanders can provide a gesture to indicate whether the capturing device has
permission to include their face in a photograph. Shu et. al. [66] provide a more robust contextually-
sensitive framework to allow bystanders to control how they are captured by cameras, but only
for individual images, rather than realtime video feeds as mobile AR systems require. However,
neither of these solutions protect bystanders who are unaware or unable to provide a gesture, nor
do they protect the end user from capturing privacy-sensitive content in the environment.

It is also possible for applications to capture sensitive information from the user’s environment
that the user would prefer to keep private, such as written or printed material, faces of unaware
bystanders, and images taken in a bathroom or bedroom. Systems have been proposed to protect
environmental information using markers such as near-infrared labels [44] as well as QR codes
and other physical markers [28, 61, 62] to declare to the capturing device what can and cannot be
recorded. Schiboni et. al. [63] address the visual privacy problem in a dietary monitoring system
by manually modifying the camera viewing angle and field-of-view to limit the system’s ability
to capture bystanders. Ultimately, the main drawback of both gesture-based and marker-based
access control systems is that they only work if the application developer is proactive in protecting
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user and bystander privacy and chooses to implement these solutions; these systems do nothing to
protect against a malicious developer.

When focusing on malicious AR applications specifically, there has been some work on using the
device’s OS to limit the access that developers have to sensitive visual information. Two works by
Jana et. al. [34, 35] create an intermediate layer between the camera and AR application code, but
introduce a significant amount of overhead and limit the flexibility of honest app logic. More recent
work by Lebeck et. al. [40] proposes the ARYA framework for AR output security, but their system
targets visible output issues such as content occlusion, distraction, and physiological reactions such
as motion sickness. Their system cannot defend against a malicious developer whose attacks take
place completely behind the scenes.

One recent work by Srivastava et. al. [69] seeks to categorize camera-based applications by the
operations performed on visual data, and how well that aligns with user expectations of application
behavior. The key difference between this is work (known as “CamForensics”) and ours is that
we specifically focus on malicious developers of mobile AR applications leveraging commercially
available vision libraries to conduct additional hidden operations behind the scenes of an otherwise
honest application. While the CamForensics system can help identify what high level operations
are being performed, it is unable to determine the context of such an operation, e.g. whether it
is honest or malicious. This is especially important when the same high level operation (such as
image labelling) is being used for both honest and malicious purposes within the same application.

2.2 Context-Sensitivity of User, Bystander Privacy Preferences
One of the principal methods of access control for mobile and wearable systems is for application
developers to request permission from users to access sensitive features such as the camera and
microphone at runtime. It is well-understood, however, that these types of permissions structures
are deeply flawed; work by Felt et. al. [26] found that over a third of publicly available Android
applications request more permissions than they need, with many issues stemming from developer
confusion regarding the nature of each permissions group and what functions they represent. End
users are similarly unaware of the scope of requested permissions [27]. Regardless of whether
access to a given feature is truly necessary for an application, once it is provided by the user,
it is not requested again. Recent work has demonstrated that this all-or-nothing approach to
system permissions is unrealistic, particularly for vision-based systems [66, 69]. In a perfect world,
applications would execute sensitive operations only in accordance with end-user expectations for
a given scenario, a concept known as “contextual integrity” [54]. Wijesekera et. al. [90] showed that
maintaining contextual integrity is not a simple problem; factors such as background operations,
number of delivered notifications, the reason for the operation, and users’ personal privacy concerns
all play into whether a user would allow a given operation in the moment.
A survey was conducted by Akter et. al. [5] elicits privacy preferences related to persons with

visual impairments using camera systems to supplement their vision, an important use case for
mobile augmented reality. The authors surveyed both persons with visual impairments and those
without (considered “bystanders”). The bystanders expressed discomfort that users of such systems
would be able to learn things like facial expressions and behaviors that had the potential to
be “misrepresented” by the system’s underlying algorithms. In another work [6], Akter et. al.
investigated how persons with visual impairments felt about unintentionally sharing privacy-
sensitive images for different usage scenarios, such as different environments (home, office or
restaurant) and with different categories of human assistants (friends, family, or crowd-worker). In
this paper, the participants expressed vastly differing comfort levels with sharing captured images
based on the environment, what the image contained, and who it was being shared with.
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Liu et. al. [45] propose an alternate framework for setting system permissions; they used per-
missions settings gathered from existing smartphone users, and from those settings, compiled
“profiles” representing meta-preferences of like-minded users. They then presented new users with
an interactive tool, and predicted each user’s preferences based on a few targeted questions. Of
the permissions set by the assigned profiles, only 5% of settings were changed back by the users.
This suggests that alternate methodologies, other than binary approval or rejection of individual
permissions, can be useful and effective for end users.

2.3 ML-based Testing and Verification Methods for Mobile Platforms
In addition to researching new techniques for testing and verifying machine learning modules, there
have also been recent efforts in applying machine learning concepts and techniques to distinguish
between honest and dishonest applications on smartphones. Work by Burguera et. al. [11] monitors
calls made by Android applications to the underlying Linux kernel, and applies K-means clustering
in order to identify malicious applications. Other works have applied similar clustering approaches
other information about the applications under test, such as the requested permissions [82] or
sequences of API calls [31, 48]. One study by Afonso et al. [2] uses machine learning to classify an
app as malicious or honest based on a dynamically generated feature vector by tracing API calls.
However, the authors mention that their approach (at the time of publishing) could be detectable
by said app, which may lead to a change in the app’s behavior.

Usingmachine learning to categorize typical patterns and detect subsequent anomalies in runtime
behavior is another popular research area. Abah et al. [1] created an anomaly/malware detection
system which extracts features from running applications and uses these features to classify app as
malicious or safe using a trained K-Nearest Neighbour classifier. Another study by Kurniawan et
al. [39] analyzes phone sensor data for anomalies. The data they analyze is power usage, battery
temperature, network, CPU, Bluetooth and other hardware resources that is tracked by a mobile
device for anomalies. However, this approach uses the Android Malware Genome Project dataset; at
the time of writing this paper, no such dataset exists for mobile AR applications. Other approaches
utilize Generative Adversarial Networks (GANs) to preserve visual privacy and defend against
attacks [93, 95, 96]. However, these approaches are focused on sanitizing datasets collected for
offline processing, making them inappropriate for realtime augmented reality operations.
There has also been work to develop “trusted” neural networks which adhere to additional

constraints beyond their initial functions. One approach proposed by Halliwell et. al. [32] enforces
saliency constraints on convolutional neural networks; in doing so, developers can trust that the
internal layers of the network are leveraging the correct pixels of an input image in order to make
classification decisions. Ghosh et. al. [29] propose a parameterized approach to determine the “cost”
of trusting a neural network’s output for a given set of conditions. Their work leverages steering
directions for autonomous vehicles, where a dual-headed network calculates a proposed steering
angle for a set of traditional inputs (e.g. camera frames), as well as a “danger” score for violations of
a set of safety constraints (e.g. minimum and maximum allowable angles). The developer is then free
to adjust the weights between these results in order to maximize accuracy while keeping the danger
score within acceptable limits. Approaches like these require the participation of the network
developer; they can do nothing if the developer fails to incorporate these additional constraints
into their network, either through unintentional omission or malicious intent. Additionally, such
measures only increase confidence that the function of the neural network itself can be trusted. They
cannot control or verify that the context under which the function is being executed is appropriate.
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2.4 Testing Deep Learning Systems
Deep learning (DL) are one subset of machine learning systems that have gained in particular
popularity thanks to their unique applications in domains such as autonomous vehicles [7]. However,
these types of systems also carry great risk, as errors in controlling logic can lead both to personal
injury or loss of property. As such, interest in testing and verification of DL systems has increased
in recent years. (This contrasts with machine learning-based testing, in which machine learning
concepts are applied to testing of traditional systems, discussed above in Section 2.3.) The challenge
is that testing practices of traditional software systems do not translate directly to DL systems.
Where traditional software systems are “logic-driven” (e.g. behavior is controlled by logic flows
manually encoded by their programmers), DL systems are “data-driven”, where behavior is governed
by the architecture of the underlying neural network, the computations and activation functions
being performed at each node, the weights between nodes, and the quality of the training data
[100]. There are few “constituent parts” upon which to conduct unit testing, meaning the system
must be tested as a whole [98]. However, simply feeding inputs to the system and evaluating the
resulting output is an ineffective strategy; the search space of all possible inputs to such systems
(as well as enumerating their respective expected outputs) is so large as to make brute-force testing
prohibitively time- and resource-intensive.
Developing new strategies for testing deep learning systems, as well as metrics for measuring

success, is a popular research area. Much effort has gone into developing metrics to represent
logical coverage within a neural network. Proposed systems such as DeepXplore [56] and DeepTest
[83] leverage a concept known as “neuron coverage”, where inputs are scored according to how
many neurons are activated in their processing. This concept was inspired by traditional software
testing metrics such as “code coverage”, in which testers seek to execute every line of code in a code
base by the end of the test suite. Both approaches manipulate input images in order to maximize
neuron coverage, but differ in how the results are evaluated. DeepXplore evaluates the results by
cross-referencing with other DL systems, while DeepTest applies metamorphic relations to detect if
the output is within acceptable limits. DeepGauge [49] builds on this idea, proposing the concepts
of 𝑘-multisection neuron coverage (how well a given input covers the activation range of a given
neuron) and top-𝑘 neuron coverage (a measurement of the most commonly activated neurons in a
given layer of the network). These approaches, however, only consider how a system responds to
a given input in isolation and not how the responses differ between inputs; to address this, Kim
et al [37] propose a metric called “surprise adequacy” which measures how novel a given input
is relative, not only to the network’s training data, but to the set of inputs overall. Retraining the
network with “surprising” inputs is then demonstrated to increase network accuracy.

