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Gracker: A Graph-based Planar Object Tracker
Tao Wang and Haibin Ling

Abstract—Matching-based algorithms have been commonly used in planar object tracking. They often model a planar object as a set
of keypoints, and then find correspondences between keypoint sets via descriptor matching. In previous work, unary constraints on
appearances or locations are usually used to guide the matching. However, these approaches rarely utilize structure information of the
object, and are thus suffering from various perturbation factors. In this paper, we proposed a graph-based tracker, named Gracker,
which is able to fully explore the structure information of the object to enhance tracking performance. We model a planar object as a
graph, instead of a simple collection of keypoints, to represent its structure. Then, we reformulate tracking as a sequential graph
matching process, which establishes keypoint correspondence in a geometric graph matching manner. For evaluation, we compare the
proposed Gracker with state-of-the-art planar object trackers on three benchmark datasets: two public ones and a newly collected one.
Experimental results show that Gracker achieves robust tracking results against various environmental variations, and outperforms
other algorithms in general on the datasets.

Index Terms—visual tracking, keypoint, graph matching, pose estimation.
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1 INTRODUCTION

V ISUAL object tracking is among the core problems of com-
puter vision, with wide-ranging applications such as aug-

mented reality and robotics. In this work, we address the problem
of tracking a planar object in an accurate and robust manner, with
arbitrary motion and no prior knowledge other than its position
in the first video frame. Despite tremendous amount of researches
on this topic, robust, accurate and efficient pose tracking remains
challenging due to challenging environmental variations.

Popular approaches to planar object tracking can be roughly
classified as template-based approaches (e.g., [3], [14], [22], [34],
[35]) or keypoint-based ones (e.g., [6], [20], [24], [37]). Template-
based approaches directly use the appearance of the pixels without
extracting features, and optimize a similarity measure between
a template and a captured image, based on the Newton method
or its variants, to determine the pose of the plane. This type
of approaches usually suffer from perturbation factors such as
illumination changes, partial occlusions and fast motions.

Keypoint-based approaches have attracted much attention
during the last decade, due to their invariance against various
perturbation factors including rotation, scaling and viewpoint
change [36]. Moreover, they are naturally suited to handle partial
occlusions as partial matches between points are sufficient for
most tracking scenarios. These approaches use descriptors [4], [8],
[31], [33] to store a signature for each keypoint of the object,
which are designed to be invariant to various geometric and
photometric transformations. These descriptors are then matched,
usually in a nearest-neighbour fashion.

Though keypoint-based approaches have been widely used in
planar object tracking, they are still facing two main challenges.
First, recent studies revealed that focusing only on the object
features without considering their structures does not ensure the
robustness in real-world applications [48], [50]. The presentation
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of the object structure plays an important role in order to provide
robust and accurate solutions. As the object of interest is unknown
beforehand, it is hard to learn offline object appearance and struc-
ture. Instead, online learning algorithms have been employed [2],
[18], [20] to dynamically build the appearance and structure model
of the object. In practice, however, online model updating often
introduces errors, as there are no faithful class labels available.
Second, most existing keypoint-based approaches rely heavily on
keypoint detection, and are thus fail to provide reasonable results
in the cases of difficult illumination conditions and motion blur,
where reliable keypoints are hard to be detected.

In this paper, we propose a novel graph-based tracker, named
Gracker, to address the issues discussed above for improving
tracking performance. Specifically, we adopt graphs to model pla-
nar objects, with graph vertices generated via a reliable automatic
selection rather than conventional DoG-based detectors [33]. This
selection mechanism makes graph structures stable and hence
the approach robust against some dramatic environmental varia-
tions such as extreme illumination conditions and motion blur.
Furthermore, we incorporate feature correspondence and pose
estimation into a unified geometric graph matching framework.
Pairwise constraints in graphs allow us to encode comprehensive
information which results in robust and accurate solutions against
various geometric and photometric transformations.

For a thorough evaluation, we test the proposed approach
on three datasets: the University of California, Santa Barbara
(UCSB) benchmark [17], the tracking manipulation tasks (TMT)
benchmark [41], and a compiled dataset for fast motion. Expe-
rimental results show that the proposed algorithm significantly
improves the tracking accuracy and outperforms state-of-the-art
tracking algorithms in comparison on almost all video categories.
In particular, the proposed approach achieves much higher robust-
ness in the case of fast motion where traditional keypoint-based
approaches fail to produce reliable tracking results.

In summary, our main contribution lies in the new graph-
based tracker for planar object tracking in three aspects: (1) we
introduce graph model and graph matching manner into planar
object tracking; (2) we design a novel strategy for predicting both
object pose and point matching, and integrate the strategy for
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searching optimal solution; and (3) we construct a new real world
dataset with annotation for evaluating visual tracking algorithms
in the context of fast motion. The source code of the proposed
algorithm is shared at http://www.dabi.temple.edu/∼hbling/code/
Gracker/gracker.htm.

