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Abstract

In this paper, we developed a novel tool called dy-
namic fractal analysis for dynamic texture (DT) classifi-
cation, which not only provides a rich description of DT
but also has strong robustness to environmental changes.
The resulting dynamic fractal spectrum (DFS) for DT se-
quences consists of two components: One is the volumet-
ric dynamic fractal spectrum component (V-DFS) that cap-
tures the stochastic self-similarities of DT sequences as 3D
volume datasets; the other is the multi-slice dynamic frac-
tal spectrum component (S-DFS) that encodes fractal struc-
tures of DT sequences on 2D slices along different views of
the 3D volume. Various types of measures of DT sequences
are collected in our approach to analyze DT sequences from
different perspectives. The experimental evaluation is con-
ducted on three widely used benchmark datasets. In all
the experiments, our method demonstrated excellent perfor-
mance in comparison with state-of-the-art approaches.

1. Introduction

Dynamic textures (DT) are video sequences of mov-
ing scenes that exhibit certain stationary properties in time
domain ([3, 6]). Such video sequences are pervasive in
real world, like sequences of rivers, water, foliage, smoke,
clouds, fire, swarm of birds, humans in crowds and etc. The
applications concerning such video sequences are plenty,
including surveillance, detection of the onset of emer-
gencies, and foreground and background separation (e.g.
[7, 13, 23]). In recent years, the study of dynamic textures
has started to attract attention of the computer vision com-
munity, with related topics ranging from DT modeling and

∗Y. Xu was partially supported by Program for New Century Excellent
Talents in University(NCET-10-0368), the Fundamental Research Funds
for the Central Universities(SCUT 2009ZZ0052) and National Nature Sci-
ence Foundations of China 60603022 and 61070091. H. Ling was sup-
ported in part by NSF Grants IIS-0916624 and IIS-1049032. H. Ji was
partially supported by AcRF Tier 1 R-146-000-126-112.

synthesis to recognition and classification. In this paper, we
focus on the development of effective classification tech-
niques for dynamic textures.

Different from static textures, dynamic textures not only
vary on the spatial distribution of texture elements, but also
vary on their organization and dynamics over time. One
main challenge in the study of dynamic textures is how to
reliably capture the motion behavior of texture elements,
i.e., the properties of dynamics of texture elements over
time. Existing approaches model the dynamics either by
treating videos as samples of stochastic dynamical systems
or by directly measuring the motion field of videos. These
approaches work well for dynamic textures with regular
motion. However, the effectiveness of existing approaches
is not satisfactory for dynamic textures with complex mo-
tions driven by non-linear stochastic dynamic systems with
certain chaos, e.g., turbulent water and bursting fire.

An interesting observation regarding the motion patterns
of many DT sequences is: Although their motion patterns
could be highly irregular with certain chaos, they are quite
consistent when viewed from different spatial and temporal
scales. In other words, similar mechanisms are operating at
various spatial and temporal scales in the underlying physi-
cal dynamics. Such multi-scale self-similarities are usually
referred as power law or fractal structure ([16]). The ex-
istence of fractal structures in a large spectrum of dynamic
nature images has been observed by many researchers. For
example, it is shown in [1, 5, 14] that the amplitude of tem-
poral frequency spectra A(f) of many video sequences, in-
cluding camera movements, weather and biological move-
ments by one or more humans, indeed fits 1/fβ power-law
models:

A(f) ∝ f−β ,

where f denote the frequency.
Motivated by the existence of stochastic self-similarities

in a wide range of dynamic textures, we propose to model
dynamic textures by using dynamic systems with self-
similarities, i.e., dynamic textures are likely to be gener-
ated by some mechanism with similar stochastic behavior
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operating at various spatial and temporal scales. Based on
fractal geometry theory, here we introduce a novel method
called dynamic fractal analysis that provides rich discrimi-
native information of such self-similarities of the underly-
ing system. The resulting DFS (dynamic fractal spectrum)
descriptor allows us to bypass the quantitative estimation
of the underlying physical model, which is challenging in
practice. Meanwhile, the proposed DFS descriptor is very
robust to environmental changes such as cluttering, occlu-
sions and view changes.

