
EDTER: Edge Detection with Transformer

Mengyang Pu1,3, Yaping Huang1*, Yuming Liu2, Qingji Guan1, Haibin Ling3

1Beijing Key Laboratory of Traffic Data Analysis and Mining, Beijing Jiaotong University, China
2Shenzhen Urban Transport Planning Center Co.,Ltd., China

3Department of Computer Science, Stony Brook University, USA
{mengyangpu, yphuang, qjguan}@bjtu.edu.cn; liuyuming@sutpc.com; hling@cs.stonybrook.edu

Abstract

Convolutional neural networks have made significant
progresses in edge detection by progressively exploring
the context and semantic features. However, local details
are gradually suppressed with the enlarging of receptive
fields. Recently, vision transformer has shown excellent
capability in capturing long-range dependencies. Inspired
by this, we propose a novel transformer-based edge de-
tector, Edge Detection TransformER (EDTER), to extract
clear and crisp object boundaries and meaningful edges
by exploiting the full image context information and de-
tailed local cues simultaneously. EDTER works in two
stages. In Stage I, a global transformer encoder is used
to capture long-range global context on coarse-grained im-
age patches. Then in Stage II, a local transformer encoder
works on fine-grained patches to excavate the short-range
local cues. Each transformer encoder is followed by an
elaborately designed Bi-directional Multi-Level Aggrega-
tion decoder to achieve high-resolution features. Finally,
the global context and local cues are combined by a Feature
Fusion Module and fed into a decision head for edge pre-
diction. Extensive experiments on BSDS500, NYUDv2, and
Multicue demonstrate the superiority of EDTER in compar-
ison with state-of-the-arts. The source code is available at
https://github.com/MengyangPu/EDTER.

1. Introduction
Edge detection is one of the most fundamental problems

in computer vision and has a wide variety of applications,
such as image segmentation [8, 23, 39, 44, 45, 47], object
detection [23], and video object segmentation [5, 57, 59].
Given an input image, edge detection aims to extract ac-
curate object boundaries and visually salient edges. It is
challenging due to many factors including complex back-
grounds, inconsistent annotations, and so on.

*Corresponding author.

a

b hgd

c

f

e

Figure 1. Examples of edge detection. Our method, EDTER,
extracts clear boundaries and edges by exploiting both global and
local cues. (a, e): Input images from BSDS500 [1]. (b,f): Detected
edges by EDTER. (c,d,g,h): Zoomed-in patches.

Edge detection is closely related to the context and se-
mantic image cues. It is thus crucial to obtain appropri-
ate representation to capture both high and low level visual
cues. Traditional methods [6,14,28,34,41,63] mostly obtain
edges based on low-level local cues, e.g., color and texture.
Benefiting from the effectiveness of convolutional neural
networks (CNNs) in learning semantic features, significant
progress has been made for edge detection [3,4,29,48]. The
CNN features progressively capture global and semantic-
aware visual concepts with the enlargement of the receptive
fields, while many essential fine details are inevitably and
gradually lost at the mean time. To include more details,
methods in [22,36,37,65,66] aggregate the features of deep
and shallow layers. However, such shallow features reflect
mainly local intensity variation without considering seman-
tic context, resulting in noisy edges.

Inspired by the recent success of vision transformers [9,
16, 61, 72], especially their capability of modeling long-
range contextual information, we propose to tailor trans-
formers for edge detection. Two main challenges, however,
need to be solved. Firstly, transformers are often applied
to patches with a relatively large size due to computation
concerns, while coarse-grained patches are unfavorable for
learning accurate features for edges. It is crucial to perform
self-attention on fine-grained patches without increasing the
computational burden. Second, as shown in Fig. 1 (d), ex-
tracting precise edges from intersected and thin objects is
challenging. So it is necessary to design an effective de-

https://github.com/MengyangPu/EDTER

coder for generating edge-aware high-resolution features.
To address the above issues, we develop a two-stage

framework (Fig. 2), named Edge Detection TransformER
(EDTER), to explore global context information and ex-
cavate fine-grained cues in local regions. In stage I, we
split the image into coarse-grained patches and run a global
transformer encoder on them to capture long-range global
context. Then, we develop a novel Bi-directional Multi-
Level Aggregation (BiMLA) decoder to generate high-
resolution representations for edge detection. In stage II, we
first divide the whole image into multiple sequences of fine-
grained patches by sampling with a non-overlapping sliding
window. Then a local transformer works on each sequence
in turn to explore the short-range local cues. Afterward, all
local cues are integrated and fed into a local BiMLA de-
coder to achieve the pixel-level feature maps. Finally, the
information from both stages is fused by a Feature Fusion
Module (FFM) and then is fed into a decision head to pre-
dict the final edge map. With the above efforts, EDTER can
generate crisp and less noisy edge maps (Fig. 1).

Our contributions are summarized as follows: (1) We
propose a novel transformer-based edge detector, Edge De-
tection TransformER (EDTER), to detect object contours
and meaningful edges in natural images. To our best knowl-
edge, it is the first transformer-based edge detection model.
(2) EDTER is designed to effectively explore long-range
global context (Stage I) and capture fine-grained local cues
(Stage II). Moreover, we propose a novel Bi-directional
Multi-Level Aggregation (BiMLA) decoder to boost the in-
formation flow in the transformer. (3) To effectively in-
tegrate the global and local information, we use a Fea-
ture Fusion Module (FFM) to fuse the cues extracted from
Stage I and Stage II. (4) Extensive experiments demonstrate
the superiority of EDTER over the state-of-the-art methods
on three well-known edge detection benchmarks, including
BSDS500, NYUDv2, and Multicue.

2. Related Work
As a fundamental task in computer vision, edge detection

has been extensively studied over years. In the following,
we highlight two lines of works most related to ours.
Edge Detection. Early edge detectors [6, 28, 63], such as
Sobel [28] and Canny [6], focus on analysing the image gra-
dients to extract the edges. These methods provide elemen-
tary low-level cues and are widely used in computer vision
applications. Learning-based methods [14, 34, 41] tend to
integrate different low-level features and train a classifier to
obtain boundaries and edges. Although these approaches
achieve impressive performance compared to early works,
they are based on hand-crafted features, limiting the ability
to detect semantic boundaries and meaningful edges.

