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Abstract

Visual tracking plays an important role in many com-
puter vision tasks. A common assumption in previous meth-
ods is that the video frames are blur free. In reality, mo-
tion blurs are pervasive in the real videos. In this paper
we present a novel BLUr-driven Tracker (BLUT) frame-
work for tracking motion-blurred targets. BLUT actively
uses the information from blurs without performing deblur-
ring. Specifically, we integrate the tracking problem with
the motion-from-blur problem under a unified sparse ap-
proximation framework. We further use the motion infor-
mation inferred by blurs to guide the sampling process in
the particle filter based tracking. To evaluate our method,
we have collected a large number of video sequences with
significant motion blurs and compared BLUT with state-
of-the-art trackers. Experimental results show that, while
many previous methods are sensitive to motion blurs, BLUT
can robustly and reliably track severely blurred targets.

1. Introduction
Visual tracking plays an important role in surveillance,

robotics, human computer interaction, and medical imag-
ing [30]. Tremendous efforts have been focused on robustly
handling issues such as noise [23], illumination [2], occlu-
sions [20] and background clutter [10]. A common assump-
tion in these algorithms is that the video/images are blur
free. In reality, motion blurs are pervasive in the real videos
due to the low speed of the camera and the fast motions
of the target, and they confound visual tracking tasks by
destroying both critical features of the target and the obser-
vation model in existing approaches. For example, many
traditional tracking algorithms will easily fail due to high
residuals between the image model and the measurements
(Fig. 5).

Tracking blurred target is hard due to several challenges:
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(1) The degradation in appearance frequently brings trou-
bles to the target inference; (2) The accompanied abrupt
motion brings large uncertainty to the estimation of target
position; and (3) The degree of blur itself can vary signif-
icantly over frames, ranging from blur-free to drastic blur.
A natural solution is to first deblur the contents and then
apply tracking. In image processing, a large number of ro-
bust deconvolution methods have been developed, from the
earlier approaches based on regularization [24] to the lat-
est ones using image statistics [8, 14], edge priors [15], and
sparse representation [17, 3]. However, since motion blurs
in video resemble a box filter that destroys high-frequency
features, results generated by these deconvolution meth-
ods often contain strong ringing artifacts, creating harmful
“fake” features that further complicate the tracking process.
Furthermore, most deblurring algorithms are computation-
ally expensive and therefore not suitable for time sensitive
visual tracking tasks. In addition, dealing simultaneous dif-
ferent degrees of blur effects is not a trivial problem.

Two notable previous studies on tracking through blur
are the work of [12, 4] and the motion-from-blur tech-
niques [5, 6]. In [12], the blurred regions are matched by
computing the matching score in terms of the region de-
formation parameters and two motion vectors, and then a
local gradient descent technique is employed. The assump-
tion there is that the blurred target appears highly coherent
in the video sequence and the motion between frames are
small. In [4], mean-shift tracker with motion-blurred tem-
ples is adopted for motion-blurred target tracking. Dai and
Wu [5] treated motion blurs as an alpha matte for estimat-
ing the point spread function (PSF). Ding et al. [6] used
frequency image statistics as constraints for recovering the
motion parameters. These methods assume that the blur re-
gions have been roughly segmented whereas our goal is to
automatically track these regions over time.

In this paper we present a novel visual tracking tech-
nique called the BLUr-driven Tracker (BLUT) for tracking
motion-blurred targets. BLUT is based on the observation
that although motion blurs degrade the visual features of the



Figure 1. Overview of the proposed BLUT tracker.

target, they, at the same time, provide useful cues about the
movements to help tracking. Our solution, therefore, aims
to combine blur insensitivity and blur estimation in a unified
framework for visual tracking.

Our method follows the “analysis by synthesis” philos-
ophy by incorporating the blur templates into the appear-
ance space for modeling blur degradations. We attack the
three blur-related challenges in a unified fashion. First, we
select the target candidates from the blur-enhanced appear-
ance space by solving an ℓ1-regularized least squares prob-
lem. The candidate with the smallest projection error cor-
responds to the tracking target. This significantly improves
the robustness of target inference. Second, the above sparse
reconstruction provides a natural way to estimation the dis-
tribution of the blur motion at the current frame. This esti-
mation is then used to guide sample propagation in a parti-
cle filter framework over time. Third, the variation of blur
is naturally addressed by encoding different degrees of blur
in the template set.