1.1. Previous work

Most DT recognition and classification methods can be
roughly categorized as either generative or discriminative
methods. The generative methods [2, 8, 12, 21, 22, 24, 28]
attempt to quantitatively model the underlying physical dy-
namic system that generates DT sequences and classify DT
sequences based on the system parameters of the corre-
sponding physical model. For example, in [24], each pixel
is expressed as a linear combination of the neighboring pix-
els in the spatio-temporal domain. A linear dynamic system
(LDS) is used in [22] to model DT processes and DT recog-
nition is done through an analysis on the resulting Stiefel
manifold. The features proposed in [8] are based on the pa-
rameters of a stationary multiscale autoregressive system.
A different distance measure is presented in [28] for com-
paring LDSs to achieve shift invariance. [2] brought a non-
linear model of DT by using the kernel principal component
analysis. [12] introduced a phase-based DT model for sev-
eral DT-related tasks.

In additional to the approaches mentioned above, some
methods are proposed to directly use the motion field infor-
mation for DT classification. The flow-based method pro-
posed by [3] is to convert the analysis on DT sequences
to the analysis on sequences of the static information by
using the instantaneous motion patterns estimated from se-
quences. In [18] and [20], DT analysis is done using sta-
tistical measurements on optical flow information of DT se-
quences. A metric of video sequences is defined in [15] us-
ing the velocity and acceleration fields estimated at various
spatio-temporal scales. Some methods rely on the informa-
tion extracted from certain transforms such as wavelet and
3D-surfacelet, e.g. [23] used spatio-temporal wavelet trans-
formations to decompose DT into different spatio-temporal
scales and measure outputs of each wavelet sub-band.

Alternatively, discriminative methods [21, 27, 31] have
been proposed for DT classification without explicitly mod-
eling the underlying dynamic system. In [27] spatiotempo-
ral filters are constructed specifically tuned up for certain
local DT structures with a few image patterns and motion
patterns. The descriptor proposed in [31] extends the lo-
cal binary pattern (LBP) of 2D image to the 3D spatial-
temporal volume. [21] combined local LDS model with

the bag-of-words model. Compared to generative methods,
discriminative methods tend to perform better in the task
of DT classification, as shown in experiments of some re-
cent works. The main advantage of discriminative meth-
ods lies in their robustness to environmental changes and
view changes. However, the merits of existing discrimina-
tive methods are quite limited for DT with complex mo-
tion, as they are not capable of reliably capturing inherent
stochastic stationary properties of such video sequences.

1.2. Our approach

The approach we proposed can be viewed as a discrim-
inative method with generative motivation, as we assume
DT sequences are generated by some non-linear stochas-
tic dynamic systems with certain inherent multi-scale self-
similarities as shown in previous studies [1, 5, 14]. Fractal
geometry theory [16] is known to be a powerful tool to ro-
bustly capture such similarities from local features. Moti-
vated by these observations, we developed a discriminative
method called dynamic fractal analysis to measure stochas-
tic self-similarities of DT using local features. As a re-
sult, the proposed dynamic fractal analysis actually has the
merits of both categories of approaches: The discriminative
power of generative method for modeling stochastic behav-
ior of DT and the robustness of discriminative methods to
environmental changes.

Dynamic fractal analysis is built on the concept of the
so-called fractal dimension, which measures the statistical
self-similarity of a point set in a multi-scale fashion. The
basic idea is to partition the pixels of all frames into dif-
ferent sets based on their local multi-scale behaviors under
some measures, such as intensity or normal flow. Then the
stochastic behavior of each pixel set is measured by its frac-
tal dimension from different perspectives. Detailed expla-
nation of dynamic fractal analysis is given in the following
sections.

It is noted that fractal dimension and fractal analysis have
been proposed in the literatures for static texture analysis.
For example, fractal dimension was first proposed by Pent-
land [17] for texture analysis, and later on the similar con-
cept is applied on static texture classification by replacing
fractal dimension using more advanced multi-fractal analy-
sis [25, 29, 30].