Recently, convolutional neural networks (CNNs) have
been successfully introduced the edge detection study [3,

4, 11, 12, 26, 29, 40, 46, 48, 52, 66]. DeepEdge [3] exploits
object-aware cues extracted by multi-level CNN for con-
tour detection. The method in [48] first partitions con-
tour patches into sub-classes and then learns model pa-
rameters to fit each subclass. More recently, some ap-
proaches improve edge detection [22, 36, 37, 65, 66], seg-
mentation [8, 54, 70], and object detection [35] by using
hierarchical multi-scale features. Inspired by the seminal
work of [65], most edge detectors [22, 36, 37, 66] generate
object boundaries from hierarchical features by multi-level
learning. Specifically, HED [65] learns rich hierarchical
features by performing supervisions on side output layers,
which boosts the performance of edge detection. RCF [36]
combines hierarchical features from all convolutional lay-
ers into a holistic architecture. To achieve effective results,
BDCN [22] uses layer-specific supervision inferred from a
bi-directional cascade structure to guide the training of each
layer. PiDiNet [53] integrates the traditional edge detection
operators into a CNN model for enhanced performance.
Vision transformer. First introduced to handle natural lan-
guage tasks [13, 30, 56], transformer is later extended to
vision tasks owing to its capacity in modeling long-range
dependencies including image classification [16], semantic
segmentation [72], and object detection [7]. Recently, it is
applied in conjunction with CNN in DETR [7] and the other
variants [10, 27, 31, 58, 73]. More recently, vision trans-
former (ViT) [16] directly uses the transformer to the se-
quences of image patches and achieves the state-of-the-art.
This architecture brings direct inspiration to other computer
vision tasks [32, 38, 55, 68, 72]. For example, SETR [72]
shows superior accuracy in semantic segmentation using a
pure transformer on image patches. These works demon-
strate the effectiveness of transformers in capturing long-
range dependencies and global context.

Our work is inspired by the above pioneer studies [16,
38, 72], but is significantly different in two aspects. First,
the proposed EDTER, to the best of my knowledge, is the
first usage of the transformer for generic edge detection.
Second, our key idea is to learn the features that contain
the global image context and fine-grained local cues by
a two-stage framework with an affordable computational
cost. With the integration of the global context and local
cues, EDTER is superior in edge detection.

3. Edge Detection with Transformer

3.1. Overview

The overall framework of the proposed EDTER is illus-
trated in Fig. 2. EDTER explores the full image context
information and fine-grained cues in two stages. In Stage
I, we first split the input image into a sequence of coarse-
grained patches and use a global transformer encoder to
learn the global context information. Then a Bi-directional

…

…

Li
ne

ar
 P

ro
je

ct
io

n

…

…

X1 X2

X3 X4

Li
ne

ar
 P

ro
je

ct
io

n

Lo
ca

l
Tr

an
sf

or
m

er
 E

nc
od

er

…

Li
ne

ar
 P

ro
je

ct
io

n

G
lo

ba
l

Tr
an

sf
or

m
er

 E
nc

od
er Head

Stage I: Global Context Modeling

Add Position Embedding
to Patch Embedding Stage II: Local Refinement

X

…
…

…
…

+

co
nv

co
nv

co
nv

co
nv

co
nv

co
nv

FFM

Global BiMLA Decoder

Local BiMLA Decoder

Head

flattening

flattening

&'()

&'*

&'+

&',

&-).

&-(/

&-()

&-+

…
…

…
…

01

0-
2-

21

…

…

Figure 2. Overall framework. In Stage I, we first feed the image into a global transformer encoder to compute the global attentions. Then,
a global BiMLA decoder (see Fig. 3) generates the high-resolution features that are used to predict the edge maps via a decision head.
In Stage II, similar to Stage I, the partitioned patches are inputted into a local transformer encoder to generate the local attentions. The
concatenated attentions are utilized to decode the high-resolution features. At last, a decision head predicts the edge maps with the features
of Stage I and Stage II fused by FFM.

Multi-Level Aggregation (BiMLA) decoder is used to gen-
erate the high-resolution features. In Stage II, the whole
image is divided into multiple sequences of fine-grained
patches by sampling with a non-overlapping sliding win-
dow. Then we execute a local transformer encoder on each
sequence in turn to capture short-range local cues. We in-
tegrate all local cues and input them into a local BiMLA
decoder to achieve the pixel-level feature maps. Finally, the
global and local features are integrated by a Feature Fusion
Module (FFM) and then are fed into a decision head to pre-
dict the final edge maps.

3.2. Review Vision Transformer

The transformer encoders in our framework follow the
vision transformer (ViT) in [16], as briefly described below.

Image Partition. The first step in ViT is to transform a 2D
image, denoted by X ∈ RH×W×3, into a 1D sequence of
image patches [16, 72]. Concretely, we uniformly split X
into a sequence of flattened image patches of size P × P ,
resulting in H

P × W
P vision tokens. Then, the sequence is

mapped into a latent embedding space by a learnable lin-
ear projection. The projected features are called patch em-
beddings. Further, to preserve positional information, the
standard learnable 1D position embeddings are added to the
patch embeddings. Finally, the combined embeddings (de-
noted as z0) are fed into the transformer encoder.

Transformer Encoder. The standard transformer en-
coder [56] consists of L transformer blocks. Each block
has a multi-head self-attention operation (MSA), a multi-
layer perceptron (MLP), and two Layernorm steps (LN).
Moreover, a residual connection layer is applied after each

block. Generally, MSA performs M self-attentions in paral-
lel and projects their concatenated outputs. In the mth self-
attention, given the output zl−1 ∈ RN×C of the (l − 1)th

transformer block, the queries Q ∈ RN×U , keys K ∈
RN×U , and values V ∈ RN×U are computed by

Q = ẑl−1WQ, K = ẑl−1WK , V = ẑl−1WV , (1)

where ẑl−1 = LN(zl−1), WQ,WK ,WV ∈ RC×U are the
parameter matrices, C is the dimension of embeddings, and
U is the dimension of Q, K, and V . Then, we compute
the output of the mth self-attention based on the pairwise
similarity between two elements of the sequence by

ymsa = softmax
(QKT

√
d

)
V. (2)

where ymsa is the computed attention weight. Finally, MSA
can be formulated as

ymsa = MSA(ẑl−1) =
[
y1sa, y

2
sa, . . . , y

M
sa

]
WO, (3)

where ymsa is the output of MSA, WO ∈ RM ·U×C repre-
sents the projection parameters, and [·] is the concatenation.
In this work, we fix M = 16 following the setting in [16].

3.3. Stage I: Global Context Modeling

Generally, edges and boundaries in images are defined
to be semantically meaningful. It is crucial to capture the
abstract cues and the global context of the whole image. In
the first stage, we explore the global contextual features on
coarse-grained patches by a global transformer encoder GE

and a global decoder GD.

!"#$
Reshape

+!"%&

!"%#

!"'

+

+ ('

(%#

(%&

(#$
+

+

+

Reshape

Reshape

Reshape

)'

)%#

)%&

)#$

Concat

3x
3

Co
nv

3x
3

Co
nv

3x
3

Co
nv

1x
1

Co
nv

*"

3x3 Conv Deconvs

3x3 Conv

3x3 Conv

3x3 Conv

3x3 Conv

3x3 Conv

3x3 Conv

3x3 Conv

1x1 Conv

1x1 Conv

1x1 Conv

1x1 Conv

Deconvs

Deconvs

Deconvs

Deconvs

Deconvs

Deconvs

Deconvs

Top-down path

Bottom-up path

4×4 Deconv +16×16 Deconv

Top-down Bottom-up

Deconvs

Figure 3. The detailed architecture of the BiMLA decoder consists of a top-down path and a bottom-up path.