There has also been interest in developing property-based verification methods for DL systems,
beyond simply verifying the accuracy of outputs for a given set of inputs. Pei et al [57] treat the
internal network of the system as a black box, validating a given input/output pair against a high-
level safety property rather than trying to ascertain the nature of the network directly. Wang et. al.
[89] apply symbolic linear relaxation and constraint refinement to validate the internal activation
functions of a network in order to enforce safety properties. The developers of DeepMutation
[50] utilize principles of mutation testing, applying mutations directly to the training data set, the
network training program, and the resultant model in order to identify errant behavior. Test inputs
are fed into both the original model and the set of mutated models; errors are detected when the
output from a given mutated model for a given input differs from that of the original model.
While all of these approaches can provide some assurances into the ability of a given deep

learning system to produce reliable output or to adhere to a given safety property, they all fail to
address one particular problem. They do not ensure contextual integrity, that is, that the system
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Fig. 1. System architecture for a mobile AR application leveraging a third-party AR library. The application is
controlled by its core logic and any asset files needed to interface with the selected AR library. The nature
of the asset files depends on the type of AR library being used, and could be anything from raw images, to
databases of 3D object feature points, to pre-trained neural networks. The developer has complete control
over the core logic and the asset files; once in place, they can be easily exploited to conduct additional hidden
operations behind the scenes without the user’s knowledge (discussed further in Section 4.2).

under test adheres to the user’s expectation of appropriate behavior in a given scenario (discussed
above in Section 2.2).

3 THREAT MODEL
While it is possible for an incompetent or unaware developer to violate user privacy unintentionally,
for the purposes of this paper, we consider the adversary to be a third party app developer who
intentionally creates and distributes a malicious mobile AR application. In order to distribute their
application, the adversary must be able to publish the malicious AR app to the approved application
marketplace for their platform of choice; this requires them to adhere to all standard conventions
for system architecture, data, and asset storage, permissions, and security as dictated by the target
operating system. In doing so, this demonstrates that, from a code inspection standpoint, the
malicious application appears indistinguishable from an honest one.

Figure 1 demonstrates the system architecture for a mobile AR application. The AR application’s
core logic drives the primary functionality, such as managing the user interface and handling
system events. The core logic interfaces with a third-party AR library, which encapsulates the
computer vision and machine learning logic for the system to use. This interaction is managed by
a set of asset files, which represent the targets that the AR library is trying to recognize. Asset files
are unique to each AR library, and can take the form of raw images, compiled databases of feature
points, neural networks, and more. The AR library connects to the device sensors (e.g. camera,
microphone, etc.), using the provided asset files to trigger recognition events. The application core
is then free to respond to these events in whatever way is appropriate, such as displaying a label or
placing a 3D model into the user’s view of the environment.

The adversary’s objective is to use the AR app to stealthily collect information about the app user
and their environment that they would otherwise be unable to obtain from a non-AR smartphone
app [67, 68]. In other words, we do not consider scenarios such as side-channel attacks where the
AR app attempts to collect GPS location, since this kind of information can already be obtained via
other means. Rather, we focus on data which is obtainable through execution of machine learning
logic by an AR application during runtime, that is, from the live camera feed. The adversary will
attempt to stealthily collect this information through the use of hidden operations within in the
AR app. We define “hidden operations” to mean any machine learning functionality that is outside
the scope of what is communicated to and expected by the end user. Once the data is obtained, we
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(a) Complementary (estimating age and gender) (b) Orthogonal (inferring relative wealth)

Fig. 2. Example “hidden operation” attacks for (a) complementary [e.g. building on the advertised functionality]
and (b) orthogonal [e.g. independent of advertised functionality] operations

assume that the adversary will be able to exfiltrate it without being detected by the user, using
techniques such as piggybacking the information on top of routine software updates.

3.1 Threat Overview
The ability for developers of mobile augmented reality applications to perform “hidden operations”,
that is, unadvertised machine learning or computer vision operations on live camera frames,
constitutes a serious threat to end-user privacy. Deng et. al. describe seven key threats to user
privacy, known as the LINDDUN model [20]: Linkability (the ability to determine whether two
items of interest are related in the system), Identifiability (the ability to positively identify an item
of interest within the system), Non-repudiation (the ability to conclusively tie an actor back to an
action taken within the system), Detectability (the ability to determine whether an item of interest
exists within the system), information Disclosure (the ability to expose personal information that
should not be accessible), content Unawareness (the inability of an end-user to fully know the
extent of data collected or inferred by the system), and policy and consent Non-compliance (the
ability of the system to go against advertised privacy policies and end-user expectations).

By conducting a hidden operation behind the scenes of the advertised AR application function-
ality, the developer engages in three of the LINDDUN privacy threats in particular: information
disclosure, content unawareness, and policy and consent non-compliance. First, the system exhibits
information disclosure by leveraging a legitimate data stream to potentially learn personal data
that it should not have access to (such as the user’s age, gender, or socio-economic status). The sys-
tem also results in content unawareness by keeping secret the nature and extent of data gathered
during the operation. The fact that the user is unaware of the hidden operation is fundamental
to the operation’s success. Finally, the system exhibits policy and consent non-compliance by
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exploiting the permissions granted for the advertised AR functionality to execute the additional
hidden operations behind the scenes.

3.2 Assumptions and Example Scenarios
There are a number of ways in which the adversary can implement their hidden operations. In this
paper, we only consider the adversary who utilizes existing vision and machine learning libraries to
implement their hidden operations. This is because commercially available libraries provide the
most convenient method for developing AR apps, since they require a much lower level of skill and
domain knowledge compared to implementing such logic from scratch. Additionally, we assume
that the adversary is completing the majority of their machine learning logic locally on-device; this is
because augmented reality applications have a strict threshold of tolerable computational latency.
Offloading the entirety of vision or machine learning operations to the cloud would incur too
much latency to be feasible for realtime responsiveness as required for AR system output [46, 101].
Further, we assume that the hidden operations are also performed locally, as offloading frames for
processing en masse risks getting caught by network monitors for transmitting large amounts of
image or video data, without any guarantee that the files contain anything of interest.
The scope of the hidden operations privacy threat can be demonstrated through the following

sample scenarios:

(1) Complementary Hidden Operation: Figure 2a demonstrates a complementary hidden
operation, in which the additional logic being executed leverages and builds upon the ex-
isting, advertised functionality of the base application. Here, the adversary distributes an
application such as Snapchat [78], which identifies and displays an overlay on top of faces.
However, behind the scenes, they utilize a custom TensorFlow model to estimate the age
and gender of observed faces without communicating so to the user. This is considered a
“hidden operation” because age and gender estimation ostensibly have nothing to do with
the advertised functionality of the application.

(2) Orthogonal Hidden Operation: Figure 2b demonstrates an orthogonal hidden operation,
in which the additional logic being executed is completely independent of the application’s
existing advertised functionality. Here, the adversary offers a retail application which detects
vertical or horizontal planes to display virtual models of furniture, allowing the user to
preview how the items would look in their home. However, under the covers, the adversary
also leverages Google ML Kit’s coarse-grained image labelling functionality to determine
when the camera view also contains interesting items such as electronics, handbags, or
jewelry. Once detected, these frames can be offloaded for additional processing, in order to
infer the user’s relative economic status.

In the following sections, we discuss a selection of possible implementations for hidden operations
in mobile AR, and propose a design for improved testing and permissions of mobile AR apps.