2. Basics on fractal analysis
In this section, we give a brief review on the theory of

fractal analysis and its numerical implementation. Inter-
ested readers are referred to [9, 16, 29] for more details.
Fractal analysis is built on the concept of fractal dimension
which was first proposed by Mandelbrot [16] as the mea-
surement of power law existing in many natural phenom-
ena. The fractal dimension is about self-similarity defined
as the power law which the measurements of objects obey at



various scales. One widely used fractal dimension in Geo-
physics and Physics is the so-called box-counting fractal
dimension. Let the n-dimensional Euclidean space Rn be
covered by a mesh of n-dim hypercubes with diameter 1

m .
Given a point set E⊂Rn, the box-counting fractal dimen-
sion β(E) of E is defined as the following ([9]):

β(E) = lim
m→∞

log #(E, 1
m )

− log 1
m

, (1)

where #(E, 1
m ) is the number of mesh hypercubes that in-

tersect E for m = 1, 2, .... In the numerical implementa-
tion, it can be done by using least squares fitting in the log-
log coordinate system with a finite sequence of ordered in-
tegers.

For the physical phenomena with mixtures of multiple
fractal structures, the so-called multi-fractal analysis ex-
tends the fractal dimension to describe and distinguish more
complex self-similarity behavior of the physical dynamic
systems. The extension is done as follows. Instead of as-
suming all points generated by the same mechanism, a mea-
sure function µ is first defined such that µ obeys the local
power law in terms of scale:

µ (Br (x)) ∝ rα(x), (2)

where Br (x) is a closed Borel hyper sphere with center
x and radius r, and α(x) is the Hölder exponent of x that
characterizes the local power law of the measurement µ.
α(x) can be estimated by the local density function ([9]):

α(x) = lim
r→0

logµ(B(x, r))

log r
. (3)

In numerical implementation, the density α(x) can also be
estimated by the least square fitting in the log-log coordi-
nate system with a finite sequence of ordered positive radius
r0 > r1 > · · · > rn.

The multi-fractal analysis is defined as a function f(α̂)
that collects the fractal dimensions of each point set in
which all points have the same Hölder exponent:

f(α̂) = β(Eα̂) , (4)

where Eα̂ = {x : α(x) = α̂} is the point set with same lo-
cal Hölder exponent. In other words, the multi-fractal anal-
ysis is about fractal dimensions of multiple point sets par-
titioned based on their local multi-scale behaviors on some
measure function µ.

3. Dynamic fractal analysis for DT
Based on fractal analysis, we developed the so-called

dynamic fractal analysis for DT and derived a descrip-
tor called dynamic fractal spectrum (DFS) which en-
codes strong discriminative information regarding multi-
scale self-similarities existing in DT.

3.1. Spatio-temporal measurement of pixels

It is seen from (2) and (3) that fractal analysis is con-
ducted on the measurement function µ which determines
how pixels are categorized. An accepted measurement
should partition pixels into different categories based on the
intrinsic physical meaning of pixels and the resulting pixel
partition should be robust to environmental changes. In our
dynamic fractal analysis, the following four measures are
chosen to examine DT from different perspectives.
Pixel intensity. Given a gray-scale DT sequence I(·, t), t =
1, 2, . . ., let I(p, t) denote the intensity value of the pixel p
in the sequence I(·, t). A straightforward measure is the
intensity:

µI(p0, t0) =

∫∫
B(p0,t0,rs,rt)

I(p, t)dpdt, (5)

where B(p0, t0, rs, rt) denotes a 3D cube centering at
(p0, t0) with spatial radius rs and temporal radius rt. The
measure µI measures the overall intensity in a space-time
neighborhood of the point (p0, t0).
Temporal brightness gradient. Besides the spatial mea-
surement, the temporal measure also plays an essential role
when describing the DT. Thus, the second measure used in
our method is the temporal brightness gradient:

µB(p0, t0) =

∫
B(p0,t0,rs)

∂I(p, t)

∂t
dp, (6)

whereB(p0, t0, rs) is the spatial square centering at (p0, t0)
with spatial radius rs (same as in µI ). Intuitively, µB mea-
sures the summation of the temporal intensity changes of
DT around the point (p0, t0).
Normal flow. Another measure related to temporal infor-
mation is the normal flow:

µF (p0, t0) =

∫
B(p0,t0,rs)

∂I(p, t)/∂t

‖ ∇I(p) ‖
dp. (7)

The normal flow is different from the temporal gradient in
the sense that it measures the motion of the pixels along the
direction perpendicular to the brightness gradient. Thus, it
is a measurement about edge motion. It is noted that al-
though optical flow is more informative for point-wise mo-
tion, it is not used in our analysis because it is a hard task to
reliably estimate optical flow field for chaotic motions.
Laplacian. The last measure we adopted in our dynamic
fractal analysis is the Laplacian:

µL(p0, t0) =

∫
B(p0,t0,rs)

∆I(p, t)dp, (8)



Figure 1. Examples of four types of measures. The first column
shows the frames extracted from three DT videos in DynTex [19]
that transformed to gray scale. The second to fifth columns show
the corresponding measures (5) – (8).

which encodes the information of the local co-variance of
the pixel intensity at (p0, t0) in the spatial-temporal domain.

The four measures quantify the local information of the
pixel in the spatio-temporal domain from different perspec-
tives, which leads to different pixel categorizations with dif-
ferent underlying physical implications. Both the intensity
measure µI and the temporal gradient measure µB directly
measure the 3D volume data from the spatio-temporal point
of view. The measure µI encodes the brightness informa-
tion and µB encodes the changes of brightness over the
time. The normal flow measure µF is a known quantity
in vision society that encodes reliable temporal changes of
edge points. The Laplacian µL measures the second-order
derivative information of brightness in the spatio-temporal
domain. See Fig. 1 for the illustrations of these measures.

3.2. Dynamic fractal spectrum

After defining the four spatio-temporal measurements,
µI , µB , µF and µL, we are ready to formulate the descrip-
tor for DT using dynamic fractal analysis, which is called
DFS (dynamic fractal spectrum). There are two compo-
nents in DFS: One is the volumetric DFS (V-DFS) compo-
nent that characterizes the statistical self-similarities of the
given DT sequence by viewing it as points collected in a 3D
volume; the other is the multi-slice DFS (S-DFS) compo-
nent that captures the statistical self-similarities and com-
plexities of the distribution of the repetitive patterns in 2D
slices of the 3D volume along three orthogonal axes. The
proposed method is outlined in Algorithm 1.

Volumetric DFS (V-DFS). A DT sequence can be viewed
as a 3D volume dataset and its self-similarity in the 3D
volume can then be measured by the vector of fractal di-
mensions in R3. In other words, DT is viewed as the vol-
ume data generated by some dynamic process in the spatio-
temporal domain R3 with 3D statistical self-similarities,
and the self-similarities are characterized by the multi-
fractal analysis in R3, denoted by V-DFS. The procedure
of computing V-DFS is as follows. Firstly, all pixels in

Algorithm 1 Dynamic fractal analysis (DFS)
Input: A sequence of image frames I
Output: DFS vector d

1. Compute four measures µI(x), µB(x), µF (x), µL(x)
for each pixel x of I.

2. Compute local density exponent α(x) for each pixel x
of I using (3) with respect to each measure.

3. Compute the DFS as follows.

V-DFS: Classify each pixel x in the sequence into
set E[αi,αi+1) if its Hölder exponent α(x) falls into
[αi, αi+1). Then for each set E[αi,αi+1), compute its
3D fractal dimension in the whole 3D spatio-temporal
domain by (1) in R3. Then the V-DFS vector g is de-
fined as the concatenation of all 3D fractal dimensions.

S-DFS: Compute the vector of fractal dimensions
for each 2D slice of the volume along the x, y and t
axis by using (4) in R2. Then compute the mean vec-
tor of all vectors of the corresponding 2D slices for
each axis. The S-DFS vector l is defined as the con-
catenation of these three mean vectors.