To evaluate our method, we have collected a set of video
sequences with significant motion blurs1. We tested the pro-
posed approach on these sequences and observed promising
tracking performances in comparison with several state-of-
the-art trackers.

It is worth noting that our study shares similar philoso-
phy with recent studies of deblurring in using sparse rep-
resentation ([17, 3], etc). Being an ill-posed problem, de-
blurring by itself is an open problem. Our motivation, in-
stead, is to use the representation for target inference and
motion distribution estimation, without explicitly deblur-
ring the input video. In other words, our blur-driven tracker
bypasses the difficult (and unnecessary) deblurring proce-
dure, but integrates the blur information seamlessly into the
visual tracking process. The effectiveness of this scheme is
clearly demonstrated in the experiments. The work in [4]

1http://www.dabi.temple.edu/ hbling/data/TUblur.zip

is the most related work to ours in that both use blur tem-
plates for tracking. In comparison, our method is different
in several aspects: (1) our method does not distinguish lo-
cal and global blurs and therefore can handle blurs caused
by both target and camera motions; (2) Our method estimate
blur effects directly through target inference and therefore
requires no off-line training; and (3) We use particle filter
framework while mean-shift is used in [4].

Overview. Similar to many tracking algorithms, our pro-
posed tracker has two closely related components: object
representation (§2) and sequential state inference (§3). For
object representation, we introduce blur templates into the
standard template set to build an enriched template sub-
space. Then, we model a target with a sparse approximation
using these templates as inspired by recent work on sparse
visual tracking [19]. This representation not only improves
the tracking accuracy against motion blur, but also estimates
the distribution of the target motion. For sequential state es-
timation, we use the particle filter framework [11] to guide
the tracking process. The estimated motion distribution is
then integrated into the framework and acts as a guide for
the particle propagation. Fig. 1 illustrates the processing
pipeline of our blur-driven visual tracker. An outline of our
tracking algorithm is shown in Algorithm 1.

2. Object Representation and Blur Estimation
using Blur Templates

2.1. Subspace Representation

Inspired by recent work on sparse representation for vi-
sual tracking [19], we use a template subspace representa-
tion to model the appearance of tracking target. To handle
the blur effects in the target’s appearance, we introduce blur
templates to augment the template set. This expanded set is
then used to span the subspace. We follow notations in [19]
whenever applicable.



Let y ∈ Rd (we concatenate pixel intensities into a vec-
tor) be the appearance of a tracking target. It is approxi-
mated by using a low dimensional subspace spanned by a
set of target templates [Ta,Tb],

y ≈ [Ta,Tb]

[
a
b

]
, (1)

where Ta = [t1, · · · , tna ] ∈ Rd×na containing na nor-
mal templates and Tb ∈ Rd×nb containing nb blur tem-
plates which will be described later; accordingly, a =
(a1, a2, · · · , ana)

⊤ ∈ Rna and b ∈ Rnb are approximation
coefficients named normal coefficients and blur coefficients
respectively.

The normal templates Ta are obtained from unblurred
object patches, which are usually selected manually or by
detection algorithms in the first frame. The blurred tem-
plates Tb are automatically generated from normal tem-
plates to take into account different blur effects. This repre-
sentation is illustrated in Fig. 2.

2.2. Blur Template

Let I be the blur-free (latent) image of a tracking tar-
get. A blurred version Ib of the target can be modeled as
convolving I with a Gaussian kernel kv representing a 2D
motion, i.e.:

Ib(p) = kv ⊗ I(p) , (2)

where vector v encodes both the direction and the magni-
tude of the motion. Since the kernel kv is symmetric, the
motion blur kernel kv is therefore equivalent to k−v. Equa-
tion (2) essentially interprets motion blurs at a pixel p as an
integration over p’s neighboring pixels.

To capture different blur effects, we consider different
potential motion blurs governed by the parameter pair θ and
l, such that θ is used for the motion direction and l for speed.
In our implementation, we sampled on nθ = 8 different
directions Θ = {θ1, · · · , θnθ

} and nl = 8 different speeds
L = {l1, · · · , lnl

}. Consequently we have nθ × nl blur
kernels K = {kθ,l : θ ∈ Θ, l ∈ L}.

