
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL X, NO. Y, MONTH YEAR 1

ARCHIE++ : A Cloud-enabled Framework for
Conducting AR System Testing in the Wild

Sarah M. Lehman, Semir Elezovikj, Haibin Ling, and Chiu C. Tan

Abstract—In this paper, we present ARCHIE++, a testing framework for conducting AR system testing and collecting user feedback in
the wild. Our system addresses challenges in AR testing practices by aggregating usability feedback data (collected in situ) with
system performance data from that same time period. These data packets can then be leveraged to identify edge cases encountered
by testers during unconstrained usage scenarios. We begin by presenting a set of current trends in performing human testing of AR
systems, identified by reviewing a selection of recent work from leading conferences in mixed reality, human factors, and mobile and
pervasive systems. From the trends, we identify a set of challenges to be faced when attempting to adopt these practices to testing in
the wild. These challenges are used to inform the design of our framework, which provides a cloud-enabled and device-agnostic way
for AR systems developers to improve their knowledge of environmental conditions and to support scalability and reproducibility when
testing in the wild. We then present a series of case studies demonstrating how ARCHIE++ can be used to support a range of AR
testing scenarios, and demonstrate the limited overhead of the framework through a series of evaluations. We close with additional
discussion on the design and utility of ARCHIE++ under various edge conditions.

Index Terms—Augmented reality, testing and debugging, mobile applications, human-centered computing

✦

1 INTRODUCTION

Augmented reality (AR) systems are ones which leverage
knowledge about the environment to generate and integrate
virtual content into the user’s experience of the real world.
These systems are increasing in popularity and prevalence
with applications in domains such as manufacturing [24],
[37], healthcare [15], [47], education [12], [20], retail [17],
[22], and beyond. AR applications for mobile devices such
as smartphones and tablets are some of the most popular;
indeed, the AR social media application Snapchat [27] has
been downloaded and installed over 1 billion times from the
Google Play marketplace.

As mobile AR systems become more commonplace,
there is a corresponding need for tools to help test them.
Such systems are comprised of many different technological
components, such as computer vision and machine learning
modules, the user interface implementation, handling of
sensor data streams, and any additional boilerplate logic
needed just to run on a particular device (e.g. Android,
iOS, etc.). There are many places for bugs to appear, both
within and between components. While testing in the lab is
an effective first step in identifying and “squashing” bugs,
the overly controlled nature of laboratory test conditions
do not present a realistic view of system performance and
usability. Eventually developers will want to transition to
testing in the wild, that is, giving the application to testers
to use in their day-to-day lives. This, however, introduces
even more variables, as testers are now unconstrained in
their environments and interactions with the app. Certain

• Ms. Lehman, Mr. Elezovikj, and Dr. Tan are with Temple University,
Philadelphia PA 19122. Email: {smlehman, semir, cctan}@temple.edu

• Dr. Ling is with Stony Brook University, Stony Brook NY 11794.
Email: hling@cs.stonybrook.edu

application components, such as computer vision and ma-
chine learning modules, can be notoriously sensitive to
unconstrained conditions as environmental factors such as
ambient light levels, user movement speed, viewing angle,
level of background processing, and many other factors can
have direct impacts on the module’s ability perform its task.
These are known as edge cases, that is, scenarios in which
unanticipated or extreme system inputs yield undesirable
outputs. Edge cases can be particularly difficult to detect,
as the cost for exhaustively testing an AR system will every
possible input can be prohibitively high.

In addition to system performance and edge case testing,
there is a human aspect which makes mobile AR system
testing unique. Because the virtual content generated by the
system is integrated directly into the user’s experience of the
real world, incorrectly chosen or poorly placed and format-
ted virtual content can have very real impacts on the user.
Many AR system users experience “simulator sickness”, or
nausea and disorientation caused by a disparity between the
appearance and movement of virtual content compared to
how the user expects real-world objects to move [32]. This
is particularly prevalent with testers using head-mounted
displays (HMDs) such as the Microsoft HoloLens [26], [48].
Even in handheld systems, virtual content in mobile AR
apps has the potential to obscure and distract from impor-
tant real-world content, such as street signs or approaching
cars when playing Pokemon Go, which has significant im-
pacts to user safety [14], [29].

These sorts of issues are typically identified through
usability testing, where human testers are presented with
the system, asked to perform a set task, and then asked
for feedback on how well the system performed for the as-
signed use case. Traditional methods of feedback collection
are limited, however, in that, while they can be reliable when
reporting satisfactory system use, they fail to capture any



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL X, NO. Y, MONTH YEAR 2

(a) (b) (c)

Fig. 1: Screenshots of ARCHIE++ in use; showcasing prototype comparing (a) small and (b) large text sizes for object labels,
and (c) collecting feedback with form overlaid on top of app UI

TABLE 1: Summary of functional additions when using
ARCHIE++ vs. the original system [33]

ARCHIE 1.0 ARCHIE++
Configurable multi-scenario test-
ing

X X

In-situ user feedback collection X X
Real-time system state data collec-
tion

X X

Distributed artifact storage X
Configurable post-eval. process-
ing

X

Scalable for large test groups X
Device-agnostic X

quantitative, contextual information about scenarios which
precipitate poor feedback (that is, when the tester encounters
an edge case). For instance, a tester evaluating a shopping
assistant application may be able to tell the research team
that the labels placed over items in the store were hard to
read, but may have trouble recounting additional specifics.
This problem is exacerbated when testers are evaluating
the system over long periods of time, or experience a gap
between system use and feedback collection, and so must
rely on their memories to describe such events.