Specifically, we first split the input image into a sequence
of coarse-grained patches of size 16×16, and then gener-
ate the embeddings z0g that serve as input of the encoder.
Next, the global transformer encoder GE works on the em-
beddings z0g to compute the global attentions,

zg = {z1g , z2g , . . . , zLg
g } = GE(z

0
g), (4)

where z1g , z
2
g , . . . , z

Lg
g ∈ RHW

256 ×C represent the outputs of
successive blocks in GE, and Lg is the number of trans-
former blocks in GE. In our experiments, we set GE to 24
following [16]. Next, the sequence of global context fea-
tures zg are upsampled to high-resolution features by the
global decoder GD for incorporation.
BiMLA Decoder. It is crucial to generate edge-aware pixel-
level representations for detecting precise and thin edges.
Thus, we expect to design a practical decoder that can en-
courage the transformer encoder to compute the edge-aware
attentions and upsample the attentions in a learnable man-
ner. Inspired by the multi-level feature aggregation in vision
tasks [22, 35–37, 65, 72], we propose a novel Bi-directional
Multi-Level Aggregation (BiMLA) decoder, as illustrated
in Fig. 3, to achieve the goal.

In BiMLA, a bi-directional feature aggregation strategy
is designed that includes a top-down path and a bottom-
up path to boost the information flow in the transformer
encoder. More specifically, we first uniformly divide Lg

transformer blocks into four groups, and take the embed-
ding features {z6g , z12g , z18g , z24g } from the last block of each
group as inputs. Then we reshape them to 3D features with
the size of H

16 × W
16 × C. For the top-down path, we at-

tach the same design (one 1×1 convolutional layer and one
3×3 convolutional layer) to each reshaped feature and ob-
tain four output features t6, t12, t18, t24, following the way
of SETR-MLA [72]. Likewise, the bottom-up path starts
from the lowest level (i.e., z6g) and gradually approaches
the top level (i.e., z24g) by attaching one 3×3 convolutional
layer on multi-level features, and finally produce another
four output features b6, b12, b18, b24. Besides, unlike SETR-
MLA [72] that upsamples the features via bilinear opera-
tion, our BiMLA passes each aggregated feature through a

deconvolutional block, contains two deconvolutional layers
with 4×4 kernels and 16×16 kernels, respectively. Each
deconvolutional layer is followed by Batch Normalization
(BN) and ReLU operations. The eight upsampled features
from the bi-directional path are then concatenated into one
tensor. Moreover, BiMLA uses an additional stack of con-
volutional layers to smooth the concatenated features. The
stack consists of three 3×3 convolutional layers and one
1×1 convolutional layer with BN and ReLU. The process
of BiMLA decoder is formulated as

fg = GD(z
6
g , z

12
g , z18g , z24g), (5)

where fg is the pixel-level global features, and GD rep-
resents the global BiMLA decoder. After obtaining the
coarse-grained global context features, we will capture the
fine-grained local context features in the next stage.

3.4. Stage II: Local Refinement

It is essential to explore fine-grained context features for
pixel-level predictions, especially for edge detection. The
ideal edge width is one pixel, while 16×16 patches are not
conducive to extracting thin edges. Taking pixels as tokens
sounds an intuitive remedy, however, it is practically infea-
sible due to heavy computational cost. Our solution is to
use a non-overlapping sliding window to sample the image
and then calculate the attentions within the sampled regions.
The number of patches in the window is fixed, so the com-
putational complexity is linearly related to the image size.

Thus motivated, we propose to capture the short-range
fine-grained context features in Stage II, as shown at the
bottom of Fig. 2. In particular, we perform the non-
overlapping sliding window with a size of H

2 × W
2 on im-

age X ∈ RH×W×3, and the input image X is decomposed
into a sequence {X1, X2, X3, X4}. For each window, we
split it into fine-grained patches of size 8×8 and compute
the attentions by a shared local transformer encoder RE.
Then we concatenate the attentions of all windows to ob-
tain zr = {z1r , . . . , zLr

r } ∈ RHW
64 ×C . To further economize

the computing resource, we set Lr = 12 that means the lo-
cal transformer encoder consists of 12 transformer blocks.

Similar to global BiMLA, we evenly select {z3r , z6r , z9r , z12r }
from zr and input them into the local BiMLA RD to gener-
ate the local features with high-resolution,

fr = RD(z
3
r , z

6
r , z

9
r , z

12
r), (6)

where fr indicates the local features. Different from global
BiMLA, we replace the 3×3 convolutional layer with the
1×1 convolutional layer in local BiMLA, so as to avoid ar-
tificial edges caused by the padding operation.

Feature Fusion Module. Finally, we incorporate the con-
text cues from both levels by a Feature Fusion Module
(FFM) and predict the edge maps by a local decision head.
FFM takes the global context as the prior knowledge and
modulates the local context, which produces the fusion fea-
tures containing global context and fine-grained local de-
tails. As shown in Fig. 2, FFM consists of a spatial fea-
ture transform block [60] and two 3×3 convolutional layers
followed by BN and ReLU operations. The former is for
modulating, and the latter is for smoothing. Then the fusion
features are fed into the local decision head RH to predict
the edge maps Er,

Er = RH

(
FFM(fg, fr)

)
, (7)

where RH is the local decision head that consists of a 1×1
convolutional layer and a sigmoid operation.

3.5. Network Training

To train the two-stage framework EDTER, we first op-
timize Stage I to generate global features that represent the
whole image context information. Then, we fix the param-
eters of Stage I and train Stage II to generate edge maps.

Loss Function. We employ the loss function proposed
in [65] for each edge map. Given an edge map E and the
corresponding ground truth Y , the loss is calculated as

ℓ (E, Y) = −
∑
i,j

(
Yi,jαlog(Ei,j)

+ (1− Yi,j)(1− α)log(1− Ei,j)
)
,

(8)

where Ei,j and Yi,j are the (i, j)th element of matrix E and
Y , respectively. Moreover, α = |Y −|/(|Y −| + |Y +|) in-
dicates the percentage of negative pixel samples, where | · |
denotes the number of pixels. In practice, the annotations
of BSDS500 [1] are labeled by multiple annotators. Incon-
sistent annotations lead to problematic convergence behav-
ior [65]. Following [36], we first normalize multiple labels
to an edge probability map with ranges [0, 1], and then use
a threshold η to select pixels. The pixel is marked as a pos-
itive sample if the probability value is higher than η; other-
wise, it is indicated as a negative sample.

Training Stage I. For training Stage I, we first incorporate
the global decision head on the global feature maps to gen-
erate the edge maps Eg by

Eg = GH(fg), (9)

where GH indicates the global decision head that consists of
a 1×1 convolutional layer and a sigmoid layer. Moreover,
we obtain multiple side outputs S1

g , S
2
g , . . . , S

8
g by perform-

ing the same design (a 4×4 deconvolutional layer and a
16×16 deconvolutional layer) to the intermediate features
t6, t12, t18, t24 and b6, b12, b18, b24 extracted by the global
BiMLA decoder, which progressively enforce the encoder
to emphasize edge-aware attentions.