In the rest of the paper, we summarize related work in Sec. 2
and review matching-based pose tracking in Sec. 3. Then, we
introduce the proposed Gracker algorithm in Sec. 4 and discuss
related optimization in Sec. 5. After that, we present experimental
validation in Sec. 6 and draw conclusions in Sec. 7.

2 RELATED WORK

Visual object tracking has been investigated for several decades,
classical early work dates back to the LK algorithm [34] for 2D
template tracking and the ICP algorithm [5] for 3D object tracking.
Thoroughly reviewing all visual object tracking papers is beyond
the scope of this paper, in the following we sample some related
ones that inspire our study on planar object tracking.

Keypoint-based tracking is a popular strategy for planar object
tracking [19], [20], [25], [37], [42], [46]. Such algorithms gene-
rally have three stages: (1) detecting keypoints and storing their
descriptors, (2) establishing keypoint correspondences between
an object model and an input image, and (3) estimating the
transformation of the object in the image using a robust geome-
tric verification method based on hypotheses generated from the
correspondences (e.g. RANSAC and its variants [12], [45]).

It is nontrivial to capture local appearance change by a global
model, and models that decompose the object into parts are
more robust to nuisances. Many approaches [1], [23], [38], [52]
employ axis-aligned rectangular regions for extracting features of
the object and its parts. Being computationally convenient, these
methods may be sensitive to changes in scale and rotation. By
contrast, keypoints and descriptors (e.g. SIFT [33]) are designed to
be robust for such factors, and are therefore ideal for a parts-based
model. Recently, the advent of extremely fast keypoint detectors
and binary descriptors [31], [40] has dramatically reduced the
computational burden of detecting and matching corresponding
keypoints, allowing for their use in real-time systems. There
are two main ways to establish the keypoint correspondence
in visual tracking: matching and classification. Matching-based
approaches [6], [37] relate keypoints by a suitable distance metric
to keypoints in a nearest-neighbour fashion. Classification-based
approaches [30], [39] treat matching as multi-class classification,
in which each keypoint is classified as either background or a
particular keypoint from the model.

Studies have shown that utilizing only local features can not
ensure tracking robustness in real world applications [50]. Some
recent efforts focus on exploring the object structure to improve
the tracking performance. In [48], it is proposed to track multiple
auxiliary objects defined as the spatial context. These auxiliary
objects have consistent motion correlation with the tracked target
and thus help to avoid the drifting problem. However, finding the
motion correlation between the target and surrounding objects is a
costly task that often requires analyzing the whole image in every
frame. The Structure-Aware Tracker (SAT) [6] incorporates the
internal structural information of the target, but not the structural
layout of different scene elements. In this work, the author
shows that the structural information of the target, encoded by
the keypoint spatial layout, allows achieving accurate tracking
and handling partial occlusion by inferring the position of the

target using the visible keypoints. Aside from the static models,
online learning algorithms have been employed [2], [18], [20] to
dynamically update the structure model of the object. In practice,
however, online updating may introduce errors due to the lack of
hard class labels.

Alternative to the above mentioned keypoint-based ap-
proaches, learning-based ones appear to be robust to environmen-
tal perturbations. Sampled recent studies include [43] that adopts
random forests to learn the relation between the motion parameters
and the changes on the image intensities; and [27] that formulates
the template-based visual tracking problem as a particle filtering
problem on the matrix Lie group. In addition, some recent trackers
designed for generic object tracking (e.g. graph-based [7], [44],
correlation-based [13], [21] and flock-based [9]) have shown state-
of-the-art performance on standard tracking benchmarks, but may
meet problems for accurate pose (planar object) tracking.

The proposed Gracker shares with the above algorithms the
use of context to assist tracking, but differs in context modeling
(i.e., with graph matching) and application (i.e., for planar object
tracking). In particular, our work falls into the group of structure-
aware tracking, with improvement in two-fold: (1) keypoint cor-
respondence with pairwise constraints via graph matching, and (2)
a new strategy for predicting both object pose and keypoint cor-
respondence when searching the optimal solution. Our work aims
to provide robust and accurate tracking for planar objects, and the
excellent experimental results clearly validate its advantage.

3 MATCHING-BASED TRACKING

3.1 Problem statement

Given a sequence of images I1, . . . , Im , and a planar object of
interest R (in the form of a patch in I1), pose tracking aims
to acquire the pose of the object in the following frames, or
to report the object missing when it is invisible. The relative
motion between the object and the camera induces changes in
the position of the object in the image. We assume that these
transformations can be modeled by a geometric transformation
τ(·) : Rd → Rd parameterized by T . For 2-D transformation,
τ(·) is usually defined as affine transformation. Considering six
degrees of freedom (6DOF) pose tracking of planar objects,
perspective transformation is an appropriate choice.