To help address these needs, we present ARCHIE++, the
Augmented Reality Computer-Human Interaction Eval-
uator framework, a runtime performance and usability
data collection system which facilitates system testing and
edge case detection for mobile AR systems in the wild.
This framework builds on prior work [33], and makes the
following new contributions:

• Identified trends and challenges when conducting
AR system testing. We have conducted a study of
recent work that presents and performs usability
testing on AR systems for a range of problem spaces.
Through this study, we identified three challenges
that researchers face when testing mobile AR systems
in the wild: incomplete knowledge of test conditions,
scalability, and reproducibility.

• Developed ARCHIE++, a cloud-enabled, device-
agnostic framework for conducting in-the-wild
testing of mobile AR systems. To address the chal-
lenges highlighted by our motivating study, we de-
veloped a scalable framework to assist researchers
in conducting AR system testing. We implemented
ARCHIE++ (shown in Figure 1) as a library plugin
for Unity3D [44], a popular development environ-

ment for mixed reality experiences which supports
a range of platforms (e.g. Android, iOS, HoloLens,
and more). This library is supported by a Firebase
backend [25] for data aggregation and processing. A
summary of functional improvements of ARCHIE++
compared to the original ARCHIE 1.0 framework are
summarized in Table 1.

• Demonstrated how ARCHIE++ can be used in
practice using a range of common AR scenarios.
Finally, we present three case studies representing
common scenarios within AR research, to demon-
strate the utility and versatility of our framework.
In doing so, we highlight three primary features
offered by ARCHIE++: comparison testing, runtime
diagnostics, and long-term testing.

The rest of the paper is organized as follows: Section
2 discusses the related work, while Section 3 examines
usability testing practices in recent AR research efforts, and
identifies subsequent challenges when attempting to con-
duct testing in the wild. Section 4 presents an architectural
overview of the ARCHIE++ framework, and describes the
phases involved in its use. Sections 5 and 6 present, respec-
tively, a set of case studies describing how the ARCHIE++
framework may be used, as well as our system evaluations.
Section 7 provides additional discussion on various design
decisions and limitations of our framework, and Section 8
concludes.

2 RELATED WORK

A number of tools and frameworks exist to help developers
test their mobile AR systems. These testing platforms serve
a range of goals, many of which can be supplemented with
ARCHIE++.

Commercial testing tools. The increase in commercially
available AR hardware and development environments
brings with it an increase in commercial testing tools as well.
Oculus provides official guidelines for performance opti-
mization [10] as well as an array of performance monitoring
and debugging tools [1], [2], [4], [5] for applications built for
the Rift headset. Microsoft provides its own official guide-
lines for testing applications built for the HoloLens headset
[7], in addition to a selection of emulators and simulators
[3], [8], [9] for testing applications with pre-determined
inputs. Similarly, Apple’s latest version of ARKit ships with
a testing tool called “Reality Composer” [6], which allows



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL X, NO. Y, MONTH YEAR 3

developers to record and replay system inputs for testing.
While all of these tools can be helpful during development
and initial testing stages, they are generally suitable only
for in-lab testing, as their operations are quite resource-
intensive. ARCHIE++ can supplement these efforts by pro-
viding additional lightweight support when an application
has passed code quality testing in the lab and is ready for
user evaluations in the wild.

AR analytics frameworks. There has been some recent
work to assist AR researchers in collecting and analyz-
ing data from system evaluations. MRAT [36] enables re-
searchers outside of the Computer Science domain to run
complex experiments using AR systems. The framework
collects huge amounts of environment and user-specific data
to facilitate analysis, but provides no method for testers to
provide their own usability feedback. Further, the frame-
work is only viable in the lab, with no support for in-
the-wild testing. Another framework described in [40] does
support testing AR applications in the wild, while collecting
a range of system-level metrics about the user base at large
as well as individuals. Further, it supports A/B testing, a
limited version of comparison testing in which participants
are exposed to one of two implementation options, and
then feedback is collected; however, the framework gathers
this feedback across the user base at large, rather than per
individual. Any preference or performance conclusions are
drawn based on system metrics analysis rather than indi-
vidual feedback, which is not collected. Other frameworks,
such as the visualization comparison system presented by
Brehmer et al [18], use supplementary user behavior, such
as periods of inactivity, to preemptively remove incom-
plete data sets from their test corpus. ARCHIE++ addresses
both of these issues by enabling comparison testing within-
subjects so that every tester experiences all implementations,
and providing a configurable post-processing workflow to
filter out unsatisfactory data samples.

Usability testing. In addition to more system-level anal-
ysis, there has been recent research in developing adaptive
systems and testing patterns to improve AR system usabil-
ity. The popular usability testing survey by Ivory and Hearst
[28], though it presents solid guidance on usability feedback
collection in general and even touches on comparison test-
ing, was written before the time of handheld mobile and
wearable devices. As such, there remains a need for testing
tools and procedures that focus on these non-traditional
interfaces. The system proposed in [34] dynamically adapts
the UI based on both the environment and testers’ estimated
cognitive load. The drawback to this system is that the
adjustments to the UI are only as good as the system’s ability
to estimate tester discomfort; there is no built-in support
for testers to provide in situ feedback to modify their expe-
rience. Mottelson et. al. [35] present a feasibility study on
transitioning virtual reality studies out of the laboratory set-
ting. Their approach, however, focused more on researchers’
abilities to recruit and manage participants and to admin-
ister a user study remotely rather than to diagnose and
understand any issues that might occur with their system
during runtime. Costa et. al. [21] present another method
for conducting automated user studies, with a standalone
application to facilitate studies on participants’ information
retrieval behavior with online search engines. Similar to

[35], Costa et. al. make the simplifying assumption that the
system itself is bug-free with a set implementation; they
assume that it is only tester behavior and feedback that
the researchers are interested in, rather than edge cases
within the system itself. Further, the system proposed by
Costa et. al. has no out-of-the-box support for comparison
testing. Other works explore the usability of AR systems
to accomplish a specific task, such as chemistry education
[13], [23], assessing the development of motor and cognitive
skills in children [39], and workplace training [31], [41].
ARCHIE++ can supplement these testing frameworks by
providing grouped packets of system state data and user
feedback data, not only to collect usability information in
the moment, but also to help developers target and address
scenarios that testers explicitly disliked.