Theoretically we can apply the kernels to all normal tem-
plates in Ta. In our implementation, however, we only use
the normal template t1 that was manually selected in the
first frame. (other normal templates are shifted from it in the
first frame). In practice we found that this choice performed
well and was computationally efficient. In summary, the
blur template set Tb is now defined as

Tb = [t1,1, · · ·, t1,nl
, t2,1, · · ·, t2,nl

, . . . , tnθ,1, · · ·, tnθ,nl
] ,

where ti,j = t1 ⊗ kθi,lj is the (i, j)th blur template and we
have in total nb = nθ ×nl such templates. Accordingly, for
the blur coefficients we have b = [b⊤

1 , · · · ,b⊤
nθ
]⊤, where

bi = (bi,1, bi,2, · · · , bi,nl
)⊤ ∈ Rnl are coefficients for the

ith direction.

2.3. Simultaneous Target Searching and Blur Esti
mation Through ℓ1 Minimization

We are now ready to solve the linear system in (1). A
traditional solution is to use least squares approximation,
which has been shown in [19, 16] to be less impressive than
the sparsity constrained version. In fact, sparsity has been
recently intensively exploited for discriminability and ro-
bustness against appearance corruption [28].

Inspired by these studies, we rewrite (1) to take into ac-
count approximation residuals,

y = [Ta,Tb, I]

a
b
e

 ∧
= Tc , (3)

where I is the d × d identity matrix containing d so called
trivial templates, e = (e1, e2, · · · , ed)⊤ ∈ Rd are triv-
ial coefficients, T = [Ta,Tb, I] ∈ Rd×(na+nb+d) and
c = [a⊤,b⊤, e⊤]⊤. The trivial templates and coefficients
are included to deal with image contaminations such as oc-
clusion.

To achieve a sparse solution, we add an ℓ1-regularization
term [7], which leads to the following ℓ1-regularized least
squares problem

min
c

∥ Tc − y ∥22 +λ ∥ c ∥1 , (4)

Here, we adopt the recent proposed approach [18] for
the minimization task. The solution to (4), denoted as
ĉ = [â⊤, b̂

⊤
, ê⊤]⊤, is then used to find the tracking result.

Specifically, we choose the candidate with the minimum re-
construction error

ε(y) =
∥∥∥y − Taâ − Tbb̂

∥∥∥2
2

(5)

as the tracking target. We also use the error to derive the
observation likelihood which helps propagate the tracking
to next frame (§3).

The blur templates are used to give our approach blur in-
sensitivity. Furthermore, the blur coefficients b provide rich
information about the distribution of motion blur. This can
be attributed to the sparse basis selectivity of the ℓ1 min-
imization. Intuitively, when there is little blur, a target is
clear and therefore only normal templates give a good re-
sponce in the ℓ1 minimization. On the other hand, when
there is motion blur, say along direction θ, blur templates
along the direction respond actively. Such phenomenon is
illustrated in Fig. 2.

Based on this observation, we use distribution of blur
coefficients for blur detection and for estimating the motion
distribution. We then use the results, in probabilistic fash-
ion, to guide the sample propagation in the particle filter
framework as described in the next subsection.



Figure 2. Subspace representation for blur estimation using blurred templates.

3. Blur Driven Visual Tracker
3.1. Particle Filter

We use the particle filter framework [11] for the pro-
posed BLUT tracker to integrate the blur insensitivity and
motion estimation, achieved using the blur template sub-
space. The particle filter is a Bayesian sequential impor-
tance sampling technique which is widely used to approx-
imate the posterior distribution of state variables for a dy-
namic system. The framework contains two major steps:
prediction and update. In the tracking scenario, we use
a state vector xt to describe the location and pose of the
tracking target at time t. The predicting distribution of xt
given all available observations (i.e., appearances for track-
ing) y1:t−1 = {y1, y2, · · · , yt−1} up to time t− 1, denoted
by p

(
xt

∣∣y1:t−1

)
, is recursively computed as

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 .