We formulate the object as a set of m local parts1 TM =
{pMi |1 ≤ i ≤ m}. For simplicity, we abuse the notation pMi to
denote its location. A popular way to track the individual parts is
with Maximum a Posterior (MAP) estimation. Alternatively, we
view the tracking of individual parts as a matching problem after
obtaining the set of parts T t = {pti|1 ≤ i ≤ n} from current
frame It via part (keypoint) extraction. It is common to represent
the correspondence by an assignment matrix X ∈ {0, 1}m×n,
where Xi,j = 1 if and only if the i-th part pMi in the object model
corresponds to j-th part ptj in the current frame. Then, the optimal
matching result can be obtained by finding optimal X∗ and τ∗

that maximize a score function E(X, τ):

(X∗, τ∗) = argmax
X,τ
E(X, τ),

s.t. X1n ≤ 1m, X
T1m ≤ 1n,

(1)

where 1n denotes a column vector of n ones. The constrains
guarantee that each part can be matched at most once.

1. In this paper, we treat “parts” and “keypoints” interchangeably.

http://www.dabi.temple.edu/~hbling/code/Gracker/gracker.htm
http://www.dabi.temple.edu/~hbling/code/Gracker/gracker.htm


ACCEPTED BY IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

3.2 Typical solutions based on unary constraints
To achieve robust and accurate matching, E(X, τ) usually encodes
unary appearance or geometric consistences between local parts

(X∗, τ∗) = argmax
X,τ
E(X, τ) =

∑
i,j

Xi,jsτ (i, j), (2)

where sτ (·, ·) is the similarity function between local parts.
A classic example is the iterative closest point (ICP) algo-

rithm [5] that specifies the similarity function as localization
distance sτ (i, j) = −‖τ(piM) − pjt‖22. In general, the joint
optimization over X and τ is non-convex with no known closed-
form solution. Typically, the optimization is solved separately
by first acquiring the optimal part correspondences X∗ using
local features and then computing the optimal transformation τ∗

using a robust geometric verification method based on generated
correspondences (e.g. RANSAC and its variants [12], [45]).

For unary appearance information, the similarity function
is specified to indicate the photometric similarity sτ (i, j) =
−‖f iM − f

j
t ‖22, where fM

i and f ta are photometric descriptors of
the corresponding parts.

Although a tracking result can be obtained by using the
unary constraints only, such result is often unreliable because
unary information, either appearance or location, lacks structure
information and is vulnerable to various geometric and photo-
metric transformations. In this paper, we reformulate the matching
between local parts in a graph matching framework. Consequently,
our solution produces robust and accurate tracking results by
incorporating structure information into pairwise constraints.

4 THE PROPOSED GRAPH-BASED TRACKER

In this section, we propose a graph-based object tracking frame-
work that integrates the pairwise mutual relation between local
parts and views part-based object tracking as graph matching
problem. In this framework, the appearance and internal structure
of the target can be well integrated. Instead of representing the
target as the collection of local parts or star model, we represent
the target as an undirected graph. Given the model graph GM and
the candidate graph Gt of frame t, our goal is to find the optimal
correspondence between them, and to determine the optimal target
state based on the correspondence results.

4.1 Graph construction
An undirected graph of n vertices can be represented by
G = (V,E), where V = {v1, . . . , vn} and E ⊆ V× V denote the
vertex and edge sets, respectively. A graph is often conveniently
represented by a symmetric adjacency matrix A ∈ Rn×n, such
that Ai,j > 0 if and only if there is an edge between vi and vj .

Given the initial region R of the object of interest in the
first frame I1, we construct a model graph GM for the object
as follows.

Vertex generation. We extract keypoints from the frame to
represent local parts and model them as vertices to build the graph.
A classical way is to get the keypoints as local minima/maxima
of the DoG images across scales [33], i.e., SIFT. However, the
number of such keypoints varies depending on the detectors and
frame content. In addition, SIFT may be sensitive to some types of
environmental variations, such as illumination changes and motion
blurs, and thus harm the tracking accuracy.

In this paper, we adopt a more robust method to extract
keypoints. We first compute the SIFT response for each pixel

in R. Subsequently, we divide R evenly into N grids, and then
select one keypoint with maximum response from each grid. We
model selected keypoints as graph vertices, and compute SIFT
descriptors of these keypoints as vertex attributes.

Edge generation. There are several popular methods for
edge construction, such as the ε-neighborhood graph, the k-
nearest neighbor graph, and the fully connected graph. The fully
connected graph contains substantial structure information, but it
costs too much storage space and computational time and is thus
not suitable for real-time applications. The ε-neighborhood graph
varies depending on the selected parameter ε and suffers from
the scale changes of the object. In this paper, we adopt Delaunay
triangulation [28] to build graph edges because it is invariant to
translation, scaling and rotation. Although the edges generated
by Delaunay triangulation are highly dependent on results of the
feature extraction, the constructed graph structures are reasonably
stable across frames because we always extract N keypoints from
N evenly divided grids.