3 UNDERSTANDING AR TESTING PRACTICES

In order to inform our solution, we first conducted a survey
of current research efforts in augmented reality with a
particular focus on user feedback and testing methods. Our
goal was to learn more about how user studies and human
testing efforts are conducted, the kinds of information that
researchers are seeking to gather from testers, and how
that information is collected. This knowledge is useful in
that it can help us identify shortcomings in current testing
practices that ARCHIE++ can help alleviate.

Comparison with prior work: In [33], we performed
an initial investigation to identify broad trends in how AR
researchers tested their systems. We then leveraged these
trends to identify challenges in migrating existing testing
practices to the wild. In this follow-up paper, we expand
that initial survey to include results from additional venues.
These expanded results confirmed the conclusions from our
previous study, and allowed us to identify practical chal-
lenges that researchers would face when applying existing
practices to large scale testing efforts.

3.1 Methodology

To assemble the body of work for our survey, we reviewed
proceedings from six different conferences: two focused on
AR and VR (IEEE VR and ISMAR), two focused on human
factors (CHI and UIST), and two focused on mobile and per-
vasive systems (MobiSys and PerCom). These conferences
were selected as the dominant venues within a range of AR
research disciplines; the goal of which was to provide a more
holistic and systems-focused view of user testing procedures
within these research efforts than a deeper survey of a single
venue could provide on its own. We considered conferences
rather than journals because they represent more cutting-
edge rather than archival research efforts.

There are many surveys of augmented reality systems
available, but very few that address testing and user study
techniques within such systems. One survey that does touch
on this topic is Billinghurst et. al. [16], though it only
covers works published through 2014. Even considering
only works published from 2015 onward, this represents a
substantial body of work (e.g. 370 and 378 Scopus results
respectively from IEEE VR and CHI when filtering by aug-
mented or mixed reality). As our interest in this survey was



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL X, NO. Y, MONTH YEAR 4

(a) Problem focus (b) Size of test group (c) Length of evaluation (d) Feedback method *

Fig. 2: User testing trends of surveyed AR systems. Figures marked (*) show papers which fall into multiple categories.

not to present an exhaustive literature review, but rather
to gain insights into the latest user study methodologies, we
elected to focus on more recent publications in order to yield
a more manageable corpus size. For each conference, there-
fore, we considered the two most recent sets of proceedings
spanning the years 2018 to 2020. Papers were included if
they mentioned augmented or mixed reality in the titles or
abstracts. Papers were excluded if they did not contain a
user study, the user study consisted only of qualitative data
(such as sensor readings), or the paper primarily focused
on non-vision modalities (such as audio or haptics). We also
only considered full conference papers; poster, workshop,
and other “short” papers were subsequently excluded.

Once the corpus was assembled (N = 81), we categorized
each paper as follows. First, we considered the focus of the
problem the paper was trying to solve. We assigned each
paper to one of four broad categories: avatars, interaction,
method of content display, and content placement. We also
noted the conditions of the primary user study, namely the
environment (whether in the lab or in the wild), the system
hardware (HMD, smartphone/tablet, or other), number of
testers, evaluation length per tester, and method of feedback
collection (such as questionnaires, interviews, or other).
Finally, we noted whether the researchers asked testers to
explicitly compare or give a preference between multiple UI
options.

3.2 Results

From our survey, we observed the following trends, which
are summarized in Figure 2.

Problem Focus: More than half (56%) of papers focused
on some type of system interaction, typically with regard
to the system input method, social interactions, or some
facet of task completion. The second most popular focus was
on tester perceptions of content display (26%), generally in
terms of how realistic or informative a given display method
was.

Size, Length of Evaluation: The majority of tests were
conducted with fewer than 25 people (68%) with each tester
spending only a single day (79%) using the system. Of
these instances, each tester typically spent only an hour
or two interacting with the application-under-test (AUT).
The system equipment being utilized during this time was
generally a head-mounted display (65%).

Feedback Collection: The overwhelming majority (91%)
of papers used one or more written questionnaires to

elicit feedback from testers, supplemented by personal in-
terviews. The most common questionnaires utilized were
some variation of the System Usability Scale [46] to judge
general system appeal; the NASA Task Load Index [11]
questionnaire to measure the cognitive burden associated
with completing a task; and some bespoke version of a Mean
Opinion Score.

Testing Methodology: More than half (60%) of papers
perform comparison testing, where they present multiple user
experience options and ask their testers to select a preferred
condition. This covered a variety of system outputs, from
styling of avatars to formatting and placement of text to gen-
eral system usability, and also included both comparisons
against pre-existing systems and varying configurations of
the authors’ own system.