4 HIDDEN OPERATIONS IN MOBILE AR APPLICATIONS
In this section, we present an overview of the process of building a mobile augmented reality
application, as well as the steps involved in hiding additional logic behind the scenes using a
selection of commercially available libraries. We also present a series of comparisons between
honest and dishonest AR applications to demonstrate their similarity and the subsequent difficulty
in distinguishing between them.
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Fig. 3. High-level pipeline for building a mobile AR application. When an adversary wishes to incorporate
additional dishonest logic, they must develop new vision assets (Steps 1 and 2), and integrate those assets and
associated response logic into the existing app (Steps 5 and 6). Figures 4, 5, and 6 go into more detail of how
these steps are done, where asset development and event response logic are marked (A) and (B) respectively.

4.1 Building Mobile AR Apps
Building a mobile AR application consists of two complementary pipelines, as described in Figure
3. The first pipeline reflects the development of computer vision functionality, while the second
reflects the mobile application development. The first two steps of each pipeline can be executed in
tandem with each other.
The first step in the vision pipeline is to identify the AR or CV operations that the application

should support, and which AR or CV library will be utilized to implement them 1 . Common
vision operations include ground plane detection, facial recognition, object classification, and others.
Once the desired vision operation and corresponding library been identified, the second step in the
vision pipeline is to collect or develop the assets necessary to accomplish the selected operation 2 .
“Assets” are resource files utilized by the system during runtime to complete the desired operation,
and can vary depending on the type of operation being executed as well as the library being used.
For example, 2D image recognition with ARCore requires copies of the images to be recognized,
while object classification with TensorFlow requires datasets of images representing the various
classes to be recognized, which are then used to train a neural network.
The first step of the mobile pipeline consists of building the initial application skeleton 3 ,

including establishing the system architecture, setting up scenes, connecting to device sensors,
and other tasks. The second step involves importing the AR or CV library of choice 4 , as well as
supplementary tasks pertinent to the chosen library, such as registering a developer key. Once the
vision assets have been assembled and the preliminary application developed, the developer can
then integrate the assets into the application 5 , typically by registering them with the library
at application start-up. Finally, the developer can implement listeners to respond to results of the
vision operations as they become available 6 . Developers are free to respond to these results in
whatever way makes sense for their application. Examples of potential responses include placing a
graphical overlay in the user’s view to highlight an object, placing a label to give more information,
playing a sound, delivering haptic feedback, or nothing at all.
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APPROACH LIMITATIONS
Integrated AR
Libraries

Leverage common functionality
provided directly by OS or plat-
form publisher; configurable with
custom asset files

Requires pre-existing knowledge
of targets in order to select asset
files; no ability to modify library
functionality

Function-level
Vision Libraries

Pre-packaged implementations
for common functions (e.g.
image classification) with limited
customizability

Requires manual connection to
camera and processing of frames;
no support for dynamic offloading
of operations

General Purpose
Vision Libraries

Platform-agnostic support for ad-
vanced vision and machine learn-
ing operations with high degree
of customizability and control

Requires high level of subject mat-
ter expertise, and manual collec-
tion of data sets for training and
testing

Table 1. High-level summary of libraries that may be used when hiding malicious operations.

4.2 Hiding Additional Operations
We assume that the adversary is utilizing a commercially available vision library in order to build
their AR application and implement their hidden operations. When implementing one of these
operations, the adversary has three broad categories of libraries to pick from (as summarized in
Table 1): integrated AR libraries; function-level computer vision and machine learning libraries;
or general purpose vision and machine learning libraries. The developer may also combine any
of these libraries together into a single app, both within and across categories. For example, an
application which uses Vuforia to identify beverage labels can also leverage ARCore to detect
and track face meshes, or an application which uses ARCore to place virtual superheroes on a
tabletop could also use TensorFlow to identify other objects in the room and generate customized
speech bubbles for the models. In doing so, the adversary can leverage the strengths of one type of
library to compensate for the limitations of another. Next, we go into greater detail explaining the
differences between these various vision libraries.

4.2.1 Integrated AR Libraries: Integrated AR libraries are fully encapsulated, local-processing
libraries developed specifically by a given OS or platform provider in order to supply AR func-
tionality. Examples of integrated AR libraries include Google’s ARCore [22], Apple’s ARKit [21],
Microsoft’s Mixed Reality Toolkit [52], and PTC’s Vuforia [88]. Figure 4 shows the program loop of
an application using an integrated AR library, such as ARCore. Being directly integrated with the
target platform or IDE allows these libraries to abstract away many of the mechanical operations
for the adversary; the library will automatically connect to the camera, perform target recognition
and tracking, and invoke event listeners. The adversary is responsible only for supplying assets A
and registering event listeners to execute when a target’s asset is recognized in the camera feed
B . The nature of the assets to be supplied depends on the library being used. ARCore supports
recognition of elements such as the environmental ground plane (no assets required), and raw 2D
images (such as collections of logos). Meanwhile, Vuforia recognizes not only the ground plane
and collections of 2D images, but also 3D models of real-world objects.

Benefits: The primary benefit of integrated AR libraries is the speed and efficiency with which
their functionality can be integrated into an application, due to the low burden of knowledge
required from the adversary to utilize them. Additionally, because the recognition logic for these
libraries depends only on these asset files, it is a relatively simple matter to update trackable targets

ACM Trans. Priv. Sec., Vol. AA, No. B, Article CCC. Publication date: August YYYY.



CCC:12 Lehman et al.

Fig. 4. Program loop for an integrated AR library (e.g. ARCore). While each integrated library has its own
unique architecture, they all share similar high-level concepts.

on the fly by downloading new assets during runtime. The adversary can easily change their
application logic by downloading new images (if using ARCore) or a new target database (if using
Vuforia) from a back-end server, and resetting the library’s collection of active assets.

Limitations: There are some limitations to using integrated AR libraries when implementing
an AR application. First, the adversary is limited to using only that functionality that the library
publisher provides at the time. There is no way for them to modify or expand that logic if it doesn’t
meet their needs. Second, the reliance on explicit asset files requires the adversary to know exactly
what they will be recognizing during runtime; there is no support for class-based recognition.

4.2.2 Function-level Vision Libraries: In contrast to integrated libraries, function-level vision li-
braries are resources offered in a modular fashion around specific AR or CV operations with
moderate levels of customizability. These libraries can either be executed locally or remotely,
depending on the publisher’s system architecture. Google’s ML Kit [24] and Cloud ML APIs [18]
are examples of local and remote function-level vision services respectively. Figure 5 shows the
program loop of an application leveraging a function-level vision library such as ML Kit. Here,
instead of providing raw asset files for the library to recognize, the adversary need only import
the specific sub-library associated with the functionality they wish to utilize A . Within the
application’s core logic, the adversary is required to provide considerably more system-level logic
to perform such tasks as connecting to the device camera, processing frames, and passing them to
the library to be recognized B .

Benefits: The primary benefit of function-level vision libraries is in their considerably broader
range of supported operations compared to integrated AR libraries. While integrated AR libraries
are limited to operations such as ground plane detection and recognition of pre-loaded 2D and 3D
targets, libraries such as Google’s ML Kit offer more robust operations such as text recognition,
face detection, barcode scanning, pose estimation, image labeling, object classification, and target
tracking. Further, because the libraries are subdivided by functionality, only the portion relevant to
the desired function need to be added to the target application. Because of this, the same library
can be used to perform different operations; for example, the default image labeling library from
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Fig. 5. Program loop for function-level vision library (e.g. Google ML Kit). While each function-level library
has its own unique architecture, they all share similar high-level concepts.

Google’s ML Kit recognizes more than 400 class-level labels [23], allowing the adversary to use the
same logic whether they want to recognize animals such as cats, birds, or dogs, or “luxury” items
such as sunglasses, jewelry, or computers.

Limitations: Similar to integrated libraries, the functionality of function-level libraries is limited
to what the publisher provides. While the range of functionality offered by libraries such as Google
MLKit is more robust than libraries such as ARCore, and in some cases does provide some level of
customization for a given operation, the adversary is still limited in what they can do. Further, at
the time this paper was written, no commercially available function-level libraries offer support for
dynamic offloading of operations; depending on the library, all operations are either fully local or
fully remote. Therefore, this category of libraries is a poor choice for an adversary who desires the
flexibility of a hybrid processing solution.

4.2.3 General Purpose Vision Libraries: General purpose vision libraries such as Tensorflow [81],
OpenCV [55], and SciKit-Learn [64] are fully open-ended third-party libraries which support more
advanced levels of vision and machine learning operations. Figure 6 shows the program loop for an
application utilizing one of these general purpose libraries (such as Tensorflow). The adversary must
first collect a sufficient body of data samples for their chosen operation. They then select a base
algorithm, then trains, tests, and validates the model before exporting it into a mobile-compatible
format A . In this way, general purpose libraries build on the structure of function-level libraries
by allowing the adversary to fully customize the recognition logic in whatever way they wish. In
the application code, they must connect to the device camera, extract frames from the feed, perform
pre-processing, and pass them to the model to be processed B .