For each incoming frame t, we construct a candidate graph Gt

using the same way, and then formulate the matching problem in
a graph matching framework.

4.2 Geometric graph matching
We first review the problem in a graph matching view to incorpo-
rate pairwise consistences between matches.

For graph matching, given the model graph GM = (VM,EM)
and the candidate graph Gt = (Vt,Et) of size N , the problem
is to find a vertex correspondence X ∈ {0, 1}N×N between GM

and Gt maximize the following global consistency:

EG(X) =
∑
i,a

ci,aXi,a +
∑
i,j,a,b

di,j,a,bXi,aXj,b, (3)

where ci,a measures the consistency between the i-th vertex in GM

and the a-th vertex in Gt, and di,j,a,b the consistency between
edge (i, j) in GM and edge (a, b) in Gt. The correspondence
matrix X denotes matching result, i.e., Xi,a = 1 if and only if
vi ∈ VM corresponds to va ∈ Vt.

Eq. (3) is often formulated in a pairwise compatibility form

x∗ = argmax
x
EG(x) = x>Kx, (4)

where x .
= vec(X) ∈ {0, 1}N2

is the vectorized version of matrix
X and K ∈ RN

2×N2

is the corresponding affinity matrix:

Kind(i,a),ind(j,b) =


ci,a if i = j and a = b,
di,j,a,b if AM

i,jA
t
a,b > 0,

0 otherwise.
(5)

where AM and At are adjacency matrices of GM and Gt respec-
tively, (i, a) denotes a candidate match from vertex vM

i ∈ VM to
vertex vta ∈ Vt for simplicity, and ind(·) is a bijection that maps
a vertex correspondence to an integer index.

For the general graph matching problem, the transformation
between two sets of vertices is not considered due to lacks of prior
knowledge. As for the object tracking task, we are able to take
advantage of transformation information gained from previous
frames to guide the matching problem. In this paper, we propose
a geometric graph matching (GGM) framework to incorporate
transformation cues into graph matching manner. Inspired by the
deformable graph matching (DGM) algorithm presented in [53],
the proposed GGM framework combines feature matching and
transformation estimation into a single unified framework. The
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main differences between DGM and the proposed GGM lie in
the different objective functions and subsequent optimizations for
both correspondence and transformation.

The score function in Eq. (4) is extended to measure pairwise
consistences between matches under transformations as

(x∗, τ∗) = argmax
x,τ
EGRA(x, τ) = x>K(τ)x, (6)

where K(τ) ∈ RN
2×N2

is the pairwise affinity matrix under
given transformation τ . To incorporate both photometric and
geometric constraints, we define the affinity matrix K(τ) as

Kind(i,a),ind(j,b)(τ) =


cos(fM

i , f
t
a) if i = j and a = b,

di,j,a,b(τ) if AM
i,jA

t
a,b > 0,

0 otherwise.
(7)

where fM
i and f ta are photometric descriptors of the vertices,

cos(·, ·) is the vector cosine of two vectors, di,j,a,b(τ), as defined
by (8), is the consistency between edge (i, j) in GM and edge
(a, b) in Gt under transformation τ :

di,j,a,b(τ) = ω − ‖(τ(pM
i )− τ(pM

j ))− (pta − ptb)‖2, (8)

in which ω is chosen to be sufficiently large to ensure that the
pairwise affinity is greater than zero. When the two matches (i, a)
and (j, b) indicates the same one, the corresponding entry records
the photometric similarity between vertices. Otherwise, the entry
encodes the geometric consistence between edges.

After optimization for Eq. (6), we obtain the optimal matching
x∗ as well as the optimal transformation τ∗. Due to the non-convex
nature of the objective function, no closed-form solution of this
problem is known. We discuss the optimization of this problem in
details in Sec. 5.

4.3 Candidate matches filtering
In graph construction, we extract N keypoints as vertices for each
graph. There are totally N2 candidate matches between vertices
of the model graph GM and the candidate graph Gt. The size of
the affinity matrix K(τ) is, therefore, as large as N4. Although
we use Delaunay triangulation to reduce graph edges and make
the affinity matrix K(τ) sparse, the number of total candidate
matches and the size of K(τ) remain huge. Too many entries in
the affinity matrix K(τ) lead to high costs in not only storage
space but also computational time.

We propose to further reduce the size of K(τ) by filtering
candidate matches under a reasonable continuity assumption that
forbids any leap of matches between consecutive frames. For an
incoming frame t, we construct a candidate matches set for each
vertex vM

i ∈ VM applying geometric and photometric constaints

Cti = {(i, a) | ‖pta−τt−1(pM
i )‖2 ≤ εg, cos(f

M
i , f

t
a) ≥ εa}, (9)

where εg and εa are tolerances of geometric and appearance
changes respectively. The geometric tolerance εg is set to be the
radius of the object region at the previous frame. The appearance
tolerance εa is initialized to 0.6, and then adapted per frame
according to the appearance similarity between matched vertex
pairs as

εa = (1− ρ)εa + ρ
1

N

∑
i,a

cos(fM
i , f

t
a)Xi,a, (10)

where X the final acquired assignment matrix, and ρ = 0.2 a
pre-defined learning rate.