Test Environment: Of the 81 papers reviewed, only two
[30], [38] conducted any sort of unconstrained user study
in the wild. This means that 97.5% of papers administered
their human testing in laboratory conditions.

3.3 Challenges of Current Testing Practices in the Wild

The results of our survey as described above are unsur-
prising when considering that such a significant portion of
human testing for AR systems is done in heavily constrained
and controlled laboratory conditions. This is a direct re-
flection of the labor-intensive nature of conducting in-lab
human testing, which, although an important first step
for validating system performance, provides only a limited
snapshot into system and user behavior. Testing in the wild,
on the other hand, can provide a much more mature and
realistic glimpse into how users would actually interact with
a system on a daily basis. However, one cannot simply
copy lab testing practices directly in the wild and expect
success. Below, we describe three different challenges that
would have to be addressed in order to transition current
AR usability testing practices from the lab to the wild.

Challenge #1 (C1): incomplete knowledge of test condi-
tions. The first challenge is the inability to correlate testers’
feedback with system state and other data in order to di-
agnose the underlying conditions that precipitated specific
feedback. Questionnaires and interviews are particularly
weak in this area, as they are static snapshots of tester
feedback with no relation to the system behavior during
the evaluation period that contributed most to the tester’s
experience. For example, a tester might be able to identify
that the system seemed slow and unresponsive, but will not



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL X, NO. Y, MONTH YEAR 5

TABLE 2: Data collected by ARCHIE++ framework. The issue list, raw and augmented screenshots, and FPS trace are
bundled into “packets”. Packets are labeled with timestamp, config ID, and experience rating before offloading to Firebase.

Collected Item Data Type Description
timestamp Date Date and time at which interval ended and data was packaged
config_id String Identifier of the configuration being tested when data was collected

experience_rating String Enumeration reflecting current user experience (e.g. excellent, good, fair, poor, bad)
issue_list String[] Configurable list of issues encountered by the user during this interval (e.g. poor contrast, etc.)

screenshot_raw Image Unaltered frame taken from device camera feed
screenshot_aug Image Altered camera frame, containing application-generated augmentations (e.g. what the user sees)

fps_trace String[] History of how many frames were generated per second (FPS) during this interval

be able to indicate whether it was because of factors such
as slow processing or poor viewing angles captured by the
system camera.

Challenge #2 (C2): scalability. The second challenge is
in the difficulty in scaling current testing practices. Current
human testing practices focus on working with small groups
of people for short periods of time. This is because testers’
time is valuable, and recruitment of testers that meet desired
criteria may be difficult. Related to this is the time and
labor cost of manually administering questionnaires and
interviews to study participants. Further, research teams
typically use very expensive or specialized equipment, with
bespoke code bases tailored to a specific usage environment.
This makes the transition to in-the-wild testing very diffi-
cult, as systems may be ill-equipped to support consumer-
grade hardware or open-ended usage conditions.

Challenge #3 (C3): reproducibility. The third challenge
in contemporary AR testing efforts is the inability to ef-
fectively compare and reproduce the testing conditions be-
tween test instances. When conducting human testing in the
lab, environmental conditions such as ambient light levels,
weather, time of day, viewing angles, and movement speed
are easily controlled between testers. However, when testing
at different locations, or when performing tests in the wild,
it is much more difficult to control and reproduce these
conditions. Too great of variance between test conditions
can subsequently make test results unreliable.

In the following section, we present the design of our
ARCHIE++ framework, and demonstrate how it addresses
the challenges described here.

4 SYSTEM DESIGN

When designing ARCHIE++, we improved upon our origi-
nal design [33] by streamlining the developer-facing frame-
work architecture, and moving data storage and processing
functions to the cloud. Developers using ARCHIE++ are
responsible only for implementing a single function call,
event listener, and manifest file in order to utilize the frame-
work; this means (as shown in Section 6) that modifying
an existing code base to incorporate ARCHIE++ requires
on average only 97 new lines of code, where integration of
ARCHIE 1.0 would require hundreds of new lines of code.
In this section, we first describe how the testing challenges
from Section 3.3 influenced our system design, followed by
a more detailed discussion of the ARCHIE++ framework
architecture and its behavior during runtime. The source
code for ARCHIE++ is available on GitHub1.

1. https://github.com/lehmansarahm/ARCHIE

4.1 Testing Challenge Impacts on System Design

For testing of mobile AR applications to work in the wild,
the challenges described in Section 3.3 need to be addressed.
First, ARCHIE++ addresses the lack of developer under-
standing of test conditions (C1) by collecting samples of
system performance and input data in tandem with tester
feedback during run-time. The data collected by ARCHIE++
(described in Table 2) is grouped into time-boxed “packets”,
with the user’s “experience rating” (shown in Figure 1c)
included in the title. By grouping and labeling data in this
way, ARCHIE++ enables researchers to quickly identify and
explore contextual information specific to those conditions
which precipitated poor user feedback.

Second, ARCHIE++ addresses the problem of scalability
(C2) by embracing a device-agnostic cloud-enabled archi-
tecture, specifically as a plugin for the popular Unity3D
IDE [44] with a Firebase backend [25]. Unity3D is one
of the preeminent development environments for AR and
VR systems, and includes support for a wide range of
devices, including mobile systems, head-mounted displays,
and standalone applications for personal computers [43],
[45]. Unity even supports browser-based applications, such
as the system proposed by Butcher et. al. [19], through
integrations with libraries such as WebGL. Thus, by lever-
aging Unity, developers can build a single application and
deploy to a range of tester devices, rather than maintaining
individual code bases for each device OS. Similarly, by in-
corporating Firebase as our framework backend, developers
gain infrastructure-as-a-service benefits such as redundancy
and high availability, as well as a centralized point of data
aggregation and processing. This means that developers
can administer evaluations with larger groups for longer
periods of time, as they no longer have to meet with testers
individually to debrief and retrieve data from their devices.