Benefits: The primary benefits of using general purpose vision libraries center on the adversary’s
ability to fully customize their model according to their own system’s needs. These libraries can
be used when publishers of the other two library categories do not offer an adversary’s desired
functionality out-of-the-box. Examples of this include the publisher offering a given function that
is trained for an unhelpful dataset, offering a given function remotely when the adversary needs to
run it locally, or not providing the functionality at all. Further, if they discover a scenario in which
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Fig. 6. Program loop for general purpose vision library (e.g. Tensorflow). While each general purpose library
has its own unique architecture, they all share similar high-level concepts.

their system is performing poorly, they can retrain and redeploy their vision model to improve
performance, while another developer using an integrated or function-level library would have to
make do with whatever functionality was commercially available.
Limitations: The primary limitation of general purpose vision libraries is that they are much

more difficult to use than integrated AR libraries or function-level vision libraries, requiring a
much higher level of familiarity with computer vision concepts in order to develop a working
model. Therefore, this type of library is not recommended for an adversary who is not comfortable
with more hands-on computer vision or machine learning tasks, or one who is unable to collect
sufficient data samples for testing and training. This is because the work of training a custom vision
module to a high level of accuracy can be quite demanding in terms of time, storage and processing
requirements, especially with environmental variations such as low light or a partially blocked line
of sight. This makes the process of updating a model on the fly quite impractical when running
locally. Finally, general purpose libraries are typically quite monolithic in structure compared to
the other two categories, which can contribute further to storage and resource drain on-device.

4.3 Comparing Honest and Dishonest Applications
There are currently no publicly available, open source examples of knownmalicious AR applications;
therefore, we developed three prototype applications to investigate the extent to which honest and
dishonest MAR applications differ from each other. The applications were fully implemented in
Java for the Android operating system as proofs-of-concept for increasing levels of maliciousness.
The first application (A1) represents the “honest” application, in which the only operations being
executed are in keeping with advertised functionality, and are thoroughly communicated to the end
users. For the purposes of this paper, we designed A1 to recognize faces and place an overlay on the
camera feed, outlining the primary landmarks of the recognized face (e.g. eyes, mouth, etc.). The
second application (A2) builds on the first, supplementing the honest logic with a complementary
hidden operation, that is, one that builds upon the existing honest logic without informing users of
its existence or purpose. A2 calculates the age and gender of the detected faces, but provides no
indicator to the user of the operation. Finally, the third application (A3) supplements the honest
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PERMISSION LEVEL A1 A2 A3 MATCH
Internet Normal X 100%

Access Network State Normal X 96.8%
Camera Dangerous X X X 95.1%

Write External Storage Dangerous X X X 91.9%
Read External Storage Dangerous X 74.2%
Read Phone State Dangerous X 29%

Table 2. OS permissions requested by adversarial application prototype versions: (A1) honest, (A2) comple-
mentary hidden op., and (A3) orthogonal hidden op. with corresponding match percentage among publicly
available AR applications on Google Play Store (n = 62)

logic with an orthogonal hidden operation, that is, one that is completely independent of the existing
honest logic, but is similarly undisclosed to the end users. A3 performs text recognition on frames
taken from the live feed, an operation which is performed regardless of the results returned from
the primary logic.

4.3.1 Permissions. All three of the applications described above were developed with the same set
of explicitly requested permissions, e.g. access to the camera and write permissions to external
storage. During compile time, the various resource libraries incorporated into the different code
bases add their own requested permissions to the application manifest. The final lists of requested
permissions for each application version are reflected in Table 2, where the boldface lines are
developer-requested and the rest are library-requested.

Because it is important for prototype applications to reflect real-world conditions, we conducted
a survey of AR applications available on the Google Play Store and compared their lists of requested
permissions with the ones requested by our honest and dishonest prototypes. Since the Google
Play store does not support filtering or sorting of applications, we had to use the pre-filtered lists
provided by Google under the “Augmented Reality” category - “AR Apps”, [71], “AR Games”, [72],
and “Best of AR” [73]. To filter the raw corpus of applications down to a manageable size, we went
through each list and filtered out duplicates. After the first pass, we were left with 713 unique
applications. For our second pass, we considered only those applications with a million or more
downloads, yielding a final count of 62 unique applications. For each of these, we downloaded
the APK, analyzed it using Android Studio’s APK inspector, and extracted the lists of requested
permissions from the applications’ manifest files, as summarized in Table 2. (It should be noted
that three of the applications did not request the camera permission - Google Photos, [74], Google
Spotlight Stories, [75], and Mondly [77]. We believe that these applications were either misclassified
by the app store, or the “AR” features are performed on media already present on the user’s phone
and not explicitly retrieved from the camera.)

Of the permissions requested by our various applications, all but one are also requested by more
than 90% of commercially available AR applications on the Google Play Store. (“Write External
Storage” is a super-permission of “Read External Storage”; granting of write permissions also grants
read permissions by default.) Based on these results, we conclude that the sets of permissions
requested by our applications are reasonable, and reflect the types of permissions typically requested
by commercially available apps.

4.3.2 Manual Inspection. In addition to requested permissions, we also performed manual inspec-
tion of the different applications to attempt to identify differences between versions. We considered
the following: package size, asset and library artifacts, and impacts to the runtime UI.
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Fig. 7. Lib artifacts extracted with Android Studio APK Inspector for adversarial applications. Additional
artifacts introduced by hidden operations are outlined in red.

Fig. 8. Asset artifacts extracted with Android Studio APK Inspector for adversarial applications. Additional
artifacts introduced by hidden operations are outlined in red.

Package Size: The size of an application’s installation file can be an indicator of how much
local processing the application does. In Android, this installation file is known as the APK (or
Android PacKage). When considering the applications listed by the Google Play Store under the
“Augmented Reality” category (e.g. “AR Apps”, [71], “AR Games”, [72], and “Best of AR” [73]), the
average APK size is 50.1 MB with MIN = 1.2MB, MAX = 539MB, and STD_DEV = 32.8MB (n=713).
This represents a wide range of “normal” package sizes, with the majority coming in under 100MB.
The corresponding package sizes for our adversarial applications are 38.5MB for (A1), 201.4MB
for (A2), and 38.9MB for (A3), with A1 and A3 coming in well below the average. Even A2, with a
package size considerably above average, has a package size well below the largest commercially
available app (size 539MB). Based on this, we conclude that our package sizes are reasonable, with
no observable deviation or abnormality compared to package sizes of commercially available MAR
applications.

Asset and Library Artifacts: Android Studio provides a packet inspector to analyze APK files.
When we use this to open the compiled APKs, we see that the lib and assets directories make up
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Fig. 9. Runtime UI screenshot of adversarial prototypes with corresponding log output

the bulk of our storage consumption. In Android, the lib folder contains executable logic from an
application’s imported resource libraries, and is populated by the library publishers. Conversely,
the asset folder is used as raw storage for resource files for the system to use during runtime, and
can be populated by both the developer and the library publishers.

Figures 7 and 8 describe the contents for each of these folders respectively, where the additional
artifacts introduced by the hidden operations are outlined in red. We can observe from these figures
that the only the complementary hidden operation introduced new artifacts into either the assets
or libs directory. Even considering these artifacts, they are not particularly informative; the shared
operations files in the lib directory are general-purpose only, and the asset files are completely
under the control of the adversary, who can name them whatever they want. For this scenario,
there is nothing stopping the adversary from choosing completely misleading names for their
model and label file assets.

Runtime UI:A runtime screenshot and samples of the corresponding output for each application
are shown in Figure 9. For each of the applications, the same runtime UI is displayed to the user - that
of the dynamic overlay displayed on top of a detected face. There are no additional indications made
to the user that other operations are being performed. However, if we examine the applications’
runtime logs, we can see output from the various dishonest operations that differ from the honest
application. The complementary dishonest application outputs additional information about the
estimated age and gender of the detected face, while the orthogonal dishonest application performs
text recognition. However, because current commercial vision toolkits andmobile operating systems
place no requirements on developers to make any sort of indication to users when vision or machine
learning operations are being performed, the dishonest applications are able to perform these
operations without making any changes to the runtime UI.