To reduce computational time of the subsequent procedure
of graph matching, we remove redundant matches from Cti and
remain at most nc matches with maximum appearance similarity.
The final set of candidate matches is constructed by combining the
sets for all vertices Ct = ∪iCti . After constructing the candidate
match set Ct, we condense the affinity matrix K(τ) by removing
the corresponding row and column for each match (i, a) /∈ Ct.
The size of the affinity matrix K(τ) is thus reduced to n2cN

2 at
most. We set nc = 5 throughout our experiments.

5 OPTIMIZATION

Since optimizing Eq. 6 jointly over x and τ is non-convex, we
optimize this geometric graph matching problem by alternatively
solving the matching x and the transformation τ . As illustrated
in Fig. 1, our approach falls into the prediction and refinement
framework. After graph construction and match filtering for the
incoming frame, we first predict x and τ using the solutions from
previous frames, and then refine them by alternatively optimizing
one of them while fixing the other one. The refinement is iterated
until convergence or maximum iterations reached.

5.1 Pose prediction
We need to predict the motion parameters τt+1 at time t + 1
after τt has been acquired. A simple way of the prediction is to
initialize τt+1 = τt, which is effective for slow motion but it fails
in presence of fast motions.

In this paper, we adopt a more precise way to linearize the
problem by expanding τt+1 in a Taylor series

τt+1 = τt +∇τt + h.o.t., (11)

where ∇τt denotes the magnitude of τ at time t, and h.o.t. are
the high order terms of the expansion that can be neglected. We
approximate ∇τi = τi+1 − τi for each time i(1 ≤ i < t), and
then estimate∇τt = 1

k

∑k
i=1∇τt−i, where k controls the sliding

window for prediction. We set k = 5 throughout our experiments.

5.2 Graph matching with prediction
Given a fixed transformation function τ , the geometric graph
matching problem is equivalent to the traditional graph matching
problem. Since graph matching is in nature a combinatorial
problem and there is no known efficient algorithm for global
optimum, a common way is to search for approximate solutions
under relaxed conditions or constraints. There are a large number
of literatures dedicated to this problem [16], some examples
include [11], [29], [32], [47], [51]. Among these algorithms,
the reweighted random walks for graph matching (RRWM) al-
gorithm [11] achieves an excellent balance between matching
accuracy and computational efficiency. While we choose RRWM
as a component in our tracker, other graph matching algorithms
may also be used.
Reweighted Random Walks for Graph Matching (RRWM).
RRWM introduces an association graph constructed with nodes as
candidate correspondences and edges as pairwise compatibilities
between candidate correspondences. The authors cast the search
for correspondences between two given graphs as a node ranking
and selection problem in the association graph, and introduce
an affinity-preserving random walk algorithm to drive the node
ranking based on its quasi-stationary distribution. This algorithm
is shown to be closely related to [29] for the integer quadratic
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Fig. 1. The framework for the proposed Gracker algorithm.

programming (IQP) problem, where one main difference lies that
the probability distribution is updated by adopting the jump as

x(n+1) = (1− α)Px(n) + αr, (12)

where x(n) denotes the probability distribution at time n of
the association graph, P its transition matrix, r the reweighting
jump vector toward the matching constraints, and α a pre-defined
probability for jumping.

RRWM starts with an initial distribution, uses the jumps at
each iteration for generating a biased random walk to the matching
constraints, and finally converges at its quasi-stationary distri-
bution. Its fast convergence is observed empirically in practice,
which makes it very efficient and suitable for real-time application.
More details can be found in [11].
Matching prediction. The initial matching is important for
RRWM since different initializations may result in total different
final solutions. However, the input matching is usually initialized
to be trivial in general graph matching tasks due to lacks of
prior knowledge. Fortunately, for tracking, we propose to predict
matching using the result from the previous frame, and take the
prediction as the input of RRWM.

For each incoming frame t, denote τt−1 the final transforma-
tion acquired from the previous frame. The candidate match setCt

is constructed as described in Sec. 4.3. For each candidate match
(i, a) ∈ Ct, we initialize the corresponding probability as

xind(i,a) = 1− ‖pta − τt−1(pM
i )‖2

max(j,b)∈Ct ‖ptb − τt−1(pM
j )‖2

, (13)

where pM
i and pta denote the location of vertices vM

i ∈ VM and
vta ∈ Vt respectively. The intuition of this prediction lies in that
model vertices are more likely to match to close locations in
consecutive frames. We normalize the prediction x and take it
as the input of RRWM.