At time t, the observation yt is available and the state
distribution is updated using Bayes rule

p (xt |y1:t ) =
p (yt |xt ) p

(
xt

∣∣y1:t−1

)
p
(
yt

∣∣y1:t−1

) ,

where p (yt |xt ) denotes the observation likelihood. The
posterior p (xt |y1:t ) is approximated by a finite set of np

weighted samples {(xit, wi
t) : i = 1, · · · , np}, where

wi
t is the importance weight for sample xi

t. The sam-
ples are drawn from the so called proposal distribution
q (xt |x1:t−1, y1:t ) and the weights of the samples are up-
dated according to the following formula:

wi
t = wi

t−1

p
(
yt

∣∣xit ) p (xit
∣∣xit−1

)
q (xt |x1:t−1, y1:t )

.

To avoid degeneracy, resampling is applied to generate a set
of equally weighted particles according to their importance
weights.

To use the particle filter framework, we modelled the ob-
servation likelihood and the proposal distribution. For the
observation likelihood p (yt |xt ), we use the reconstruction
error ε(yt) defined in (5)

p (yt |xt ) ∝ exp(−γε(yt)) (6)

for a constant γ. We model the proposal distribution
q (xt |x1:t−1, y1:t ), by fusing information from different
sources described in the next subsection.

3.2. Blurdriven Proposal Distribution

It is well known that a good proposal distribution can
make the sampled particles more efficient [27, 21]. In this
paper, we propose to use the estimated motion information
from the ℓ1 minimization to guide the particle sampling pro-
cess. The idea is to integrate estimated motion informa-
tion from different sources into the proposal distribution.
Specifically, we use the following model:

q(xt|x1:t−1, y1:t) = (w1 + wa)p(xt|xt−1) +

w2p(xt|xt−1, xt−2) +

nθ∑
i=1

wb,iqi(xt|xt−1, yt−1) ,
(7)

where p(xt|xt−1) = Φ(xt−1, σ1) is used for the first-
order Markov transition (Φ(., σ) for Gaussian with vari-
ance σ); p(xt|xt−1, xt−2) = Φ(xt−1 + ut−1, σ2) encodes
the second-order Markov transition (ut−1 = xt−1 − xt−2);
and qi(xt|xt−1, yt−1) is based on the blur motion estima-
tion along direction θi. The weights w1, w2 > 0 are pre-
defined to avoid degenerate cases. Other weights are de-
rived from the ℓ1 minimization: wb,i =

∑nl

j=1 bi,j and
wa =

∑na

i=1 ai. The weights are normalized such that
w1 + w2 + wa +

∑nθ

i=1 wb,i = 1.
For qi(xt|xt−1, yt−1), we use the blur coefficients bi

along direction θi,

qi
(
xt

∣∣xt−1, yt−1

)
= Φ(xt−1 + vi,Σi) ,
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Figure 3. Blur-driven particle sampling. Left: Tracking success
with the blur-driven particle sampling. Right: Tracking failure
with the traditional first-order Markov transition. Green: tracking
result of previous frame; Red: tracking result of current frame;
Blue: particles sampled by the blur-driven proposal. Yellow: par-
ticles sampled by the traditional first-order Markov transition.

Algorithm 1 BLUT: BLUr-driven Tracker
1: At t = 0, initialize template set Ta and Tb

2: Initialize particles
3: for t = 1, 2, . . . do
4: for each sample i do
5: Propagate particles xit with respect to the blur-

driven proposal q(xt|x1:t−1, y1:t) via (7).
6: Compute the transformed target candidate yit from

xi
t.

7: Calculate the likelihood p(yit|xit) via (5)(6).
8: end for
9: Locate the target based on the Maximum Likelihood

estimation.
10: Estimate the blur and motion via the blur coefficients

of the estimated target.
11: Resample particles.
12: end for

where vi = hi(cos θi, sin θi)
⊤ denotes the estimated mo-

tion along direction θi such that hi =
∑nl

j=1 bi,j lj is the
average motion magnitude in the direction with degree θi;
and Σi = Σ(θi, σx, σy) is the covariance matrix with orien-
tation θi and eigen-values σx, σy . In our experiment, we set
σx = hi and σy = σx/2.

Note that the direction of vi should be consistent with
ut−1 and the original angle range estimated by our sparse
approximation is (0, π]. θi is adjusted to θi + π according
to which angle has the minimum difference to the direction
of ut−1.

It is worth noting that for a blur-free frame, the estimated
wb,i tends to vanish and our proposed proposal distribu-
tion (7) degrades to the common proposal distribution used
in many tracking approaches. This way, our tacker unifies
the tracking over blur-free frames and blurred frames.