4.4 Results
Based on the similarity comparison above, we make the following conclusions. First, we observe
that the increasing availability and maturity of commercially available vision libraries
makes it quite simple to conduct hidden machine learning operations without informing
the end user. Commercially available vision libraries give an adversary a host of options to
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incorporate into their application, catered to their needs and pre-existing subject matter expertise.
These powerful operations can be used for a variety of different purposes, none of which are
required to be consistent with the application’s advertised functionality, or to be communicated
to the end user. As demonstrated above, in the case of low-overhead functionality such as text
recognition, the introduction of new libraries may not even introduce new artifacts into the APK’s
assets or libs directories. Additionally, because these operations are being conducted in the
background, there are no impacts to the runtime UI of the application to alert the end user to
their presence. This has the effect of lowering the bar to create AR applications in the first place,
while simultaneously making it easier to violate the privacy of end users by exploiting these same
libraries.
Second, we see that the OS-level permissions structures currently provided by mobile

platforms are insufficient to protect against hidden machine learning operations. All
three of the adversarial applications described above, honest and dishonest alike, achieved their
functionality using the same list of permissions, e.g. access to the camera and write permissions to
storage, which were requested by more than 90% of AR applications from the Google Play store.
Access to a given permission is requested on first execution of an application after install; once
granted, it is never requested again, and the application has full access to any and all features
related to that permission. Thus, an application will request its permissions once, and then have no
subsequent accountability on when or why it is accessing that functionality. Further, contemporary
mobile operating systems make no requirements on developers either to request permission to
perform machine learning operations, or to make any visual or auditory indications to users when
those operations are being performed. Based on this, in current mobile operating systems, there is
no way to tell an honest application from a dishonest one based on the permissions they request.
Based on these observations, in the following sections, we propose and perform exploratory

experiments on a systemwhich seeks tomitigate the hidden operations threat. This system addresses
the problem first by preventing developers from executing unvetted vision logic, and second by
increasing user awareness of application behavior during runtime.

5 SYSTEM DESIGN
One of the primary challenges of contemporary mobile augmented reality systems is that there
is no dedicated representation for computer vision or machine learning operations within the
existing permissions structures of mobile operating systems; as such, there is no requirement for
developers to communicate with end users regarding their use of computer vision and machine
learning operations. Our proposed solution focuses on incorporating dedicated steps for verifying
machine learning components into the application development process, and on expanding the
existing permissions structures of mobile operating systems to specifically target vision operations.
In doing so, we will remove developers’ ability to execute computer vision operations without
supervision, and improve end user awareness when such operations are performed.

5.1 Proposed System
Our proposed system design consists of three principal components. The first component is a
trusted verification and signing service for computer vision models. This service would be
responsible for vetting vision functionality before it is allowed to be executed on the local device;
it would offer a repository of pre-vetted, commonly used models (similar to the function-level
organization of libraries such as Google’s ML Kit), and provide verification services for developers
to submit their own custom models built with general purpose libraries such as TensorFlow. Signed
versions of the vetted models would then be available for download, along with a unique key
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Fig. 10. Proposed workflow for custom model validation and trusted runtime operations.

Fig. 11. Proposed system architecture for AR application with encapsulated machine learning operations

for each developer to use in authentication, thereby preventing the developer from modifying or
replacing the model after download.
Figure 10 demonstrates the proposed workflow by which a developer would submit a custom

model for verification. This workflow assumes that, in addition to the model itself, the developer
also provides all relevant meta-data describing the model’s purpose, operations, and targets to be
recognized. The trusted service provider (such as Google for Android or Apple for iOS) would
then perform their own independent validation, verifying that the model adheres to expected
functionality and performs all advertised functions. Once the model has been verified, the service
provider would return the signed version of the model as well as a unique key to the developer.
Once the developer has downloaded their model and associated key, they would then utilize

our second principal component: a trusted computing partition on the local device in which
to run the signed vision model, as shown in Figure 11. During runtime, the application would
interface with the trusted partition to request operations from the custom model, providing the
unique key to authenticate the request. The trusted partition would then interface with privacy-
sensitive sensors such as the camera and microphone before returning the results to the application.
By inserting this trusted computing layer in between the application and privacy-sensitive sensors
such as the camera, the developer is able to perform approved operations using the signed model,
but is unable to access the data feeds directly, removing their ability to perform additional operations
on raw camera frames.
Finally, the device OS would leverage our system’s third and final component, an expanded

permissions structure to communicate desired computer vision operations to end-users at
runtime. This component leverages the meta-data associated with the application’s signed vision
models and exposed by the trusted signing service. As such, the permissions could be structured
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in a number of different ways. For example, if an application is using pre-existing functionality
from trusted function-level libraries such as Google’s ML Kit, the OS publisher might require
the developer to request permission from the user to execute that particular function (e.g. text
recognition or image labelling). Alternatively, if the developer is using a signed custom model, the
OS publisher could provide the end-user with the results of that model’s verification process before
deciding whether to permit the application to continue. The high level operation permission can
also be supplemented with a brief explanation of why the functionality is being requested. These
prompts would supplement or replace the overly vague and unhelpful request for wholesale access
to the device’s camera, and will provide end-users with the opportunity to reflect and decide if an
application’s request for a particular functionality is acceptable before engaging in use of the app.

5.2 Potential Verification Methods
There are a wide variety of established methods for testing and verifying expected behavior of
software systems and machine learning modules, which the trusted signing service publisher could
utilize. Examples include but not limited to such approaches as static and dynamic analysis, and
metamorphic testing. The purpose of this section is not to identify the perfect verification method,
but to explore how different verification methods could be incorporated into this system.

5.2.1 Static and Dynamic Analysis. Static and dynamic analysis are traditional techniques used
to identify malware. Static analysis methods achieve this by creating call graphs representing the
control and data flows elicited by inspecting the application’s raw code files. Unfortunately, this
method of analysis is inherently difficult for AR systems, due to a number of factors. As noted
by Chaulagain et. al. [12], it is highly computationally expensive, suffers from high rates of false
alarms, and can fail when the adversary is highly skilled in evasive code writing. In contrast to
static analysis, dynamic analysis examines the behavior of the application at runtime, by feeding in
particular inputs and monitoring the resulting outputs. However, dynamic analysis is only as good
as the quality of the selected inputs; poor input selection can result in missed code execution paths
and therefore incomplete testing. This problem is particular important for AR systems, since it is
impossible to achieve 100% input coverage for a vision-based system.

Trusted signing service providers employing static and dynamic analysis can utilize our system
in several ways. First, they can force developers to provide explicit declarations of what their
applications are recognizing. This could take such forms as itemized lists from predetermined
categories, collections of explicit 3D models or 2D image files, or a written description from which
scope can be derived. By providing this explicit information in addition to the application’s raw
code files, the signing service publisher can focus its testing efforts, either to verify that a given
application does recognize what it claims to, or that it doesn’t recognize a particular sensitive
category (such as faces or text) in which it claims to have no interest.
Unfortunately, picking inputs for runtime testing is only half the battle; the signing service

publisher must also be able to tell if an application’s response to a given input is honest or malicious.
In order to do this using machine learning, a dataset must be available for training and testing
such solutions. However, at the time of this paper’s writing, no such dataset exists for mobile AR
applications. Therefore, the publisher can also use our system to generate traces of such runtime
information as on-board resource consumption, library function calls, network transmissions,
display frame rate, and other data points. These traces can then be compiled into a dataset for
developing machine-learning-based detectors of behavioral anomalies for AR systems.
Using this dataset, the signing service publisher will be able to determine, over time, when a given
application’s behavior strays outside the realm of normality for a given input-output pair.
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5.2.2 Metamorphic Testing. Metamorphic testing was developed to help address two problems:
the “oracle problem” and the “reliable test set problem” [8, 15]. The “oracle problem” refers to the
challenge of determining whether the result of a given test case is expected and therefore successful.
While this may seem like a straightforward problem, in many real life systems, there is no definitive
oracle for a given test set, or the resources required to fully execute the oracle may be prohibitive.
The “reliable test set problem”, on the other hand, refers to the difficulty in selecting a subset of
tests to reliably infer system correctness when exhaustively executing all test cases is impossible.
Under metamorphic testing, testers develop metamorphic relations, or properties that describe
correct system behavior and are exhibited by a small set of “source” inputs (and their resulting
system outputs). Testers then iteratively modify and expand the set of source inputs, verifying the
relationships between the resulting outputs to make sure they adhere to the metamorphic relation.
This allows testers to leverage a subset of the full test set to draw conclusions about the state and
reliability of the system as a whole.
Mobile AR systems are particularly susceptible to both the reliable test set problem and the

oracle problem because of both the massive search space for image and video inputs, and the fact
that, for a given input provided to the system, the resulting output may be honest or dishonest,
depending on the context and end-user expectations. Therefore, a signing service publisher lever-
aging metamorphic testing could require the developer to submit meta-data that facilitates the
construction of metamorphic relations for use in testing. This meta-data might include the
target recognition information described above, as well as mathematical equations. Work by Tian
et. al. [83] shows an example of this, where minor variations in predicted steering angle for an
autonomous vehicle are governed by a mean-square error calculation across subsequent input
images. Signing service publishers can identify high-level system properties (such as steering angle)
that are crucial to system behavior, and work with developers to construct corresponding relations.