5.3 Optimization for the transformation
The optimization over τ given x is reformulated to

τ∗ = argmax
τ

{ ∑
(i,a)∈D

cos(fM
i , f

t
a)

+
∑

(i,a),(j,b)∈D

(ω − ‖(τ(pM
i )− τ(pM

j ))− (pta − ptb)‖2)
}
,

where D = {(i, a)|xind(i,a) = 1, (i, a) ∈ Ct} is the set of true
correspondence. It can be further reduced as

τ∗ = argmin
τ

∑
(i,a),(j,b)∈D

‖(τ(pM
i )− τ(pM

j ))− (pta − ptb)‖2

= argmin
τ

∑
(i,a),(j,b)∈D

‖τ(pM
i − pM

j )− (pta − ptb)‖2
(14)

For planar object tracking, we always constraint transformation τ
as a linear function, this optimization therefore becomes a linear
least squares problem, and can be easily solved by linear fitting.

6 EXPERIMENTS

The experimental results provided in this section consist of two
parts. The first one illustrates how the tracking accuracy and com-
putational time of the proposed Gracker algorithm are influenced
by the size of graphs. The second one compares Gracker with
eight popular tracking algorithms on two public benchmarks and
a collected dataset.

6.1 Baselines and Benchmarks

In this section, we report experimental results of the proposed
Gracker algorithm in comparison with eight state-of-the-art base-
lines, including Struck [20], IC [3], ESM [35], GOESM [10],
GPF [27], TLD [24], KCF [21] and SRDCF [13]. Among these
algorithms, the first five ones are planar object trackers, and the
last three ones are recently proposed for generic object tracking.

For a thorough evaluation, we report experimental results on
the following three datasets:

UCSB [17]: The dataset comprises 96 video streams display-
ing six differently textured planar targets with a total of 6,889
frames, featuring geometric distortions (panning, zoom, tilting,
rotation), nine levels of motion blur, as well as different lighting
conditions, with all frames affected by natural amounts of noise.

TMT [41]: The dataset contains 109 image sequences of
manipulation task recorded by a human user and a robot arm.
The sequences were grouped under two broad categories: Ori-
ented Motion Tasks and Composite Motion Tasks. An oriented
motion task refers to one or more highly structured geometric
transformations, including zoom, tilting, rotation, translation and
occlusion. All tasks contain two different light conditions, among
them oriented motion tasks are recorded at five different speeds.

Motion Blur: This dataset is collected to evaluate tracking
performance under heavy blur due to fast motion. It consists of 14
video streams and 3,181 frames showing fast motions of several
different planar targets, such as banknote, book and picture.

All videos come with (semi-)manually annotated ground-
truth across all frames. The standard overlap criteria of PASCAL
VOC [15] is applied for evaluation in the following experiments.

It is worth mentioning that there are standard benchmarks for
generic object tracking, e.g. VOT [26] and OTB [49]. However,
the targets in these benchmarks are in general non-planar and
sometimes even non-rigid. Moreover, the annotations in these
benchmarks are axis-aligned bounding boxes. These issues make
them inappropriate for evaluating planar object trackers.

6.2 Analysis of key parameters and components

The parameter N described in Sec. 4.1 decides the number of
extracted keypoints and hence the size of the graphs. It is the most
crucial parameter in the proposed Gracker algorithm and directly
affects tracking accuracy and computational time. In this section,
we report the average tracking accuracy and computational time
of Gracker with respect to N . As shown in Fig. 2, the tracking
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TABLE 1
Average tracking accuracy (±standard deviation) on the UCSB dataset. Bold font indicates the best tracking accuracy (the same style is also used

for Tables 2 , 3 and 4).

Motion task Struck [20] IC [3] ESM [35] GPF [27] GOESM [10] KCF [21] SRDCF [13] TLD [24] Gracker
panning (6) 0.84±0.25 0.29±0.25 0.68±0.31 0.90±0.02 0.35±0.41 0.90±0.03 0.92±0.03 0.79±0.13 0.96±0.02
tilting (6) 0.73±0.41 0.82±0.30 0.90±0.19 0.73±0.28 0.90±0.18 0.67±0.33 0.68±0.33 0.62±0.38 0.85±0.24

rotation (6) 0.65±0.33 0.74±0.21 0.80±0.14 0.79±0.12 0.79±0.14 0.66±0.18 0.59±0.24 0.65±0.18 0.80±0.13
zoom (6) 0.73±0.34 0.73±0.29 0.92±0.07 0.87±0.07 0.88±0.11 0.55±0.28 0.88±0.06 0.77±0.21 0.89±0.07

lighting (12) 0.80±0.33 0.68±0.39 0.83±0.21 0.90±0.02 0.99±0.01 0.92±0.01 0.91±0.02 0.58±0.42 0.99±0.01
blur (54) 0.40±0.41 0.29±0.37 0.44±0.40 0.81±0.07 0.36±0.43 0.82±0.07 0.87±0.03 0.65±0.33 0.88±0.11

unconstrained (6) 0.36±0.34 0.07±0.22 0.16±0.24 0.42±0.39 0.12±0.22 0.28±0.18 0.66±0.15 0.33±0.34 0.58±0.37
Total (96) 0.53±0.41 0.41±0.34 0.56±0.32 0.80±0.10 0.52±0.31 0.77±0.10 0.83±0.07 0.64±0.32 0.88±0.11