Finally, ARCHIE++ addresses the problem of repro-
ducibility (C3) by providing camera frames, both in their
original state and including application-generated augmen-
tations, to help researchers verify consistency of test con-
ditions under which the framework is being used. Using
the raw camera frames, developers can supplement future
testing efforts using known problematic inputs previously
collected by the system, either by feeding the frames directly
back into the system or using the frames as seed values to
fuzz and generate new data sets. Subsequent outputs can
then be compared against the augmented camera frames to
judge performance of the new system. Feedback collected
with traditional methods such as questionnaires and inter-
views are unable to provide this information.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL X, NO. Y, MONTH YEAR 6

TABLE 3: Settings and properties of ARCHIE++ manifest file

Field Data Type Description
config_ids String[] List of labels describing the configuration conditions to be tested

config_test_period Multi-value Interval during which to test each configuration; made up of value (int) and denomination
(string, e.g. “minutes”, “hours”, etc.)

collect_raw_frame Bool Flag indicating whether framework should collect raw (unaugmented) camera frames as part of
the system input data collection

collect_aug_frame Bool Flag indicating whether framework should collect augmented camera frames as part of the
system input data collection

Fig. 3: ARCHIE++ architecture diagram

4.2 Framework Architecture

The core of the ARCHIE++ framework is built on the con-
cept of a configuration, which is a particular condition
to be evaluated by testers during a given evaluation pe-
riod. Configurations are completely developer-determined;
a configuration could be a particular algorithmic implemen-
tation, a UI formatting scheme, or similar set of system
characteristics. ARCHIE++ iterates through a collection of
configurations during runtime, collecting usability feedback
from testers relative to the currently available config, and
aggregating that feedback data (along with system input
data collected during runtime) in a remote backend.

The system architecture of ARCHIE++ is reflected in
Figure 3. The primary component is the plugin for the Unity
IDE (shown in blue), which manages the collection of sys-
tem state and user feedback data. This plugin interfaces with
the Unity core library to retrieve camera frames and scene
information, as well as calculating and logging the frames
displayed per second (FPS). The plugin is also responsible
for forwarding data files to Firebase for storage, and raising
the appropriate events with the AR application-under-test
when it is time for a configuration context switch. The
AUT is responsible only for providing a system manifest
file to configure the ARCHIE++ test instance, implementing
an event listener to respond to configuration changes, and
raising the feedback request method as appropriate (shown
at topmost level, Figure 3).

Compared to our prior work [33], ARCHIE++ has a
greatly simplified client-side architecture. This is due to an
observation in our extended survey (described in Section 3)
that researchers generally only require testers to evaluate
a relatively small number of options (generally two but as
many as four). Because of this, we genericized our handling of
configurations, treating them only as event labels, and allowing
developers to respond to a newly selected label in whatever
way they want. This allows developers and researchers
to use ARCHIE++ to test anything from alternate color
schemes for a UI, to competing computer vision modules,
to different label placement algorithms, and much more.

Utilization of the ARCHIE++ framework consists of
three phases: (1) initialization and pre-deployment, (2) run-
time data collection, and (3) post-processing. The following
sections describe these phases in more detail.

4.3 Phase 1: Pre-deployment and Initialization
When configuring an application to use ARCHIE++, a de-
veloper must first import the Unity plugin and perform
a series of one-time steps to integrate Firebase into the
application. First, she must create a project for her applica-
tion within the Firebase developer console. Next, she must
download the Firebase SDK and import the base resource
package into Unity, as well as the supplementary packages
for Authentication, Storage, and Cloud Functions. Finally,
she must install the Firebase CLI toolkit to her local machine.

The developer must also provide a system manifest,
which contains properties controlling the execution of the
test instance (described in Table 3). The primary manifest
settings include a list of identifiers for the configurations she
wants to test, the desired test period (e.g. how long a tester
should interact with a given configuration before moving
to the next one), and whether to collect raw or augmented
frames from the device camera. Allowing the developer to
manipulate system parameters directly is an explicit design
choice, as it provides developers the freedom to control framework
functionality according to their systems’ needs. For example, the
developer might decide that she does not need raw camera
frames, and so may configure the framework not to collect
them, thus saving transmission and storage bandwidth. A
sample system manifest is shown in Section 5.1.

The next step for the developer is to provide an
event listener to control and respond to the changes
in configuration selection. The event listener overrides
OnConfigSelected() from the ARCHIE++ TestCon-
troller class, which is raised by ARCHIE++ when the Fire-
base back-end selects a new configuration for testing. Al-
lowing the developer to implement her own event listener
is also an explicit design choice, as it eliminates restrictions
on what functionality can be tested by users. For example, one



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL X, NO. Y, MONTH YEAR 7

Fig. 4: ARCHIE++ runtime program loops for subordinate processes: (A) on frame update, the State Data Controller keeps
a running copy of the last raw/augmented camera frame pair and logs the latest render time; (B) on feedback request from
the application-under-test, the Feedback Controller displays the feedback form, aggregates the data packet, and exports
it to Firebase; and (C) on config_test_period, the Test Controller requests the next configuration from Firebase and
raises the OnConfigSelected() event with the application-under-test.

developer could declare “light” and “dark” as her config-
uration IDs, and respond to configuration change events
by swapping out illumination algorithms; another could
respond by changing the UI color scheme, while yet another
could respond by changing an avatar model. It also allows
developers to extend the testable functionality at any time
by simply expanding a new entry to the list of supported
configurations. A sample event listener implementation is
presented in Section 5.1.