5.3 Feasibility and Benefits
The system proposed above is high-level and somewhat abstract; this is because we recognize the
scope and complexity of addressing the hidden operations threat in full is too great for this paper
to cover satisfactorily. Our goal in proposing this system is not to present a single panacea solution,
but rather to identify components that can be developed in synergy to mitigate the threat and its
various facets. Full realization of this proposed system will require multi-disciplinary contributions
from the worlds of computer vision, machine learning, systems security, and human-computer
interaction.
The ultimate goal of the proposed system is to limit a developer’s ability to execute vision or

machine learning logic without alerting the end user. It does this through two main approaches.
The first approach is by preventing developers from executing unvetted vision logic. By
forcing developers to use trusted services to implement vision functionality (either by utilizing an
existing function-level library or submitting a custom model for intense validation), we remove the
adversary’s ability to execute custom machine learning logic without supervision. This mitigates
the LINDDUN threat of information disclosure by adding another layer of review to the app’s
machine learning components, preventing them from gathering more data from the user than what
is permitted.

As mentioned previously in Sections 2.3 and 2.4, the testing of machine learning components and
the systems that use them is a difficult problem [98, 100]. There are strategies that a given library
publisher can employ to ensure the technical correctness of a given machine learning module
[37, 49, 50, 56, 83], but these strategies cannot guarantee that an application developer will not use
the module in ways contrary to user expectations. The second approach is, therefore, to increase
user awareness of application behavior during runtime through the use of meta-data exposed
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Fig. 12. The ideal case plot of 𝑋ℎ𝑜𝑛𝑒𝑠𝑡 vs 𝑋𝑚𝑎𝑙𝑖𝑐𝑖𝑜𝑢𝑠

by the trusted signing service and increased granularity of requested permissions. By providing
dedicated permissions for computer vision functions and requiring end-users to explicitly approve
or deny such permissions, we remove the adversary’s ability to perform such operations without
informing the user. This mitigates the LINDDUN threats of user unawareness and policy and
consent non-compliance by ensuring that the user is as informed as possible about the true nature
of an application’s background operations. Once alerted to suspicious application behavior, it is
then up to the user to respond appropriately, such as changing his or her own behavior or removing
the application entirely.

6 EXPERIMENTAL RESULTS
Even if platform publishers implement our proposed system for application development, there is
still a need for testing and verification after development is complete, such as before an application
is published to a given app marketplace. Given that one of the benefits of our proposed system
is the ability to identify what an AR application is recognizing, we are interested in determining
whether this knowledge can be exploited to verify whether an AR application is executing more
vision operations than it advertises, that is, conducting a hidden operations attack. We therefore
conduct a series of experiments to estimate the effect that this additional knowledge can have on
runtime testing practices for AR systems, in order to determine whether our proposed system
shows promise for differentiating between honest and malicious AR applications.

We base our experiments on the intuition that, for a set of applications that ostensibly recognize
the same honest inputs, we can expect to see low resource consumption when presented with inputs
that the application does not recognize, and an increased level of resource consumption when
presented with an input that the application does recognize. This intuition is reflected in Figure
12, in which inputs are divided into three categories: neutral (e.g. inputs that neither application
recognizes), expected (e.g. inputs that correspond to both applications’ advertised functionality),
and sensitive (e.g. inputs which the malicious application recognizes but the honest application
does not). When presented with different inputs at runtime, for the neutral category of inputs,
resource consumption for both the honest and malicious applications should be relatively low.
Conversely, when presented with inputs from the expected category, we expect to see a spike
in resource consumption from both apps. However, when presented with sensitive inputs, we
expect the honest application to return to a “neutral” level of resource consumption while the
malicious application’s levels remain high. In this section, we present two series of evaluations to
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NEUTRAL EXPECTED SENSITIVE
Baseline Shoes Single-face portraits Street signs

Face Recog. Stress Test Shoes Group portraits Street signs
Text Recog. Stress Test Shoes Single-face portraits Wikipedia articles

Worst Case Shoes Group portraits Wikipedia articles
Table 3. Input combinations for exploratory test conditions

verify this expected behavior first for the prototypes we developed in Section 4.3, and second for a
group of commercially available third-party applications.

6.1 Test Set-up
Each application-under-test (AUT)was executed on a smartphone placed in a dock facing a computer
screen. This method was utilized to in order to engage the full camera frame delivery pipeline,
rather than feeding a video or set of raw image files directly to the application. The computer then
played a video showing a rotation of input images. The input video was split into three phases,
showing one minute each of neutral images (e.g. recognized by none of the applications), then
expected images (e.g. inputs that match the applications’ advertised functionality), and finally
sensitive images (e.g. inputs that are potentially privacy-invasive and have nothing to do with
the applications’ advertised functionality). For all AUTs, the expected functionality was facial
recognition, while the sensitive functionality was one of either age and gender estimation, or
text recognition.

We tested four conditions: baseline, worst case, and stress tests for the facial and text recognition
conditions. Input videos were generated for each condition as described in Table 3. Results were
collected and averaged over five trials from each application for each video. All tests were executed
using a Samsung Galaxy S9 smartphone (Qualcomm SDM845 Snapdragon 845 processor, 4 GB
memory), and a 15in. MacBook Pro laptop (3.1 GHz i7 processor, 16 GB DDR3 memory). We
simulated the proposed inspector system through a series of command-line scripts, executed
through the Android Debug Bridge (adb) and the hardline connection between the smartphone and
computer. Using this script suite, we collected a spectrum of runtime traces (CPU, memory, and
storage utilization; display frame rate; active process information, etc.) as the application-under-test
processed the input video. These traces were then utilized for analysis. All code files and data
collection scripts used for these evaluations are publicly available on GitHub1.

6.2 Evaluating Adversarial Applications
Our first set of tests utilized the adversarial applications described in Section 4.3, where A1 is the
honest application, performing the expected operation 𝛼 (e.g. facial recognition). A2 and A3 are
dishonest applications, performing complementary and orthogonal hidden operations 𝛽 (age and
gender estimation) and 𝛾 (text recognition) respectively, in addition to 𝛼 .

We analyzed the resource consumption traces to determine whether any behavioral differences
could be observed for the various categories of inputs. First, we examined the traces over time for
different stress test conditions to determine if we could manually observe any changes in behavior.
Next, we performed statistical analysis to determine the similarity of traces collected from different
apps for the same sequence of inputs. Finally, we performed K-means clustering to group traces by
input category, in the attempt to distinguish malicious apps from honest.

1https://github.com/lehmansarahm/MAR-Security
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(a) Complementary Malicious - CPU (b) Orthogonal Malicious - CPU

(c) Complementary Malicious - Frame rate (d) Orthogonal Malicious - Frame rate

Fig. 13. Runtime traces of adversarial applications for different stress test conditions

6.2.1 Runtime Resource Consumption. We performed two stress tests to determine if we could
induce a resource consumption spike for known malicious inputs, the results of which are shown in
Figure 13. The first test focused on the malicious application performing the complementary hidden
operation, that is, age and gender recognition for detected faces (A2). For this test, we considered
two groups of images for the expected phase of the input video: single-face portraits (“F” condition)
and photos of large groups (“G” condition). The second test focused on the malicious application
performing the orthogonal hidden operation, that is, text recognition regardless of the results of the
face detection output (A3). For this test, we considered two groups of images for the sensitive
phase of the input video: street signs (“S” condition) and Wikipedia articles (“W” condition).
Impacts to runtime CPU consumption for the two stress tests are shown in Figures 13a and

13b. We can observe that the honest and complementary malicious applications exhibit relatively
consistent levels of CPU consumption, regardless of the changes made to the input video. However,
the orthogonal malicious application reflects a significant increase in CPU consumption for the base
case, which is then further exacerbated by the stress test to almost twice the original consumption
level during the sensitive input phase.