4. Results and Discussion

In our framework, we model the state variable xt using
three parameters xt = (tx, ty, s), where (tx, ty) are the 2D

translation parameters and s is the scale variation param-
eter. The region of interest yt is cropped from the image
and scaled to be the same size as the target templates. The
observation model p (yt|x t) reflects the similarity between
a target candidate and the target templates. In this paper,
p (yt|x t) is formulated from the error approximated by the
target templates using ℓ1 minimization.

In order to evaluate the performance of the proposed
tracking approach, we collected seven blur video sequences,
among which three are taken indoors and the others are of
an outdoor traffic scene. We created a tracking groundtruth
for quantitative evaluation by manually annotating the data.
In total there are 3522 frames used in the experiments;
among them around 10% are clear images and 70% have
significant blurring effects. Sample clear and blurred frames
can be seen in Fig. 5.

We compared the proposed BLUT algorithm with eight
state-of-the-art visual trackers. For seven of these track-
ers, VTD tracker [13], GKT tracker [26], L1 tracker [19],
IVT tracker [25], MIL tracker [1], ICTL tracker [29], OAB
tracker [9], we use the publicly available code or the code
from the original authors. For the other tracker, the clas-
sical hsvPF tracker [22], we implemented it ourselves with
careful parameter tuning. Note that IVT, MIL, L1, OAB and
our proposed BLUT only use grayscale information to track
target, while the other algorithms need color information to
perform tracking. In our experiments using the public track-
ers we used the same parameters as the authors. During our
experiments with our proposed BLUT we used the same
parameters for all of the test sequences. The quantitative
results are summarized in Table 1. The tracking results for
all the trackers are illustrated in Fig. 5. More tracking re-
sults can be found in the supplementary material. Below is a
more detailed discussion of the comparison tracking results.

4.1. Qualitative Evaluation

We first test our algorithm on the sequences from the in-
door scene, where three sequences, owl, face and body are
used. The target in sequence owl is a plane object, which
is frequently and severely blurred. Fig. 5(a) shows a sam-
pling tracking results using different schemes on the owl
sequence. From the results of #154 and #155, we can see
that when target moves fast and blurs severely, most tra-
ditional trackers could not follow it. While our proposed
BLUT can track the target throughout the sequence. This
is because our blur-driven proposal could obtain efficient
samples (illustrated in Fig. 3) effectively approximating the
blurred target using the proposed blur template subspace
representation.

In sequence face, the target is blurred together with a
slight pose variation (#429). The image results are illus-
trated in Fig. 5(b). We can see from #302 and #303 that the
L1-tracker loses the target due to the large translation of the



GKT [26] MIL [1] OAB [9] hsvPF [22] ICTL [29] VTD [13] IVT [25] L1 [19] BLUT
owl 0.121 0.467 0.544 0.088 0.027 0.683 0.358 0.479 0.011
face 0.081 0.523 0.960 0.069 0.044 0.123 0.039 0.560 0.027
body 0.082 0.613 0.244 0.170 0.105 0.388 0.334 0.331 0.033
car1 0.317 0.626 1.012 0.594 0.193 0.862 0.639 0.622 0.019
car2 0.697 0.775 0.510 0.272 0.297 0.563 1.679 0.555 0.023
car3 0.697 0.569 0.345 0.145 0.152 0.328 0.321 0.538 0.013
car4 0.871 0.974 0.516 0.670 0.304 0.260 0.248 0.452 0.050
Ave. 0.409 0.650 0.590 0.287 0.160 0.458 0.517 0.505 0.025

Table 1. The average tracking errors. The error is measured using the Euclidian distance of two center points, which has been normalized
by the size of the target from the ground truth. The last row is the average error for each tracker over all the test sequences.
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Figure 4. The tracking error plot for each sequence we tested on. The error is measured the same as in Table 1.

target, while our blur-driven proposal could obtain efficient
samples to catch the target.

Fig. 5(c) illustrates the tracking results in sequence body.
The target is moving and is severely blurred. Again, our
tracker successfully tracks the target throughout the se-
quence. We can see from #301 and #302 that our BLUT
handles the fast motion together with severe blurring very
well, but most other methods perform poorly.