Stage I is optimized by minimizing the losses between
each edge map and the ground truth. The loss function of
Stage I is formulated as

Lg = LE
g + λLside

g = ℓ (Eg, Y) + λ

8∑
k=1

ℓ
(
Sk
g , Y

)
, (10)

where LE
g is the loss for Eg, Lside

g denotes side loss, and λ is
the weight for balancing LE

g and Lside
g . In our experiments,

we set λ to 0.4.

Training Stage II. After training Stage I, we fix the pa-
rameters of Stage I and move on to Stage II. Similar to the
training of Stage I, we perform the same operation (a 4×4
deconvolutional layer and an 8×8 deconvolutional layer) on
the intermediate features extracted from the local BiMLA
decoder to generate the side outputs S1

r , S
2
r , . . . , S

8
r . Fi-

nally, the loss function of Stage II is defined as

Lr = LE
r + λLside

r = ℓ (Er, Y) + λ

8∑
k=1

ℓ
(
Sk
r , Y

)
, (11)

where LE
r and Lside

r are the losses for Er and side outputs,
respectively. We again set λ = 0.4.

4. Experiments
4.1. Datasets

We conduct the experiments on three popular bench-
marks: BSDS500 [1], NYUDv2 [49] and Multicue [42].

BSDS500 [1] contains 500 RGB natural images, 200 for
training, 100 for validation, and 200 for testing. Each im-
age is manually annotated by five different subjects on av-
erage. Our model is trained on the training and validation
sets and evaluated on the testing set. Similar to [22, 36, 65],
we augment the dataset by rotating each image at 16 dif-
ferent angles and flipping the image at each angle. More-
over, most previous works [22, 36, 37, 62] use PASCAL
VOC Context Dataset [17] as the additional training data,
which provides full-scene segmentation annotations with

Figure 4. Qualitative comparison of different decoders in EDTER
on BSDS500. From left to right are the input images, the results
of EDTER using SETR-MLA and BiMLA decoder, respectively.

more than 400 classes, and consists of 10,103 images for
training. The outside boundaries extracted from the seg-
mentation annotations are beneficial to infer semantic and
context cues in Stage I. Therefore, we first pre-train Stage I
on PASCAL VOC Context Dataset [17] and then fine-tune it
on BSDS500 [1]. The PASCAL VOC Context Dataset [17]
is only used for training Stage I.

NYUDv2 [49] contains 1,449 pairs of aligned RGB and
depth images, and it is split into 381 training, 414 valida-
tion, and 654 testing images. Following [36, 65], we com-
bine the training and validation sets as the training data, and
then augment them by rotating the images and annotations
to 4 different angles, randomly flipping, and scaling.

Multicue [42] is composed of 100 challenging natural
scenes captured by a binocular stereo camera. Each scene
contains a left-view and a right-view short sequences. The
last frame of left-view sequences from each scene is labeled
with edges and boundaries. Following [22, 36, 65], we ran-
domly select 80 images for training and the remaining 20
images for testing. We repeat the process three times and
average the scores of three independent trials as the final
results. The data augmentation follows [36, 65].

4.2. Implementation Details

We implement our EDTER using PyTorch [43]. We
initialize the transformer blocks of our model using the
pre-trained weights by ViT [16]. We set the threshold η
as 0.3 to select positive samples for BSDS500 and Mul-
ticue Edge, and 0.4 for Multicue Boundary. Each image
has only one annotation in NYUDv2, thus no η is needed.
We use SGD optimizer with momentum=0.9 and weight
decay=2e-4, and adopt a polynomial learning rate decay
schedule [71] on all datasets. The initial learning rate is
set as 1e-6 for BSDS500, NYUDv2 and Multicue Bound-
ary, and 1e-7 for Multicue Edge. During training, we set
the same iteration numbers for both stages. Specially, we
train 80k iterations for BSDS500 and Multicue boundary,
40k for NYUDv2, and 4k for Multicue Edge. Each image
is randomly cropped to 320×320 in training. Compared
with BSDS500, the annotations of NYUDv2 is unitary, and
the scale of Multicue is small, which quickly overfits of the
model trained on them. Therefore, we set the batch size to
8 for BSDS500, and 4 for NYUDv2 and Multicue. All the

Table 1. Ablation study of the effectiveness of the proposed two-
stage strategy, BiMLA decoder and FFM in EDTER on BSDS500.
All results are computed with a single scale input.

Stage Decoder FFM ODS OIS APSETR-MLA BiMLA

I
√

×
.

. 0.790 0.806 0.836
×

√
0.817 0.835 0.867

II

√
×

√
0.799 0.816 0.848

×
√ √

0.824 0.841 0.880
×

√
× 0.820 0.835 0.867

experiments are conducted on a V100 GPU. The training of
EDTER takes about 26.4 hours (15.1 for Stage I and 11.3
for Stage II). The inference runs at 2.2 fps on a V100. Dur-
ing Training, the GPU consumption of Stage I and Stage
II are about 15GB and 14GB for 320×320 images respec-
tively. Besides, EDTER brings 332.0G FLOPs in Stage I
and 470.25G FLOPs in Stage II.

During evaluation, we record three metrics for all
datasets: fixed contour threshold (ODS), per-image best
threshold (OIS), and average precision (AP). Moreover, a
non-maximum suppression [6] is performed on the pre-
dicted edge maps before evaluation. Following previous
works [36,65], the localization tolerance controls the maxi-
mum allowed distance in matches between edge results and
the ground truth, which is set to 0.0075 for BSDS500 and
Multicue, and 0.011 for NYUDv2.

4.3. Ablation Study

Effectiveness of key components in EDTER. We first con-
duct experiments to verify the impact of key EDTER com-
ponents: BiMLA and FFM. The quantitative results are
summarized in Table 1. First, the performance of ODS,
OIS, AP is largely improved (about 2.5%, 3%, 3%) by
BiMLA compared with SETR-MLA [72] in both stages.
The performance of Stage II significantly surpasses Stage
I under either decoder. It illustrates that the two-stage strat-
egy fuses more critical information for edge detection. Be-
sides, we present the predicted edge maps by the SETR-
MLA and BiMLA decoders shown in Fig. 4. With the
BiMLA decoder, EDTER can accurately detect edges in
some local areas (red bounding boxes) and produce less
noisy edges. To verify the effectiveness of FFM, we remove
the FFM and directly concatenate the feature maps from two
stages to construct a variant of EDTER. Without using FFM
(row 5), the scores drop by 0.4%, 0.6%, and 1.3% in ODS,
OIS, and AP, respectively.
Effectiveness of stages and patch size. We run ablation ex-
periments to verify the effectiveness of the two-stage strat-
egy. The comparative results are presented in Table 2. Com-
pared with Stage I (row 1), we add the second stage and set
the patch size to 8×8 (row 2), which obtains the perfor-
mance gain by 0.7%, 0.6%, 1.3% in ODS, IS, and AP, re-
spectively. Moreover, as visualized in Fig. 5, the predicted
edges of Stage II are more clear and crisp in some local de-

Figure 5. Qualitative comparison of different stages in EDTER on
BSDS500. From left to right are the input images, the results of
EDTER-Stage I and EDTER-Stage II, respectively.