4. Concatenate V-DFS vector g and S-DFS vector l to
form the final DFS vector d.

Figure 2. Computation of V-DFS (details in §3.2).

the video are considered as points in the 3D volume and
are partitioned into many 3D point sets based on their local
multi-scale behaviors characterized by (3) in R3. Secondly,
the fractal dimension of each fractal point set is estimated
by the least squares fitting in the log-log coordinate system.
Lastly, the V-DFS is obtained by organizing the fractal di-
mensions of all fractal point sets into a vector. See Fig. 2
for an visual illustration of the procedure.

Multi-slice DFS (S-DFS). Aside from the global volumet-
ric self-similarity characterized by V-DFS, the local spatial
and temporal analysis provides more discriminative infor-
mation regarding the fractal structures existing in DT se-



Figure 3. Computation of S-DFS (details in §3.2).

quences. Thus, we introduce one more component called
S-DFS, which examines the self-similarity behavior of 2D
slices cut along three orthogonal axes in a DT volume. The
detailed procedure of computing S-DFS is described as fol-
lows. Firstly, we compute the 2D multi-fractal vectors for
all slices along x, y and t axes. For each slice, a vector
is obtained by calculating the fractal dimensions of all 2D
fractal point sets, which are formed by partitioning of all
pixels on this slice based on their Höder exponents. Then
for each axis, the mean of the 2D fractal dimension vec-
tors is calculated over all slices along this axis. The reason
of using the mean is to achieve the stability. At last, the
S-DFS vector is defined by concatenating the three mean
fractal dimension vectors with respect to two spatial axes
and one temporal axis. See Fig. 3 for an visual illustration
of the procedure. The volume slices of three axes and their
corresponding fractal dimension vectors are shown in Fig. 4
for three sample DT sequences. It is seen that strong frac-
tal structures indeed exist in the 2D slices of the DT. Also,
the slices from different axes illustrated different types of
fractal structures, which implies that S-DFS does capture
fractal structures from DT from different perspectives. The
complete S-DFS of four sample DT videos are shown in
Fig. 5. It is seen that by using different measures for pixel
categorization, the resulting S-DFS is also different.

3.3. Implementation details

Integral images. Recall that all four measurements are de-
fined by the summation of a special scalar function µI (or
µB , µF , µL) over many 3D cubes B(p0, t0, rs, rt) (or 2D
rectangles B(p0, t0, rs)). Such computations can be costly.
In our implementation, the Integral image technique[26] is
used to speed up the computation. The same technique is
also used in the computation of the fractal dimension, as
counting the nonempty box is equivalent to counting the
rectangles(cubes) with positive sum.

Figure 4. Three 2D slices of sample sequences from DynTex [19].
The first three columns show three sample 2D slices of each se-
quence along three orthogonal axes. The last column shows the
corresponding three fractal dimension vectors.

Intensity Temporal gradient Normal flow Laplacian

Figure 5. S-DFS of sample sequences. The first row shows one
key frame of each video. The second row shows the S-DFS vectors
by four types of measures, where the plots in blue, yellow, red and
green represent the results of sea-weaves, shower-strong, danube-
far and straw respectively.

Soft assignment. When we compute DFS for a given se-
quence, the local density α(p) of each pixel p is first com-
puted w.r.t. each measurement. Then, all pixels are parti-
tioned into different sets E[αi,αi+1), according to their local
density values. In [29], the partition is implemented by a
“hard” scheme, that is, a pixel x is assigned to E[αi,αi+1) iff
α(p) ∈ [αi, αi+1). Such scheme is vulnerable to quantiza-
tion errors, especially for the pixels with fractal dimension
close to the end points of the interval. To overcome this
weakness, we take a “soft” assignment strategy. Specifi-
cally, for a setE[αi,αi+1), its soft assignment functionmi(p)
is defined as

mi(p) =


1, if α(p) ∈ [αi, αi+1)

tansig
(
|α(p)−αi|

τ

)
, if α(p) ∈ Aαi,τ

0, otherwise,
(9)

where Aαi,τ = [αi − τ, αi) ∪ [αi+1, αi+1 + τ) and τ
is a predefined threshold. The soft alignment function (9)
allows intersection between two point sets with adjacent
Hölder exponent intervals. It is empirically observed that
the soft assignment improves the robustness of the fractal



dimension vector against quantization errors.
In our experiments, we noticed that the results are not

very sensitive to the number of levels of α in a reasonable
range. The threshold τ has only a little affect on the final
results since it is very small in implementation.