The final step to incorporating ARCHIE++ is to explicitly
call FeedbackRequested() from the base TestController
class at some point in her code, in order to kick off the feed-
back collection pipeline. While ARCHIE++ does provide a
default feedback form (as shown in Figure 1c), the developer
is also free to reconfigure the form at this time, if she is
interested in other issues or factors than the preset options.
Requiring the developer to explicitly configure the feedback
form and make the feedback request is another deliberate
design choice, so that the feedback gathering logic can be
triggered at any time that makes sense for the developer and her
specific application. Feedback could be gathered, for example,
on an interval, when the user clicks a particular button,
when the app recognizes a particular target, a combination
of these, or under any other condition. The only requirement
is that this method is called explicitly somewhere in the
application code.

4.4 Phase 2: Run-time Execution

During run-time, ARCHIE++ acts as a mostly transparent
middle layer between the application-under-test and the
end user. The run-time logic of the ARCHIE++ framework
consists of three primary processes, shown in Figure 4,
responsible for assembling and offloading the data packets
described in Table 2. The first of these subordinate processes
(denoted as A) describes the State Data Controller collecting
behavior and input data from the AUT. As Unity refreshes
the application UI, the time that it takes to render the scene
is appended to a running log (fps_trace). In addition,
approximately once per second, the raw and augmented
camera frames (screenshot_raw, screenshot_aug) are
skimmed from the camera data stream. Only the latest frame
pair is maintained; as new frames become available, the old
ones are overwritten.

The second subordinate process (B) occurs when the
AUT raises the FeedbackRequested() event. When this
occurs, the Test Controller will initialize feedback collection,
grabbing a copy of the system state data from the State
Data Controller and displaying the feedback form to the
AUT. The feedback form displays on top of the AUT, and
includes a general rating for overall system experience
(experience_rating), as well as a configurable check list
of issues that the tester may be experiencing (issue_list),
such as “Poor Contrast”, “Poor Placement”, “Wrong Size”,



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL X, NO. Y, MONTH YEAR 8

and “Distracting”. Once the user has filled out and sub-
mitted the feedback form, the Feedback Controller bundles
the data packet, labels it with the current timestamp and
config_id, and exports it to Firebase.

The third and final subordinate process (C) demonstrates
the Test Controller requesting the next configuration from
Firebase after the configured test interval. The interval is
determined by the config_test_period property of the
system manifest file, and can be specified in terms of min-
utes, hours, or days. Once invoked, the Firebase back-end
evaluates the list of configurations, and returns the ID of
the next one to test. It should be noted here that, while
the current implementation of ARCHIE++ assumes Round
Robin scheduling of configurations, the selection logic could
easily be expanded to be more strategic, such as the Multi-
Arm Bandit approach described in our previous work [33].
The Test Controller then forwards the configuration ID to
the AUT, which is able to respond in whatever way is
appropriate, such as hot-swapping algorithms or replacing
UI components.

4.5 Phase 3: Post-processing and Analysis

With the ability to scale human testing efforts to larger
groups of people using ARCHIE++ comes the possibility
of having to sort through potentially huge data sets of
testing artifacts (or, discrete system by-products) after the
evaluation period is over. Therefore, ARCHIE++ includes
a post-processing workflow to enable developers to sort
through the data collected by the framework, reducing the
complexity of the dataset to make the review and debugging
process more manageable. Further, this phase provides the
opportunity for developers to apply sanitization and orga-
nization logic to data packets as they are received, paving the
way for more traditional analyses of the collected data once
the study is over.

The ARCHIE++ post-processing workflow is depicted in
Figure 5. The data packets collected by the framework are
shown on the left, where the contents of each packet are de-
scribed by Table 2: the date and time the files were collected,
the ID of the active configuration at the time of collection,
the user’s experience rating, the user’s list of observed
issues, the raw screenshot, the augmented screenshot, and
the FPS trace for that interval. As these packets are collected,
ARCHIE++ applies a set of “analyzer” scripts to sanitize,
organize, or otherwise reason about their contents. These
analyzer scripts take the form of Firebase Cloud Functions;
ARCHIE++ comes with some basic functions (such as the
ones described in Section 5.3’s case study), but developers
are free to supplement these scripts with whatever logic
makes sense for their project. Sample outputs are shown
on the right side of Figure 5; the developers could maintain
a database of statistics calculated from the information gath-
ered, sanitize and sort the camera frame pairs into buckets
based on their contents or testers’ submitted issue lists, or
plot graphs of trends in user feedback. This helps developers
focus their attention on what matters to them, whether it
be triaging runtime issues or preparing for more in-depth
analyses of collected data.

Fig. 5: Post-processing workflow for ARCHIE++ frame-
work. A developer-selected list of analyzer functions are
executed on data packets collected by the framework during
the evaluation period, and used to generate an open-ended
collection of outputs, such as databases of statistics, “buck-
ets” of sanitized and sorted images, or graphs of trends in
usability and issue data.

5 CASE STUDIES

To demonstrate the usefulness of ARCHIE++, we present
the following set of case study scenarios. Each scenario
represents a problem focus identified in our motivating
survey from Section 3 and highlights a different feature set
within the ARCHIE++ framework: comparison testing using
an avatar case study (Section 5.1), runtime diagnostics using
an augmentation display and placement case study (Section
5.2), and scalable long-term testing using an interaction case
study (Section 5.3). For simplicity, augmentation display and
placement have been consolidated into a single scenario due
to their similarity.