Table 2. Quantitative results of EDTER with training on different
patch sizes and stage numbers on BSDS500. “-” means Stage III
is not extended. All results are computed with a single scale input.

Patch Size ODS OIS APStage I Stage II Stage III

16×16 - - 0.817 0.835 0.867
16×16 8×8 - 0.824 0.841 0.880
16×16 4×4 - 0.825 0.843 0.882
16×16 8×8 4×4 0.826 0.843 0.883

tails. It shows that the effectiveness of the two-stage strat-
egy for edge detection. Then, to analyze the impact of the
patch size, we create a variant that uses the patch size of
4×4 in Stage II (row 3). Concretely, in Stage II, the image
is first decomposed into a sequence {X1, X2, . . . , X16} by
the sliding window with a size of H

4 × W
4 , and then we

split each window into a sequence of 4×4 patches and gen-
erate local cues. Compared with row 2 using 8×8 patches
in Stage II, the performance is slightly improved. More-
over, we report experiments with EDTER model variants
that use more stages to capture local context, obtained by
adding Stage III and setting the patch size to 4×4. In Table 2
(row 4), the scores are marginally increased by fusing con-
text cues of three stages. Since the edge extracted from the
networks inevitably occupies multiple pixels, 4×4 patches
seldom bring significant gains. Considering the trade-off
between computational efficiency and performance, we em-
ploy the setting of 16×16 in Stage I and 8×8 in Stage II to
perform all subsequent experiments.

4.4. Comparison with State-of-the-arts

On BSDS500. We compare our model with traditional
detectors including Canny [6], Felz-Hutt [18], gPb-owt-
ucm [2], SCG [64], Sketch Tokens [34], PMI [25], SE [15],
OEF [21] and MES [50], and deep-learning-based de-
tectors including DeepEdge [3], CSCNN [24], DeepCon-
tour [48], HFL [4], HED [65], Deep Boundary [29],
CEDN [67], RDS [37], COB [40], DCD [33], AMH-
Net [66], RCF [36], CED [62], LPCB [12], BDCN [22],
DexiNed [52], DSCD [11] and PiDiNet [53]. The best re-
sults of all the methods are taken from their publications.

Quantitative results are shown in Table 3, and Fig. 6
shows Precision-Recall curves of all methods. By train-
ing on the trainval set of BSDS500, our method achieves

Table 3. Results on BSDS500 [1] testing set. The best two results
are highlighted in red and blue, respectively, and same for other
tables. MS is the multi-scale testing, and VOC means training with
extra PASCAL VOC data.

Method Pub.’Year ODS OIS AP

Tr
ad

iti
on

al
M

et
ho

d Canny [6] PAMI’86 0.600 0.640 0.580
Felz-Hutt [18] IJCV’04 0.610 0.640 0.560
gPb-owt-ucm [2] PAMI’10 0.726 0.757 0.696
SCG [64] NeurIPS’12 0.739 0.758 0.773
Sketch Tokens [34] CVPR’13 0.727 0.746 0.780
PMI [25] ECCV’14 0.741 0.769 0.799
SE [15] PAMI’14 0.746 0.767 0.803
OEF [21] CVPR’15 0.746 0.770 0.820
MES [50] ICCV’15 0.756 0.776 0.756

C
N

N
-b

as
ed

M
et

ho
d

DeepEdge [3] CVPR’15 0.753 0.772 0.807
CSCNN [24] ArXiv’15 0.756 0.775 0.798
MSC [51] PAMI’15 0.756 0.776 0.787
DeepContour [48] CVPR’15 0.757 0.776 0.800
HFL [4] ICCV’15 0.767 0.788 0.795
HED [65] ICCV’15 0.788 0.808 0.840
Deep Boundary [29] ICLR’15 0.813 0.831 0.866
CEDN [67] CVPR’16 0.788 0.804 -
RDS [37] CVPR’16 0.792 0.810 0.818
COB [40] ECCV’16 0.793 0.820 0.859
DCD [33] ICME’17 0.799 0.817 0.849
AMH-Net [66] NeurIPS’17 0.798 0.829 0.869
RCF [36] CVPR’17 0.811 0.830 -
CED [62] CVPR’17 0.815 0.833 0.889
LPCB [12] ECCV’18 0.815 0.834 -
BDCN [22] CVPR’19 0.828 0.844 0.890
DexiNed [52] WACV’20 0.729 0.745 0.583
DSCD [11] ACMMM’20 0.822 0.859 -
PiDiNet [53] ICCV’21 0.807 0.823 -

O
ur

s

EDTER - 0.824 0.841 0.880
EDTER-VOC - 0.832 0.847 0.886
EDTER-MS - 0.840 0.858 0.896
EDTER-MS-VOC - 0.848 0.865 0.903

Figure 6. The precision-recall curves on BSDS500.

the F-measure ODS of 0.824 with single-scale testing and
obtains 0.840 with multi-scale inputs, which already out-
performs most edge detectors. With the extra training data
and multi-scale testing (following the settings of RCF, CED,
BDCN, etc.), our method achieves 84.8% (ODS), 86.5%
(OIS) 90.3% (AP), which is superior to all the state-of-the-
art edge detectors. Some qualitative results are shown in
Fig. 7. We observe that the proposed EDTER shows a clear
advantage in prediction quality, both crisp and accurate.

(a) Input (b) Ground truth (c) RCF [36] (d) CED [62] (e) BDCN [22] (f) EDTER (Ours)

Figure 7. Qualitative comparisons on three challenging samples in the testing set of BSDS500.

Table 4. Quantitative comparisons on NYUDv2 [49]. All results
are computed with a single scale input.