4. Experiment
While there exist many static texture datasets, only a

limited number of dynamic texture datasets are available
due to the difficulties in collecting DT sequences. There
are mainly three public DT datasets that have been widely
used for DT analysis: the UCLA dataset [6], the DynTex
dataset [18] and the DynTex++ dataset [11]. We test the
proposed method on all of them in comparison with state-
of-the-art DT classification approaches.

In our experiments, the color information is discarded
by converting all frames to gray-scale images. For the DFS
descriptor, the 16-dim V-DFS vector is computed by only
using the measurement (5). The S-DFS uses all four mea-
surements (5)-(8), and each generates a 75-dim vector (25
for each axis). The final DFS descriptor is the concatenation
of all these vectors, with the total dimension 316. The pa-
rameters are set as the following: rt = 2 for all the datasets,
rs = 5 for the UCLA and DynTex++ datasets, and rs = 6
for the DynTex dataset. We noted experimentally that the
DFS descriptor is insensitive to small perturbations of these
parameters.

4.1. Recognition on the UCLA dataset

The UCLA dynamic texture dataset has been widely
used in many previous studies [4, 6, 11, 21, 22]. It originally
contains 50 DT classes, each with four grayscale video se-
quences captured from different viewpoints. Fig. 6 shows
some samples from the dataset. There are several differ-
ent breakdowns when the dataset is used for evaluating DT
classification algorithms:

boiling fire flower fountain sea smoke water waterfall

Figure 6. Example snapshots of eight classes used in our experi-
ment from UCLA dataset.

50-Class: The classification rates for 50 classes are imple-
mented in [4, 11].
Shift-invariant recognition(SIR)-Class: In [4], each of
the original 200 video sequences is cut into non-overlapping
parts. Specifically, each sequence is spatially partitioned
into left and right halves and 400 sequences are obtained
in the end. The “shift-invariant recognition” ([4]) was im-
plemented to compare the sequences only between different

Table 1. The classification results (in %) on UCLA dataset. Note:
Superscripts “S”, “N” and “M” are for results using SVM, 1NN,
and maximum margin learning (followed by 1NN) [11] respec-
tively; “–” means “not available”.

Method 7-Class 8-Class 9-Class 50-Class SIR
[21] – 80S – – –
[4] 92.3N – – 81N 60N

[11] – – 95.6M 99M –
DFS 98.5N 99S 97.5S 100S , 89.5N 73.8N

halves to test the shift-invariance of the descriptors.
9-Class: In [11], 50 UCLA DT classes were clustered to
9 classes by combining the sequences from different view-
points , which were boiling water (8), fire (8), flowers (12),
fountains (20), plants (108), sea (12), smoke (4), water (12)
and waterfall (16), where the numbers denote the number of
the sequences in the dataset. The dataset is therefore very
challenging and serves as an excellent test bed for evaluat-
ing DT classification algorithms under viewpoint change.
8-Class: In [21], 9 classes used in [11] are further reduced
to 8 classes by removing sequences of “plants”, since it con-
tains too many sequences.
7-Class: In [4], the “semantic category recognition” was
also considered on the 400 sequences obtained by cutting
200 video sequences into non-overlapping parts. These 400
sequences were represented into the following semantic cat-
egories: flames (16), fountain (8), smoke (8), (water) turbu-
lence (40), (water) waves (24), waterfalls (64) and (wind-
blown) vegetation (240).

We compare our DFS descriptors with previously tested
methods in [4, 6, 11, 21, 22] and use the same experimental
setups. The classification accuracies are shown in Table. 1
and the confusion matrices are shown in Fig. 7. It is seen
that our approach achieves the best performance in all cases.

4.2. Recognition on the DynTex dataset

The DynTex dataset ([19]) is a large dataset devoted to
the study of DT. The dataset contains various kinds of DT
videos, ranging from struggling flames to whelming waves,
from sparse curling smoke to dense swaying branches. The
sequences in DynTex are taken under different environmen-
tal conditions involving scaling and rotation. Each sequence
is a color video with dimension 400 × 300 in space and
250 frames in 10 seconds, and de-interlaced with a spatio-
temporal median filter.