TABLE 2
Average tracking accuracy on the TMT dataset.

object variation Struck [20] IC [3] ESM [35] GPF [27] GOESM [10] KCF [21] SRDCF [13] TLD [24] Gracker
bookI tilting(12) 0.77±0.37 0.92±0.13 0.98±0.02 0.86±0.06 0.98±0.02 0.65±0.28 0.74±0.21 0.67±0.24 0.98±0.02
bookII zoom (13) 0.87±0.24 0.99±0.01 0.99±0.01 0.89±0.02 0.99±0.01 0.70±0.20 0.88±0.04 0.68±0.18 0.99±0.01
bookIII occlusion (11) 0.84±0.23 0.42±0.46 0.56±0.43 0.53±0.37 0.86±0.19 0.80±0.12 0.86±0.06 0.69±0.21 0.93±0.06
cereal rotation (13) 0.70±0.44 0.66±0.41 0.83±0.28 0.83±0.03 0.44±0.43 0.68±0.20 0.58±0.29 0.66±0.22 0.96±0.06
juice rotation (13) 0.61±0.43 0.62±0.42 0.79±0.31 0.81±0.06 0.48±0.43 0.60±0.22 0.60±0.22 0.59±0.25 0.91±0.13
mugI translation (13) 0.88±0.13 0.85±0.19 0.92±0.10 0.84±0.05 0.93±0.08 0.86±0.06 0.87±0.07 0.72± 0.14 0.93±0.08
mugII tilting (13) 0.70±0.34 0.45±0.47 0.61±0.39 0.69±0.25 0.73±0.29 0.72±0.25 0.77±0.20 0.67±0.20 0.74±0.34
mugIII rotation (13) 0.75±0.30 0.58±0.37 0.76±0.29 0.79±0.13 0.83±0.18 0.71±0.23 0.76±0.20 0.67±0.21 0.82±0.22

Composite unconstrained (8) 0.48±0.46 0.63±0.35 0.79±0.23 0.63±0.17 0.86±0.16 0.65±0.14 0.62±0.16 0.57±0.22 0.88±0.16
Total (109) 0.74±0.32 0.69±0.31 0.81±0.23 0.77±0.12 0.78±0.20 0.71±0.19 0.74±0.16 0.66±0.20 0.91±0.12

Tracking Accuracy Computational time

Fig. 2. Average tracking accuracy and computational time of the pro-
posed Gracker algorithm with respect to the size of graphs.

TABLE 3
Comparison on accuracy between Gracker and Gracker− (N = 100).

Dataset UCSB TMT Motion Blur
Gracker− 0.59 0.80 0.54
Gracker 0.88 0.91 0.74

accuracy is improved significantly with increasing N when N is
smaller than 100, and saturate afterwards. On all the datasets, the
computational time is roughly linear in N . The algorithm spends
more time on the Motion Blur dataset because the objects in this
dataset often occupy large image regions, which require much time
for keypoint extraction and graph construction.

To validate the influence of the pairwise constraints to the
tracking performance, we designed a downgraded version of
Gracker, named Gracker−, by removing all pairwise constraints.
Gracker− employs only unary appearance information to generate
keypoint correspondences and then utilizes RANSAC to compute
the transformation parameters, it is otherwise the same as Gracker.
The comparison between Gracker and Gracker− is summarized in
Table 3, which shows clearly the significant improvement brought
by the pairwise constraints and the graph-based approach.

6.3 Comparison with existing algorithms

In this section, we report detailed comparison of the proposed
Gracker algorithm with eight existing tracking algorithms. We set
the parameter N = 100 for Gracker.

The average tracking accuracy for each video category is
reported in Tables 1 (UCSB), 2 (TMT), and 4 (Motion Blur).
It is observed that, Gracker achieves the best or nearly best
tracking performance in all video categories of the datasets, and
exhibits high robustness against not only extreme pose changes
but also heavy environmental perturbations. Specifically, Gracker
outperforms Struck on all video categories thanks to the help of
the graph matching. Some approaches generate comparable results
to Gracker on specific categories of videos:

• The template-based planar object trackers, IC and ESM,
gain high tracking performance in the case of pose changes
including scaling, rotation and tilting, but are sensitive
to appearance changes caused by illumination change,
occlusion and motion blur;

• GOESM achieves high robustness against illumination
change by introducing the gradient orientation feature, but
still suffers from motion blur;

• As a probabilistic approach, GPF illustrates high robust-
ness against both illumination change and motion blur, at
the cost of relatively low tracking accuracy in presence of
occlusion or drastic pose change;

• Designed for generic object tracking, TLD, KCF and
SRDCF are able to roughly capture the object in most
scenarios, but fail to obtain accurate pose estimation.