Method Pub.’Year ODS OIS AP

Tr
ad

iti
on

al

gPb-ucm [1] PAMI’11 0.632 0.661 0.562
Silberman et al. [49] ECCV’12 0.658 0.661 -
gPb+NG [19] CVPR’13 0.687 0.716 0.629
SE [15] PAMI’14 0.695 0.708 0.679
SE+NG+ [20] ECCV’14 0.706 0.734 0.738
OEF [21] CVPR’15 0.651 0.667 -
SemiContour [69] CVPR’16 0.680 0.700 0.690

C
N

N
-b

as
ed

HED [65] ICCV’15 0.720 0.734 0.734
RCF [36] CVPR’17 0.729 0.742 -
AMH-Net [66] NeurIPS’17 0.744 0.758 0.765
LPCB [12] ECCV’18 0.739 0.754 -
BDCN [22] CVPR’19 0.748 0.763 0.770
PiDiNet [53] ICCV’21 0.733 0.747 -

EDTER (Ours) - 0.774 0.789 0.797

On NYUDv2. In NYUDv2, we conduct experiments
on RGB images and compare against the state-of-the-art
methods including gPb-ucm [1], Silberman et al. [49],
gPb+NG [19], SE [15], SE+NG+ [20], OEF [21], SemiCon-
tour [69], HED [65], RCF [36], AMH-Net [66], LPCB [12],
BDCN [22], and PiDiNet [53]. All results are based on
single-scale input. Table 4 shows the quantitative results of
our method and other competitors. Our method achieves the
best scores of 77.4%, 78.9%, and 79.7% of ODS, OIS, and
AP, respectively. Compared to the second best, we increase
the scores by 2.6%, 2.6%, 2.7% in three metrics, respec-
tively. More results including HHA, RGB-HHA inputs, and
visualizations are reported in the supplementary material.
On Multicue. Multicue consists of two kinds of annota-
tions, i.e., Multicue Edge and Multicue Boundary. For each
type of annotations, we compare against the state-of-the-
art methods including HED [65], RCF [36], BDCN [22],
DSCD [11], and PiDiNet [53]. We report the comparisons
in Table 5, and the results show consistent performance.
Our method produces competitive results on Multicue Edge.
For Multicue Boundary, EDTER achieves the F-measure
ODS of 86.1%, higher than all other competitors. The visu-
alization results are provided in the supplementary material.

Table 5. Comparisons on Multicue [42]. All results are computed
with a single scale input.

Method Pub.’Year ODS OIS AP

E
dg

e
Human [42] VR’16 .750 (0.024) - -
Multicue [42] VR’16 .830 (0.002) - -
HED [65] ICCV’15 .851 (0.014) .864 (0.011) -
RCF [36] CVPR’17 .857 (0.004) .862 (0.004) -
BDCN [22] CVPR’19 .891 (0.001) .898 (0.002) .935(0.002)
DSCD [11] ACMMM’20 .871 (0.007) .876 (0.002) -
PiDiNet [53] ICCV’21 .855 (0.007) .860 (0.005) -
EDTER (Ours) - .894 (0.005) .900 (0.003) .944 (0.002)

B
ou

nd
ar

y

Human [42] VR’16 .760 (0.017) - -
Multicue [42] VR’16 .720 (0.014) - -
HED [65] ICCV’15 .814 (0.011) .822 (0.008) .869 (0.015)
RCF [36] CVPR’17 .817 (0.004) .825 (0.005) -
BDCN [22] CVPR’19 .836 (0.001) .846 (0.003) .893 (0.001)
DSCD [11] ACMMM’20 .828 (0.003) .835 (0.004) -
PiDiNet [53] ICCV’21 .818 (0.003) .830 (0.005) -
EDTER (Ours) - .861 (0.003) .870 (0.004) .919 (0.003)

5. Conclusion and Limitation

In this paper, we propose a novel two-stage edge detec-
tion framework, namely EDTER. By introducing the vision
transformer, EDTER captures both coarse-grained global
context and fine-grained local context in two stages. More-
over, it employs a novel Bi-directional Multi-Level Aggre-
gation (BiMLA) decoder to explore high-resolution repre-
sentations. Besides, a Feature Fusion Module (FFM) incor-
porates global and local contexts to predict the edge results.
Experimental results illustrate that EDTER yields competi-
tive results in comparison with state-of-the-arts.

Limitation. The width of the edges extracted by EDTER
occupies multiple pixels, which still has a gap with the ideal
edge width. Without any post-processing, generating clear
and thin edges is still a future direction to explore.

Acknowledgements. This work is supported by Bei-
jing Natural Science Foundation (M22022, L211015), Fun-
damental Research Funds for the Central Universities
(2019JBZ104), and National Natural Science Foundation of
China (61906013, 62106017).

References
[1] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Ji-

tendra Malik. Contour detection and hierarchical image
segmentation. IEEE Trans. Pattern Anal. Mach. Intell.,
33(5):898–916, 2010. 1, 5, 6, 7, 8

[2] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Ji-
tendra Malik. Contour detection and hierarchical image
segmentation. IEEE Trans. Pattern Anal. Mach. Intell.,
33(5):898–916, 2010. 7

[3] Gedas Bertasius, Jianbo Shi, and Lorenzo Torresani.
Deepedge: A multi-scale bifurcated deep network for top-
down contour detection. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 4380–4389, 2015. 1, 2, 7

[4] Gedas Bertasius, Jianbo Shi, and Lorenzo Torresani. High-
for-low and low-for-high: Efficient boundary detection from
deep object features and its applications to high-level vision.
In Int. Conf. Comput. Vis., pages 504–512, 2015. 1, 2, 7

[5] Sergi Caelles, Kevis-Kokitsi Maninis, Jordi Pont-Tuset,
Laura Leal-Taixé, Daniel Cremers, and Luc Van Gool. One-
shot video object segmentation. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 221–230, 2017. 1

[6] John F. Canny. A computational approach to edge detec-
tion. IEEE Trans. Pattern Anal. Mach. Intell., 8(6):679–698,
1986. 1, 2, 6, 7

[7] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In Eur. Conf. Com-
put. Vis., pages 213–229. Springer, 2020. 2

[8] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,
Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image
segmentation with deep convolutional nets, atrous convolu-
tion, and fully connected crfs. IEEE Trans. Pattern Anal.
Mach. Intell., 40(4):834–848, 2017. 1, 2

[9] Xin Chen, Bin Yan, Jiawen Zhu, Dong Wang, Xiaoyun Yang,
and Huchuan Lu. Transformer tracking. In IEEE Conf. Com-
put. Vis. Pattern Recog., pages 8126–8135, 2021. 1

[10] Zhigang Dai, Bolun Cai, Yugeng Lin, and Junying Chen.
Up-detr: Unsupervised pre-training for object detection with
transformers. In IEEE Conf. Comput. Vis. Pattern Recog.,
pages 1601–1610, 2021. 2

[11] Ruoxi Deng and Shengjun Liu. Deep structural contour
detection. In ACM Int. Conf. Multimedia, pages 304–312,
2020. 2, 7, 8

[12] Ruoxi Deng, Chunhua Shen, Shengjun Liu, Huibing Wang,
and Xinru Liu. Learning to predict crisp boundaries. In Eur.
Conf. Comput. Vis., pages 562–578, 2018. 2, 7, 8

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. NAACL, 2019. 2

[14] Piotr Dollár, Zhuowen Tu, and Serge J. Belongie. Supervised
learning of edges and object boundaries. In IEEE Conf. Com-
put. Vis. Pattern Recog., volume 2, pages 1964–1971, 2006.
1, 2

[15] Piotr Dollár and C Lawrence Zitnick. Fast edge detection
using structured forests. IEEE Trans. Pattern Anal. Mach.
Intell., 37(8):1558–1570, 2014. 7, 8