The DynTex dataset has been used for DT classifica-
tion experiments in previous study, e.g. [10, 12, 31]. How-
ever, these studies often use different experimental configu-
rations, e.g. different subsets and categories. We follow the
work in [31] since it not only gives a detailed description of
the configuration but also achieves very good recognition



7-Class 50-Class SVM

8-Class 50-Class NN

9-Class SIR

Figure 7. Confusion matrices of DFS on the UCLA dataset.

performances on DT by using the LBP-TOP.
First, a version of the DynTex dataset containing 35 DT

categories is used. Then, each DT sequence is divided into
eight non-overlapping subsequences with random meaning-
ful sizes along all dimensions. In addition, two subse-
quences are generated from the original sequence by ran-
domly cutting on the temporal axis. Consequently, each
original sequence creates ten sample subsequences with
various dimensions. These samples share the same class
label of the original sequence. Finally, all such samples are
used in the DT classification task.

The evaluation is conducted using the leave-one-group-
out scheme and average performance over 2000 runs is re-
ported. For each run, one sample per class is picked to form
the testing set and leave the rest samples as the training set.
Each class is then represented by the mean feature vector
over the samples in the training set. After that, each test
sample is classified according to the class that has the small-
est `1 distance in the feature space. Finally the average clas-

Table 2. Results in leave-one-out-test (%) on DynTex dataset
LBP-TOP [31] DFS

non-weighting 95.71 96.28
best-weighting 97.14 97.63

Figure 8. Confusion matrices by our method on the DynTex (left)
and DynTex++ (right) datasets.

sification rate over all runs is reported.
The classification rate of the proposed method is sum-

marized in Table 2. Similar to [31], we also tested dif-
ferent weights for each feature dimension to improve the
performance. It can be seen from Table 2 that our method
performs very well, with recognition rates of 96.28% and
97.63% for non-weighting and best-weighting respectively.
Both scores outperform the best results reported in [31].
The confusion matrix is shown in Fig. 8.

It is worth noting that our descriptors require much fewer
parameters than those in [31]. Only three simple parameters
are considered: the radius rs shared in (5) - (8), the radius rt
in (5) for estimating the local density function, and the level
for counting the fractal dimension. In practice, we found
them rather easy to be determined and the performance is
insensitive within reasonable ranges.

4.3. Recognition on the DynTex++ dataset

The DynTex++ dataset proposed in [11] is a challenging
dataset comprised of 36 classes of dynamic texture, each of
which contains 100 sequences of a fixed size 50× 50× 50.
The dataset is designed carefully to provide a rich and rea-
sonable benchmark for DT recognition. We used the same
experimental setting as that in [11] in the evaluation. Using
SVM as the classifier, we train on 50% of the dataset and
test on the rest. We applied our DFS descriptor on Dyn-
Tex++ and obtained an average recognition rate of 89.9%,
which significantly outperforms previously tested methods
(Table 3). The classification rates for each class are shown
in Fig. 9 and the confusion matrix is shown in Fig. 8.

5. Conclusion
We presented a powerful DT descriptor using dynamic

fractal analysis developed in this paper. The proposed DFS
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94.24 99.60 93.36 92.24 98.56 98.48 81.44 100.00 74.88 100.00 95.28 95.60

68.56 95.12 58.00 89.36 71.76 86.56 97.52 78.80 90.48 95.68 97.84 77.76
Figure 9. Classification rate (%) on each class of the DynTex++ dataset.

Table 3. Results (%) on DynTex++ dataset
Method DL-PEGASOS [11] DFS

Classification rate 63.7% 89.9%

descriptor consists of two components: V-DFS component
and S-DFS, which capture the 3D fractal structures in DT
from different perspectives. DFS effectively captures the
stochastic self-similarities existing in a wide range of DT
sequences. Experiments on the UCLA, DynTex and Dyn-
Tex++ datasets demonstrated that our proposed descriptor
compares favorably against existing state-of-the-art meth-
ods.
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