Impacts to the display frame rate for the two stress tests are shown in Figures 13c and 13d. Here,
we observe that the honest and orthogonal malicious applications maintain relatively consistent
display frame rates, regardless of input changes. However, the complementary malicious application
experiences a sharp decrease in frame rate during the expected input phase. This effect is further
magnified during the corresponding stress test, where the frame drops to one-half of the original
levels during the same phase.
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(a) Two-sample T-test (b) Two-sample KS-Test

Fig. 14. Accuracy of statistical analysis for adversarial applications with a p-value threshold of 5%, where the
results of each cell are the percentage of honest / malicious samples that received a given prediction.

Honest App Malicious App
Neutral ≡ Sensitive Neutral . Sensitive
Neutral . Expected Neutral . Expected
Expected . Sensitive Expected . Sensitive

Table 4. Comparison of hypotheses for various apps

6.2.2 Statistical Analysis. Our second approach was to compare behavior of an application between
the different input phases. We utilized a statistical approach to check whether the CPU distributions
for the various categories of input are the same or different according to the intuition described
above, that is, that an honest application will consume “neutral” levels of resources when processing
sensitive inputs, while a malicious application will consume more. The expected comparison results
are summarized in Table 4, where the malicious application is characterized by a significant
difference in resource consumption between neutral and sensitive inputs.
We utilized two homogeneity tests to test this approach: two-sample Student’s T-test (T-test),

and two-sample Kolmogorov–Smirnov test (KS-Test). These tests mainly are used to determine
whether two populations have different means. The two-sample T-test tries to find whether the
means of two distributions can be similar within a margin of error depending on the distribution
of both those populations. We are assuming both populations (CPU value measurements at two
sections of the video) have equal variance; hence we use the independent (or unpaired) T-test.
We also assume that the CPU values are distributed as normal, around a stable CPU value with
fluctuations around some mean for each segment. The two-sample KS-Test tries to find whether the
two populations have a different distribution as well as a different mean. If the difference is above
a certain threshold, we say that the populations are not from the same distribution. In the case
where both populations have different distributions but similar means, the KS-test will say that
they are different distributions. Compared to this, the T-test can only detect difference of mean of
the populations, not the difference in distribution of samples.
Next, we conducted our analysis by first aggregating the sets of five trials for each application

processing each input video, for a total of twelve sets. The CPU consumption for each set was
averaged and smoothed using an exponentially weighted moving average. The T-test and KS-test
were then performed for each pair of input phases reflected in Table 4; the application was marked
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A1 A2 A3
Neut. Exp. Sens. Neut. Exp. Sens. Neut. Exp. Sens.

Precision 0.19 0.29 0.54 0.87 0.56 0.65 0.62 0.62 1.00
Recall 0.25 0.30 0.35 0.65 0.70 0.65 0.40 1.00 0.74
F-Score 0.22 0.29 0.42 0.74 0.62 0.65 0.48 0.77 0.85
Accuracy 0.30 0.67 0.71

Table 5. K-Means classification results for adversarial applications.

as “malicious” if we observed that the three populations were not statistically homogeneous as
evidenced by a low p-value (below the 0.05 threshold).
The results of our statistical analysis are shown in Figure 14. Both approaches demonstrated

significant success in identifying the honest applications, and moderate success in identifying
malicious applications. The most correctly-identified adversarial application was the orthogonal
malicious version which performed text recognition on all frames, regardless of the presence of
faces. In this respect, both approaches were able to identify three out of four orthogonal malicious
traces, compared to two out of four complementary malicious traces.

6.2.3 Clustering. Our final experiment seeks to understand whether resource consumption traces
can be grouped based on the type of input being processed. To do this, we used a clustering
technique. Clustering is based on unsupervised learning, and is used to partition data into groups
(“clusters”) depending on the similarity between data. Our intuition in this case was that the
resource consumption for each “phase” of testing (e.g. when the app is processing neutral, expected,
or sensitive inputs) would be sufficiently different for an algorithm to assign a given reading to one
of these three known groups. For this evaluation, we used the “worst case” traces (described in
Table 3) as these reflected the most dramatic differences in resource consumption by phase.

We used the resource consumption data collected from the various applications during runtime
(specifically CPU and RAM) and applied the K-Means algorithm. K-means is one of themost common
clustering algorithms provided by the machine learning library Scikit-Learn [64], and is an iterative
algorithm that aims to partition data into 𝑘 clusters. K-means clustering is a vector quantization
algorithm, and as such, does not require training as neural networks do. Instead, we manually
configured the number of expected clusters (k=3) to reflect the groups of neutral, expected, and
sensitive inputs, and let the algorithm decide how best to assign the data points. The types of
inputs were pre-selected based on the publicly advertised functionality of the application, and
resulted in roughly the same number of collected readings per app; since the focus of this paper
is on assisting researchers and commercial entities such as application marketplace providers to
more effectively test applications such as this, we judge that these are reasonable test conditions.
The results of our clustering efforts are reflected in Figure 15. The ground truth resource con-

sumption plots for the different adversarial applications are shown in Figures 15a, 15b, and 15c. The
results of our algorithm’s efforts in assigning those data points to clusters are shown in Figures 15d,
15e, and 15f. The overall accuracy of these clusters is summarized in Table 5, where the highest
accuracy of cluster assignment (71%) is demonstrated by the orthogonal malicious application (A3).

6.3 Evaluating Commercial Applications
Our second round of evaluations considered a group of commercially available third-party applica-
tions. Three applications were selected that explicitly exhibit facial recognition: Instagram [76],
Snapchat [78], and SweetCam [79]. These applications were selected due to their popularity (over 1
billion downloads for both Instagram and Snapchat, and over 100 million downloads for SweetCam)
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(a) A1 - Ground Truth (b) A2 - Ground Truth (c) A3 - Ground Truth

(d) A1 - Predicted Clusters (e) A2 - Predicted Clusters (f) A3 - Predicted Clusters

Fig. 15. K-Means clusters for adversarial applications when recognizing different classes of inputs. Cluster
predictions were made using an out-of-the-box instance of SKLearn’s K-means clustering algorithm for three
clusters built around 10 randomly selected candidate centroid seeds.

and high reviews (3.8 stars with 120 million reviews for Instagram, 4.3 stars with 26 million reviews
for Snapchat, and 4.4 stars with 930 thousand reviews for SweetCam).While we don’t believe
any of these applications to be malicious, we do expect them to adhere to the behavioral
patterns described in Figure 12, where there are noticeable changes to resource consumption
patterns when the application is processing an expected target, compared to “baseline” levels of
consumption for both neutral and sensitive inputs.
The test conditions were the same for the commercial applications as the adversarial applica-

tions. Four input videos were used (Table 3) to cover the baseline (denoted as “noise-faces-signs”
(NFS)), worst case (denoted as “noise-group-wiki” (NGW)), and stress test conditions (denoted as
“noise-group-signs” (NGS) for faces and “noise-faces-wiki” (NFW) for text). Each application was
configured to place a dog overlay (e.g. ears and nose) onto a person’s face when recognized. The
applications were run on a smartphone positioned in a dock in front of a computer screen playing
the input video in order to test the full camera pipeline. The smartphone was connected to the
computer through a hardline, which collected resource consumption traces. CPU and memory
consumption were tracked; display framerate was not trackable without either modifying the
original application or significant instrumentation to the device. Results were averaged across five
trials for each application processing each input video (n=20 trials per app).

6.3.1 Conformant Resource Consumption. Figure 16 shows the runtime resource consumption
of two of our commercial applications: Instagram and Snapchat. Regardless of test condition,
both applications show relatively stable CPU consumption during the neutral and sensitive
phases of testing (first third and final third respectively), but show different patterns during the
expected phase (middle third) when the video was displaying faces (memory consumption showed
no response to inputs and so was not included in the figure). While Snapchat exhibits exactly
the expected behavior, Instagram actually drops slightly in CPU consumption during this phase.
Our intuition is that the internal logic for tracking an already-recognized face and placing the
selected overlay was a comparatively lightweight function compared to scanning and detecting
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(a) Instagram CPU Consumption (b) Snapchat CPU Consumption

Fig. 16. Resource consumption for commercial apps that conforms to our intuition.

(a) SweetCam CPU Consumption

Fig. 17. Inconclusive resource consumption for commercial app

faces in the first place. Instagram also consumed a mostly consistent amount of memory over time,
while Snapchat increased memory consumption during the expected phase, but released it during
the sensitive phase once faces were no longer detected. Regardless, both applications exhibit a
noticeable difference in resource consumption during the expected input phase.

6.3.2 Inconclusive Resource Consumption. Contrary to the first two apps, the third commercial
application-under-test did not exhibit the expected behavior. Figure 17 shows the runtime resource
consumption for SweetCam, where there was no noticeable change in resource consumption during
the expected input phase. Indeed, CPU consumption remained consistently high regardless of
the test condition. Our intuition in this scenario is that the application is continually performing
face recognition or other resource-intensive operations on every frame, regardless of what was
previously recognized.