To distinguish between tracking robustness and the accuracy,
we provide the success rate curves and precision curves of the
compared algorithms in Fig. 3. The curves and associated terms
(e.g., success rate) are the same as used in [49]. The figure shows
that Gracker achieves both high robustness and excellent accuracy
on the three datasets.
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(a) the UCSB dataset.

(b) the TMT dataset.

(c) the Motion Blur dataset.

Fig. 3. The success curves (left) and precision curves (right) on (a) the
UCSB dataset, (b) the TMT dataset, and (c) the Motion Blur dataset.

TABLE 4
Average tracking accuracy (%) on the Motion Blur dataset.

Algorithm Struck [20] IC [3] ESM [35] GPF [27]
Total 0.21±0.42 0.34±0.37 0.57±0.39 0.75±0.13

Algorithm GOESM [10] KCF [21] SRDCF [13] Gracker
Total 0.45±0.35 0.55±0.21 0.73±0.11 0.74±0.33

TABLE 5
Average computational time (second) per frame of the algorithms.

Alg. Struck IC ESM GPF GOESM KCF SRDCF TLD Gracker
[20] [3] [35] [27] [10] [21] [13] [24]

UCSB 0.12 0.23 0.40 0.13 2.46 0.17 0.35 0.13 0.24
TMT 0.08 0.19 0.16 0.12 2.82 0.13 0.30 0.16 0.21
MB 0.04 1.24 3.25 0.17 48.28 0.66 0.57 - 0.70

We also report computational time of the algorithms in Table 5.
Struck is the most efficient one among these algorithms. Gracker
achieves similar computational efficiency with IC and ESM on the
UCSB and TMT datasets, but is faster on the Motion Blur dataset.
As template-based algorithms, IC, ESM and GOESM suffer from
the large size of the object in the Motion Blur dataset. Keypoint-
based algorithms and probabilistic algorithms, by contrast, are
relatively less affected by the size of the target.

Figure 4 illustrates some representative examples of various
types of transformations provided by the proposed Gracker algo-
rithm in comparison with other algorithms.

Scaling. The first row shows examples of scale change of a
wood picture with very weak texture. Struck, IC, and KCF lose
the target where other algorithms provide more accurate results.

Tilting. Examples of tilting of a picture with repeated patterns
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Fig. 4. Examples of tracking results under various transformations.
Boxes of different colors indicate tracking results of different algorithms,
while absence of boxes of specific colors means the corresponding
algorithms lose the object (best viewed in color). Only cropped regions
around the object are shown for better illustration.

shown in the second row reveal that IC, ESM, GOESM and
Gracker are very robust to tilting while other trackers fail to catch
the object in presence of extreme tilting transformation.

Translation & Rotation. As shown in the third row, planar
object trackers are able to handle rotation of the object, but only
ESM, GPF and Gracker are robust to rotation of large angles. ESM
and GPF become inaccurate after frame 360 because of motion
blur, while Gracker provides more stable results across all frames.
The generic object trackers, KCF, SRDCF and TLD, however, fail
to get an accurate pose estimation in presence of rotation.

Occlusion. The fourth row presents tracking results in pres-
ence of partial occlusion under dark lighting condition. Based on
comparing raw intensities in templates, IC, ESM and GPF suffer
from partial occlusion. Struck obtains relative low accuracy due to
the lack of reliable keypoints in dark lighting. With the assistance
of an online-learned detector, TLD roughly captures the object but
with a remarkable drift. The proposed Gracker algorithm, as well
as GOESM, KCF and SRDCF, provides more accurate tracking
results under partial occlusion.

Motion blur. In the fifth row, Struck, IC and GOESM are
very sensitive to motion blur, and lose the target from the very
beginning to the end. ESM, KCF, SRDCF and GPF roughly catch
the object in most frames, but its location is not accurate. In
contrast, the proposed Gracker algorithm provides more accurate
results across all frames.

Composite transformation. The last row shows examples
of composite transformations of translation, rotation, tilting and
slight non-linear transformation. IC and ESM lose the target from
the very beginning to the end. Different to TLD, KCF and SRDCF
that can only roughly catch the object, Gracker, GOESM and GPF



ACCEPTED BY IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

provide more accurate tracking results in comparison.

7 CONCLUSION

In this paper, we proposed a novel graph-based tracker, named
Gracker, for planar object tracking aiming to improve the tracking
performance. Gracker models planar objects as undirected graphs
and formulates tracking as a sequential geometric graph matching
problem, and it uses a matching prediction strategy to guide graph
matching. Experimental results reveal that, Gracker gains accurate
and robust tracking performance against various environmental
variations, and outperforms recent state-of-the-art algorithms.
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