[16] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. Int. Conf. Learn.
Represent., 2020. 1, 2, 3, 4, 6

[17] Mark Everingham, Luc Van Gool, Christopher KI Williams,
John Winn, and Andrew Zisserman. The pascal visual object
classes (voc) challenge. Int. J. Comput. Vis., 88(2):303–338,
2010. 5, 6

[18] Pedro F Felzenszwalb and Daniel P Huttenlocher. Effi-
cient graph-based image segmentation. Int. J. Comput. Vis.,
59(2):167–181, 2004. 7

[19] Saurabh Gupta, Pablo Arbelaez, and Jitendra Malik. Per-
ceptual organization and recognition of indoor scenes from
rgb-d images. In IEEE Conf. Comput. Vis. Pattern Recog.,
pages 564–571, 2013. 8

[20] Saurabh Gupta, Ross Girshick, Pablo Arbeláez, and Jiten-
dra Malik. Learning rich features from rgb-d images for ob-
ject detection and segmentation. In Eur. Conf. Comput. Vis.,
pages 345–360. Springer, 2014. 8

[21] Sam Hallman and Charless C Fowlkes. Oriented edge forests
for boundary detection. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 1732–1740, 2015. 7, 8

[22] Jianzhong He, Shiliang Zhang, Ming Yang, Yanhu Shan, and
Tiejun Huang. Bi-directional cascade network for perceptual
edge detection. In IEEE Conf. Comput. Vis. Pattern Recog.,
pages 3828–3837, 2019. 1, 2, 4, 5, 6, 7, 8

[23] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B.
Girshick. Mask r-cnn. Int. Conf. Comput. Vis., pages 2980–
2988, 2017. 1

[24] Jyh-Jing Hwang and Tyng-Luh Liu. Pixel-wise deep learn-
ing for contour detection. arXiv preprint arXiv:1504.01989,
2015. 7

[25] Phillip Isola, Daniel Zoran, Dilip Krishnan, and Edward H
Adelson. Crisp boundary detection using pointwise mutual
information. In Eur. Conf. Comput. Vis., pages 799–814.
Springer, 2014. 7

[26] André Peter Kelm, Vijesh Soorya Rao, and Udo Zölzer. Ob-
ject contour and edge detection with refinecontournet. In In-
ternational Conference on Computer Analysis of Images and
Patterns, pages 246–258. Springer, 2019. 2

[27] Bumsoo Kim, Junhyun Lee, Jaewoo Kang, Eun-Sol Kim,
and Hyunwoo J. Kim. Hotr: End-to-end human-object inter-
action detection with transformers. In IEEE Conf. Comput.
Vis. Pattern Recog., pages 74–83, 2021. 2

[28] Josef Kittler. On the accuracy of the sobel edge detector.
Image Vis. Comput., 1(1):37–42, 1983. 1, 2

[29] Iasonas Kokkinos. Pushing the boundaries of boundary de-
tection using deep learning. Int. Conf. Learn. Represent.,
2016. 1, 2, 7

[30] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin
Gimpel, Piyush Sharma, and Radu Soricut. Albert: A lite
bert for self-supervised learning of language representations.
Int. Conf. Learn. Represent., 2020. 2

[31] Ke Li, Shijie Wang, Xiang Zhang, Yifan Xu, Weijian Xu, and
Zhuowen Tu. Pose recognition with cascade transformers. In

IEEE Conf. Comput. Vis. Pattern Recog., pages 1944–1953,
2021. 2

[32] Yulin Li, Jianfeng He, Tianzhu Zhang, Xiang Liu, Yongdong
Zhang, and Feng Wu. Diverse part discovery: Occluded per-
son re-identification with part-aware transformer. In IEEE
Conf. Comput. Vis. Pattern Recog., pages 2898–2907, 2021.
2

[33] Yuan Liao, Songping Fu, Xiaoqing Lu, Chengcui Zhang, and
Zhi Tang. Deep-learning-based object-level contour detec-
tion with ccg and crf optimization. In Int. Conf. Multimedia
and Expo, pages 859–864. IEEE, 2017. 7

[34] Joseph J. Lim, C. Lawrence Zitnick, and Piotr Dollár. Sketch
tokens: A learned mid-level representation for contour and
object detection. In IEEE Conf. Comput. Vis. Pattern Recog.,
pages 3158–3165, 2013. 1, 2, 7

[35] Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick, Kaiming He,
Bharath Hariharan, and Serge J. Belongie. Feature pyramid
networks for object detection. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 936–944, 2017. 2, 4

[36] Yun Liu, Ming-Ming Cheng, Xiaowei Hu, Kai Wang, and
Xiang Bai. Richer convolutional features for edge detection.
In IEEE Conf. Comput. Vis. Pattern Recog., pages 3000–
3009, 2017. 1, 2, 4, 5, 6, 7, 8

[37] Yu Liu and Michael S Lew. Learning relaxed deep supervi-
sion for better edge detection. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 231–240, 2016. 1, 2, 4, 5, 7

[38] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Int. Conf. Comput. Vis., 2021. 2

[39] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully
convolutional networks for semantic segmentation. In IEEE
Conf. Comput. Vis. Pattern Recog., pages 3431–3440, 2015.
1

[40] Kevis-Kokitsi Maninis, Jordi Pont-Tuset, Pablo Arbeláez,
and Luc Van Gool. Convolutional oriented boundaries. In
Eur. Conf. Comput. Vis., pages 580–596. Springer, 2016. 2,
7

[41] David R. Martin, Charless C. Fowlkes, and Jitendra Ma-
lik. Learning to detect natural image boundaries using lo-
cal brightness, color, and texture cues. IEEE Trans. Pattern
Anal. Mach. Intell., 26(5):530–549, 2004. 1, 2

[42] David A Mély, Junkyung Kim, Mason McGill, Yuliang Guo,
and Thomas Serre. A systematic comparison between visual
cues for boundary detection. Vis. Res., 120:93–107, 2016. 5,
6, 8

[43] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. In Adv. Neural Inform. Process.
Syst., 2017. 6

[44] Pedro OO Pinheiro, Ronan Collobert, and Piotr Dollár.
Learning to segment object candidates. In Adv. Neural In-
form. Process. Syst., pages 1990–1998, 2015. 1

[45] Pedro O Pinheiro, Tsung-Yi Lin, Ronan Collobert, and Piotr
Dollár. Learning to refine object segments. In Eur. Conf.
Comput. Vis., pages 75–91, 2016. 1

[46] Mengyang Pu, Yaping Huang, Qingji Guan, and Haibin
Ling. Rindnet: Edge detection for discontinuity in re-
flectance, illumination, normal and depth. In Int. Conf. Com-
put. Vis., pages 6879–6888, October 2021. 2

[47] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In International Conference on Medical Image Computing
and Computer-Assisted Intervention (MICCAI), pages 234–
241, 2015. 1