It should be noted that the functional segregation in the
following scenarios are for illustrative purposes only, and
do not represent the sum total of evaluations that developers
can run using ARCHIE++. For example, we anticipate that
a majority of developers will want to perform comparison
testing, as it represented 60% of papers surveyed in Section
3; however, this does not preclude those developers from
also conducting runtime diagnostics and/or scalability test-
ing if they wish. The heart of the ARCHIE++ framework
is developer configurability; developers are free to leverage
any or all of these features in their own evaluations as it
make sense for their project and problem focus.

5.1 Comparison Testing

Our first case study showcases the ability of the ARCHIE++
framework to assist developers with comparison testing,
where testers are asked to review multiple interfaces and
select their preferred option. In our motivating study, we ob-
served that a significant portion (60%) of papers conducted
some sort of comparison testing, which is a standard way
of identifying tester preference and improving on existing
methodologies.

Scenario Overview: Consider, therefore, a research team
which seeks to understand whether virtual companions



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL X, NO. Y, MONTH YEAR 9

Fig. 6: Sample manifest file for the Comparison Testing case
study. Iterates between four unique interface configurations
at 24hr intervals. For this case study, raw and augmented
camera frames are not being collected.

Fig. 7: Developer-provided implementation for framework-
required events (OnConfigSelected()) to satisfy the
Comparison Testing case study, and display the selected
resources when app next executes (OnUpdate()).

can reduce loneliness in older adults at home. Comparison
testing is enabled within the ARCHIE++ framework using
the system manifest file. Figure 6 shows a sample manifest
for the avatar comparison scenario; it includes identifiers
for the configurations they wish to test (cat, dog, human,
voice-only), as well as the desired length of time to test each
one (24 hours), and whether to collect raw and augmented
frames from the camera feed (false, periodically collecting
usability feedback will be sufficient). ARCHIE++ then takes
over runtime configuration switching and feedback collec-
tion throughout the course of the evaluation period.

Framework Benefits: ARCHIE++ assists developers en-
gaging in comparison testing by managing the rotation of
multiple test conditions for each individual tester. This is
accomplished by raising a dedicated event during runtime
when it is time to switch to a new configuration (Figure
7, OnConfigSelected()), which developers can respond
to in whatever way makes sense for their application. For
this case study, the developers respond to the configuration
change by preloading the audio and visual resources for
the newly selected avatar, and engaging them when the
application next executes (Figure 7, OnUpdate()). This
event handler could just as easily be used to swap object
recognition or label placement algorithms, label formatting
and color palettes, and any other application-specific task.
While traditional comparison techniques such as A/B test-

ing require large bodies of testers where each tester experi-
ences and provides feedback on only one condition, devel-
opers using ARCHIE++ can shepherd each tester through all
implementation options that the team has to offer in a single
evaluation period. All data packets collected by ARCHIE++
are grouped by name of the configuration under which
that data was gathered, so that developers can review how
system performance and user feedback changes between
configuration options.

5.2 Runtime Diagnostics
For our second case study, we showcase the ability of
the ARCHIE++ framework to facilitate runtime diagnostics,
where data collected during the evaluation period is used to
debug issues experienced therein. In our motivating study,
we observed that the great majority (91%) papers used some
sort of written usability survey or post-evaluation interview
to gather feedback from their participants. While these
approaches are good at giving general usability feedback,
they cannot identify exactly how the system performed at
runtime to generate that feedback.

Scenario Overview: Consider, therefore, a research team
that has developed a cultural heritage application to label
points of interest (POIs) in walking tours of a given city.
They are ready to deploy their system for testing around
town, and are particularly interested in whether the labels
are conveniently placed and have sufficient contrast against
testers’ backgrounds. Figure 8 shows examples of how
placement and contrast can affect user experience: poorly
placed augmentations can cover up important real-world in-
formation, while augmentations with poor contrast may be
unreadable against certain backgrounds. To test their system
for these types of conditions, the researchers first configure
their instance of ARCHIE++ to collect camera frames by set-
ting the collect_raw_frame and collect_aug_frame
properties in the system manifest file to “true”. The frame-
work then collects these images from the camera data stream
automatically during runtime.

R =

µ∑
i=1

ν∑
j=1

α1O(i, j) · S(i, j) + α2O(i, j) · E(i, j) (1)

After the evaluation period is over, the research team can
leverage ARCHIE++’s post-processing workflow to eval-
uate the pairs of camera frames for label placement and
contrast, using the steps outlined in Figure 9. First, the
raw and augmented images are compared, to identify and
extract the augmentations from the scene (called the overlay
map). Then the raw frame is processed to identify edges and
areas of semantic importance within the scene, called the
edge map and saliency map, respectively. Finally, the quality
of augmentation placement (R) is calculated using Eq. 1,
where µ · ν is the image size, O(i, j) represents the overlay
map indicating the region occupied by the projection of the
augmented content on the image plane. S(i, j) represents
the saliency map, and E(i, j) is the edge map. If R is above a
given threshold, the augmentation placement is determined
to be poor. Contrast can be determined using standard
procedures, where the brightness of the augmentation pixels
are compared with the brightness of the surrounding pixels.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL X, NO. Y, MONTH YEAR 10

Fig. 8: Buckets with sample frames showing different combinations of augmentation placement and contrast quality.