6.4 Results Summary
Given the proposed system described in Section 5, application marketplace publishers will have
access to additional knowledge of what runtime operations a given AR application is supposed to
be performing. In this section, we presented examples of how this knowledge can be leveraged to
instigate noticeable behavioral changes during runtime in malicious applications. For the malicious
prototypes, we were able to induce visible spikes in the resource consumption traces through stress
testing of recognized target density, and classify the honest / dishonest nature of a given application

ACM Trans. Priv. Sec., Vol. AA, No. B, Article CCC. Publication date: August YYYY.



Hidden in Plain Sight: Exploring Privacy Risks of Mobile Augmented Reality Applications CCC:29

with relative accuracy using both statistical analysis and K-means clustering (62.5% and 67-71%
respectively). Based on the results for the prototypes with known hidden operations (A2 and A3),
we conclude that the additional meta-data provided by our proposed system shows promise
in assisting with testing efforts when differentiating between honest and dishonest AR
applications.
An interesting observation is that the tests conducted above demonstrated varying levels of

success in identifying the malicious applications, depending on the type of hidden operation being
conducted. The hidden operations of the complementary malicious application were more visible in
runtime monitoring of the display frame rate; the hidden operations of the orthogonal malicious
application were more visible in the CPU traces. Both applications responded to stress testing to
induce runtime resource consumption spikes, and displayed success in both detection by statistical
analysis and K-means clustering. While the base prototype (A1) did not present observable changes
in runtime behavior and scored lowest of the three in K-means clustering, we do not consider this
to be problematic. An application which consumes consistent amounts of resources regardless
of input (such as the commercial application, SweetCam) can be flagged for additional testing
specifically because of its resistance to change.

A final observation is that, when applying our intuition to commercial applications, the expected
behavior changes were not observed for all of the tested apps; some applications exhibited notice-
able change to runtime behavior in response to different inputs, while others did not. While the
commercial applications are presumed honest, the heterogeneity of runtime behavior patterns both
supports our intuition and encourages future study on those applications which exhibit inconclusive
patterns. Based on these results, and the varied success of the detection methods for the malicious
prototypes, we can conclude that no single test is a catch-all solution; a variety of testing
strategies must be incorporated to detect hidden operations in AR. The best approach for
this remains an open problem. In the next section, we discuss the limitations of our proposed design,
and explore open problems for future research.

7 OPEN PROBLEMS
Our proposed solution assumes that there is a pre-existing list of known privacy sensitive inputs to
use during runtime. While developers can certainly create such a list for their own use, to the best of
our knowledge, there are no widely acceptable datasets of communally-approved privacy sensitive
images. There are also no widely used conventions for describing the contents of the datasets used
to train AR models, of quantifying the quality of a dataset in representing a category of inputs.
Based on these limitations, we have identified two main open areas for future explorations.

7.1 Industrial Conventions, Standards for Privacy in Camera-based Systems
The success of the system proposed above depends on themobile andmachine learning communities
coming together to develop standards and conventions for dealing with privacy problems in mobile
AR and other camera-based systems. Here, we present a number of open problems in this area.

• Ontology of AR Capabilities: There currently exists no standardized way to describe the
capabilities of an AR library, custom vision model, or similar system. Further, there is no
standardized way of measuring or representing the corresponding privacy sensitivity or
security threat level associated with these capabilities. Thus, developing and standardizing
such an ontology of vision-based capabilities and their associated privacy implications
remains an open problem. Inspiration can be taken from such models as LINDDUN [20] and
LINDDUN GO [94], with particular focus on elicitation and mitigation strategies for threats
such as Information Disclosure, Content Unawareness, and Policy / Consent Non-compliance.
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• Improved Understanding of End-User Preferences, Context-sensitivity:As we develop
the ontology of vision-based capabilities, we must also improve our understanding of end-
user privacy preferences for these capabilities, and the associated contexts under which a
capability would be considered privacy-sensitive or not. Some prior work has been done
in this area [13, 41], but not, to our knowledge, as it relates to the context-sensitivity of
individual capabilities of vision-enabled systems. The personal and context-sensitive nature of
user privacy preferences is well-documented [90, 91, 99], as are the challenges experienced by
users in interpreting and understanding the nature of mobile systems’ permissions requests
[65, 90], but exactly how users’ preferences on the application of background operations in
mobile AR change over time remains unknown.

• Improved Permissions Structures for Mobile App Development: Finally, improving
the permissions structures of mobile operating systems as they relate to machine learning
and computer vision operations remains an open problem. The ontology of vision-based
capabilities, their associated threat levels, and the corresponding usage contexts must be
translated into a format that is compatible with mobile application development. However,
asking for permission on application install or a function’s first use does not take the changing
nature of future usage contexts into account, while asking for permission every time the
function is used quickly leads to notification fatigue [90, 91, 99]. Therefore, context-aware
access control methods that move beyond simply requesting at install time should be explored,
as well as methods for communicating to end-users how a particular capability is being used
during runtime.

7.2 Improving Software Testing Methods for Mobile AR
As observed previously, some tests are better suited to detecting different kinds of hidden operations
over others. Even within the same application, performance and behavior can change, depending
on the type of input being provided. Using the CPU and memory data traces collected from
the commercial applications in Section 6.3, we applied the K-means clustering approach from
Section 6.2.3 to see if the applications which demonstrated conformant behavior also responded
well to clustering. Table 6 summarizes the results. The accuracy for assigning data points to the
appropriate clusters (e.g. neutral, expected, sensitive) was understandably much lower for Instagram
and SweetCam than for the malicious prototypes, as these apps exhibited relatively consistent
resource consumption, regardless of the input condition. However, Snapchat, which exhibited
the most promising resource consumption trends during runtime, failed utterly during clustering,
with an accuracy of only 5%. Our intuition in this case is that, while the application exhibited the
expected behavior for expected inputs when looking at the CPU trace on its own, minor lags in
either the application’s response to an input phase change or the trace collection script in logging
those changes were enough to throw off the clustering assignments.
It should be emphasized that the goal of this paper is not to propose a single one-size-fits-all

solution; rather, we have identified a range of application behaviors and identified approaches that
show promise in identifying different patterns. There remains, however, much work to be done
in improving these processes. Here we present a number of open problems related to improving
software testing methods, given the unique nature of mobile augmented reality systems and their
runtime behaviors.

• Input Selection: It is impossible to achieve 100% input coverage with a vision-based system
[8, 15]. Therefore, selecting a particular subset of inputs that can reliably determine the
honest or malicious nature of a given mobile AR application remains an open problem. The
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Instagram Snapchat SweetCam
Neut. Exp. Sens. Neut. Exp. Sens. Neut. Exp. Sens.

Precision 0.27 0.73 0.00 0.00 0.04 0.10 1.00 0.14 1.45
Recall 0.35 0.95 0.00 0.00 0.05 0.11 0.15 0.10 1.00
F-Score 0.30 0.83 0.00 0.00 0.05 0.10 0.26 0.12 0.62
Accuracy 0.45 0.05 0.41

Table 6. K-Means clustering results for CPU-memory consumption of commercial applications

impact of the order of selected inputs as well as the transfer-ability of input sets between
similar applications should also be explored.

• Test Case Selection: Because various testing approaches have exhibited different levels
of success in identifying different types of hidden operations, the selection of which test
cases to execute against a given application remains an open problem. This is particularly
important as we cannot assume the presence of a baseline ‘honest’ version of an application
against which to compare. The efficacy of stress testing in order to trigger anomalies and
system responses to inter- and intra-class inputs can also be explored.

• Result Verification: Finally, once inputs have been selected and the test cases have been ex-
ecuted, reliably interpreting the results remains an open problem. Failure to induce a resource
consumption spike during runtime does not preclude the presence of hidden operations; the
behavior could be the result of an honest application, a malicious application with highly
effective obfuscation logic, or simply picking the wrong inputs. Therefore, better methods of
verifying the results of such test instances should be explored.

8 CONCLUSIONS
In this paper, we have presented the hidden operations privacy threat for mobile AR systems, a
scenario in which a malicious developer executes additional hidden vision operations behind the
scenes of an otherwise honest mobile AR application without alerting the end-user. We presented
the risks involved in this scenario as a result of the capabilities of commercially available AR and
vision libraries, and presented our proposed system for mitigating these risks. We also conducted a
series of experiments to determine whether the proposed system shows promise in assisting with
AR system testing efforts. In the future, we would like to explore the classification of permissions
and system capabilities as they relate to privacy-sensitive functions of AR libraries and custom
vision models.
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