[48] Wei Shen, Xinggang Wang, Yan Wang, Xiang Bai, and Zhi-
jiang Zhang. Deepcontour: A deep convolutional feature
learned by positive-sharing loss for contour detection. In
IEEE Conf. Comput. Vis. Pattern Recog., pages 3982–3991,
2015. 1, 2, 7

[49] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob
Fergus. Indoor segmentation and support inference from
rgbd images. In Eur. Conf. Comput. Vis., pages 746–760,
2012. 5, 6, 8

[50] Amos Sironi, Vincent Lepetit, and Pascal Fua. Projection
onto the manifold of elongated structures for accurate ex-
traction. In Int. Conf. Comput. Vis., pages 316–324, 2015.
7

[51] Amos Sironi, Engin Türetken, Vincent Lepetit, and Pascal
Fua. Multiscale centerline detection. IEEE Trans. Pattern
Anal. Mach. Intell., 38(7):1327–1341, 2015. 7

[52] Xavier Soria, Edgar Riba, and Ángel D. Sappa. Dense ex-
treme inception network: Towards a robust cnn model for
edge detection. In IEEE Winter Conf. Appl. Comput. Vis.,
pages 1923–1932, 2020. 2, 7

[53] Zhuo Su, Wenzhe Liu, Zitong Yu, Dewen Hu, Qing Liao,
Qi Tian, Matti Pietikainen, and Li Liu. Pixel difference net-
works for efficient edge detection. In Int. Conf. Comput. Vis.,
pages 5117–5127, October 2021. 2, 7, 8

[54] Andrew Tao, Karan Sapra, and Bryan Catanzaro. Hierarchi-
cal multi-scale attention for semantic segmentation. arXiv
preprint arXiv:2005.10821, 2020. 2

[55] Ashish Vaswani, Prajit Ramachandran, Aravind Srinivas,
Niki Parmar, Blake Hechtman, and Jonathon Shlens. Scaling
local self-attention for parameter efficient visual backbones.
In IEEE Conf. Comput. Vis. Pattern Recog., pages 12894–
12904, 2021. 2

[56] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Adv. Neural Inform.
Process. Syst., pages 5998–6008, 2017. 2, 3

[57] Paul Voigtlaender, Yuning Chai, Florian Schroff, Hartwig
Adam, Bastian Leibe, and Liang-Chieh Chen. Feelvos: Fast
end-to-end embedding learning for video object segmenta-
tion. In IEEE Conf. Comput. Vis. Pattern Recog., pages
9481–9490, 2019. 1

[58] Ning Wang, Wengang Zhou, Jie Wang, and Houqiang Li.
Transformer meets tracker: Exploiting temporal context for
robust visual tracking. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 1571–1580, 2021. 2

[59] Qiang Wang, Li Zhang, Luca Bertinetto, Weiming Hu, and
Philip HS Torr. Fast online object tracking and segmentation:
A unifying approach. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 1328–1338, 2019. 1

[60] Xintao Wang, Ke Yu, Chao Dong, and Chen Change Loy.
Recovering realistic texture in image super-resolution by
deep spatial feature transform. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 606–615, 2018. 5

[61] Yuqing Wang, Zhaoliang Xu, Xinlong Wang, Chunhua Shen,
Baoshan Cheng, Hao Shen, and Huaxia Xia. End-to-end
video instance segmentation with transformers. In IEEE
Conf. Comput. Vis. Pattern Recog., pages 8741–8750, 2021.
1

[62] Yupei Wang, Xin Zhao, and Kaiqi Huang. Deep crisp bound-
aries. In IEEE Conf. Comput. Vis. Pattern Recog., pages
3892–3900, 2017. 5, 7, 8

[63] Holger Winnemöller, Jan Eric Kyprianidis, and Sven C.
Olsen. Xdog: An extended difference-of-gaussians com-
pendium including advanced image stylization. Comput.
Graph., 36(6):740–753, 2012. 1, 2

[64] Ren Xiaofeng and Liefeng Bo. Discriminatively trained
sparse code gradients for contour detection. Adv. Neural In-
form. Process. Syst., 25, 2012. 7

[65] Saining Xie and Zhuowen Tu. Holistically-nested edge de-
tection. In Int. Conf. Comput. Vis., pages 1395–1403, 2015.
1, 2, 4, 5, 6, 7, 8

[66] Dan Xu, Wanli Ouyang, Xavier Alameda-Pineda, Elisa
Ricci, Xiaogang Wang, and Nicu Sebe. Learning deep struc-
tured multi-scale features using attention-gated crfs for con-
tour prediction. In Adv. Neural Inform. Process. Syst., pages
3961–3970, 2017. 1, 2, 7, 8

[67] Jimei Yang, Brian Price, Scott Cohen, Honglak Lee, and
Ming-Hsuan Yang. Object contour detection with a fully
convolutional encoder-decoder network. In IEEE Conf.
Comput. Vis. Pattern Recog., pages 193–202, 2016. 7

[68] Pengchuan Zhang, Xiyang Dai, Jianwei Yang, Bin Xiao, Lu
Yuan, Lei Zhang, and Jianfeng Gao. Multi-scale vision long-
former: A new vision transformer for high-resolution image
encoding. arXiv preprint arXiv:2103.15358, 2021. 2

[69] Zizhao Zhang, Fuyong Xing, Xiaoshuang Shi, and Lin Yang.
Semicontour: A semi-supervised learning approach for con-
tour detection. In IEEE Conf. Comput. Vis. Pattern Recog.,
pages 251–259, 2016. 8

[70] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang
Wang, and Jiaya Jia. Pyramid scene parsing network. In
IEEE Conf. Comput. Vis. Pattern Recog., pages 6230–6239,
2017. 2

[71] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang
Wang, and Jiaya Jia. Pyramid scene parsing network. In
IEEE Conf. Comput. Vis. Pattern Recog., pages 6230–6239,
2017. 6

[72] Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu,
Zekun Luo, Yabiao Wang, Yanwei Fu, Jianfeng Feng, Tao
Xiang, Philip HS Torr, et al. Rethinking semantic segmen-
tation from a sequence-to-sequence perspective with trans-
formers. In IEEE Conf. Comput. Vis. Pattern Recog., pages
6881–6890, 2021. 1, 2, 3, 4, 6

[73] Cheng Zou, Bohan Wang, Yue Hu, Junqi Liu, Qian Wu, Yu
Zhao, Boxun Li, Chenguang Zhang, Chi Zhang, Yichen Wei,
and Jian Sun. End-to-end human object interaction detection
with hoi transformer. In IEEE Conf. Comput. Vis. Pattern
Recog., pages 11825–11834, 2021. 2

	. Introduction
	. Related Work
	. Edge Detection with Transformer
	. Overview
	. Review Vision Transformer
	. Stage I: Global Context Modeling
	. Stage II: Local Refinement
	. Network Training

	. Experiments
	. Datasets
	. Implementation Details
	. Ablation Study
	. Comparison with State-of-the-arts

	. Conclusion and Limitation