Finally, all the trackers were tested on the sequences cap-
tured from outdoor traffic scene, including four sequences
named as car1, car2, car3 and car4 respectively. The re-
sults for car1 are shown in Fig. 5(d), as we can see from
#521, due to the fast motion and blur the IVT tracker drifts
from the target and loses the target in the next frame #522,
while our tracker follows the target successfully. Fig. 5(e)
shows the results for car2. Our tracker can track the target
throughout the sequence as it experiences blur and a large
change in scale (#581). However, in #79 all other track-
ers are distracted by the sky whose color is similar to the
car. The results for car3 are shown in Fig. 5(f), from which
we notice that the VTD tracker (yellow bounding box) is
drifting in #91 and lost after #119. Fig. 5(g) illustrates the

tracking results for car4. Again, our BLUT tracks the target
throughout the sequences.

4.2. Quantitative Evaluation

To quantitatively evaluate all the trackers, we manually
labeled the ground truth bounding box of the target in each
frame. In Table 1 we give the average tracking errors of
each approach in all sequences. From this statistical re-
sult we can see that although all the state-of-the-art tradi-
tional tracking approaches cannot track the blurred target
well, our proposed BLUT can track the blurred target ro-
bustly. We can also see that all the trackers which update
the target model online, e.g. MIL, OAB, IVT, VTD and L1,
give the less reliable results. We argue that the traditional
model update scheme does not work on the blurred target.
This is why we do not update the tracker for our proposed
BLUT. However, model update is very important when the
target has other deformations, such as pose variations and
illumination changes. Updating the target model in pres-
ence of blur is our future work. Fig. 4 illustrates the track-
ing error plot for each algorithm on each testing sequence.
Each subfigure corresponds to one testing sequence, and in



#48 #154 #155 #278 #370 #471

(a)
#154 #163 #302 #303 #331 #429

(b)
#15 #37 #119 #223 #301 #302

(c)
#9 #193 #430 #521 #522 #680

(d)
#79 #191 #284 #339 #508 #581

(e)
#91 #119 #146 #201 #268 #299

(f)
#58 #272 #273 #274 #292 #371

(g)

Figure 5. Tracking results of different algorithms. Legend is the same as in Fig. 4. Sequence names are owl(a), face(b), body(c), car1(d),
car2(e), car3(f) and car4(g).

each subfigure, nine different colored lines represent dif-
ferent trackers. Our proposed BLUT performs better than
other state-of-the-art trackers in all examples as shown in
the figure and in Table 1.

The reason that BLUT performs well is two-folded: (1)
BLUT uses blur templates in addition to the normal tem-
plates. This improves the appearance representation in the
presence motion blurs; and (2) BLUT employs motion in-
formation estimated from the blur to improve the results.
Under the ℓ1 minimization framework, BLUT simultane-
ously tracks the target and estimates the motions.

To further evaluate the effectiveness of the blur template

and blur-driven proposal, we designed two trackers by ex-
clude related information from BLUT. The first one, named
LnP (L1 no proposal), is constructed by replacing blur-
driven proposal with the common used proposal p(xt|xt−1).
The second one, named LnB (L1 no blur template), ex-
cludes blur templates from LnP. Note that LnB can also be
viewed as the L1 tracker without model update. We com-
pare the proposed BLUT tracker with the two trackers along
with the L1 tracker on all seven blurred sequences. Some
example results are shown in Fig. 6. From the results we can
see that our BLUT tracker gives better results, which can be
attributed to both blur templates and blur-driven proposal.



#279 #384 #473 #154 #304 #315

#517 #522 #657 #79 #143 #501

Figure 6. Effects of blur templates and blur-driven proposal. Red: BLUT; Green: L1 tracker; Blue: LnB tracker; Black: LnP tracker.

5. Conclusion
We have presented a novel BLUr-driven Tracker (BLUT)

framework for tracking motion-blurred targets. BLUT ac-
tively uses the information from blurs without performing
deblurring. Specifically, we have introduced the blur tem-
plate subspace and integrated it with the sparse tracking
framework. To further improve robustness, we have used
blur-driven distribution to guide particle sampling in the
particle-filter based tracking framework. Experimental re-
sults on a large number of data have shown that BLUT can
robustly track motion-blurred targets and outperforms eight
state-of-the-art trackers. In the future we plan to exploit
other discriminative models for blur-insensitivity. In addi-
tion, using the blur estimation to intelligently update tem-
plate set is also worth investigating.
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