Fig. 9: Use of camera frame pairs to gauge system performance in the Runtime Diagnostics case study. We first compute the
image difference between the two images (raw and augmented) to extract the overlay map (e.g. pixels that are occupied
by the overlaid AR content), then we compute the edge and saliency maps from the raw image. All three maps are then
fed into the layout quality estimator.

A contrast score below a given threshold is classified as poor.
Labeled image pairs can then be assigned to “buckets” (such
as those shown in Figure 8), and addressed by the research
team in groups.

Framework Benefits: While standard usability surveys
such as the System Usability Scale (SUS) [46] and the
NASA Task Load Index (TLX) [11] can identify situations
in which users experienced poor placement or readability
of augmentations, they are unable to provide any systems-
level assistance in diagnosing or debugging those issues.
This problem is particularly prevalent in mobile AR systems
running on smartphones or tablets, where runtime condi-

tions such as ambient light levels, viewing angles, content
and color of the image background, and number of active
processes running on the device can all have direct impacts
on system performance and the quality of augmentation
display. By leveraging runtime files collected by ARCHIE++,
developers can perform diagnostic tasks such as identifying
performance dips using the FPS traces, or calculating hard
metrics such as placement and contrast scores described
above using the raw/augmented image pairs. Further, all
of these data points can be cross-referenced with individual
user feedback records for those exact instances. Traditional
usability feedback surveys are unable to provide this kind



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL X, NO. Y, MONTH YEAR 11

Fig. 10: Sample ARCHIE++ post-processing analyzer functions for Long-term Testing case study.
“aggregateFeedback()” parses data (timestamp, usability score, list of issues encountered, environmental context
label) from feedback packets as they are uploaded to Firebase, and writes it to a running log. “generateGraphs()”
executes every night at midnight to plot graphs from the running data log, and write those graphs to image files.

of information.

5.3 Scalable Long-term Testing
Our third case study showcases the ability of the ARCHIE++
framework to support developers engaging in scalable long-
term testing, in which evaluations span large groups of
testers for long periods of time. In our motivating study,
a significant portion of papers conducted user studies with
fewer than 25 people (68%) with each tester spending only
a single day on the task (79%). This is because recruit-
ing, supporting, and debriefing user study participants is
expensive and time-consuming for both the participants
and the study administrators. Platforms such as Mechanical
Turk can facilitate testing with larger groups of people, but
typically only for short periods of time.

Scenario Overview: Consider, therefore, a research team
that has developed a new method for using smartwatch
IMU sensors to perform free-form gesture tracking as an
input method for AR systems. They figure configure their
instance of ARCHIE++ by disabling comparison testing
(by leaving the config_ids and config_test_period
fields blank within the system manifest file), and enabling
frame collection (by setting the collect_raw_frame and
collect_aug_frame fields to “true”). They then configure
their ARCHIE++ post-processing environment with ana-
lyzer functions such as those shown in Figure 10, which
take the form of Firebase Cloud Functions that operate on
the data packets uploaded from the framework.

The first function (aggregateFeedback()) fires when-
ever a new data packet is uploaded to Firebase from the
AUT. It unzips the packet, extracts the user feedback JSON
file and raw image, and parses out the information that
the team is interested in (specifically, the usability score,
list of issues encountered, and environment classification
label). These values, along with the current timestamp,
are then appended to a running log. The second function
(generateGraphs()) is configured to run every night
at midnight, taking subsets of the data captured by the
running log file and generating graphs charting such trends
as usability scores over time or the most highly rated issues
for a given month. These functions run autonomously for as

long as the developers need them to; at any time, they can
log in to the Firebase console and access these graphs to see
the latest trends.

Framework Benefits: The benefit of long-term testing is
that it gives a more realistic understanding of how testers
interact with and feel about a system. This is because testers
are able to experience the system over a variety of tasks,
moods, and contexts, which can highlight usability concerns
that were not apparent in initial short-term, constrained lab-
oratory testing. However, relying only on traditional feed-
back methodologies such as journals or periodic surveys
and interviews when conducting long-term testing can lead
to a lower quality of feedback as testers are forced to recall
system interactions instead of logging them in the moment.
By combining in situ collection of performance and feedback
data with cloud-based file storage, ARCHIE++ supports
developers conducting long-term testing with large groups
in supervising their participants and observing how usabil-
ity feedback changes over time. Generating graphs from
running log files, as described in the above case study, is just
an example of what ARCHIE++ can offer with the help of
Firebase Cloud Functions. Developers could write functions
to perform any number of tasks, such as calculate a running
metric and then email themselves when it falls above or
below a certain threshold, or to classify and sanitize images
as they come in to protect user privacy. While our prior
work [33] performed all framework operations locally, this
new distributed architecture allows for research and devel-
opment teams to test remotely and at scale, with all collected
artifacts accumulating in a single central location, agnostic
of the number, type, or version of devices being used - a
feature which is highly useful in the era of COVID19.

6 EVALUATIONS

In designing our evaluations, our goal was to demonstrate,
not only that ARCHIE++ can operate within a range of AR
system operations, but also that ARCHIE++ is able to per-
form its duties without negative impact to the application-
under-test. It is crucial for a testing tool to remain transpar-
ent from the tester’s perspective, and for any feedback that
a tester provides to be a result of the application they are



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL X, NO. Y, MONTH YEAR 12

(a) CPU (Perc) (b) Memory (MB) (c) FPS

Fig. 11: Resource consumption over time for Environment test condition before and after incorporating ARCHIE++

testing and not ARCHIE++. Additionally, we want to ensure
that ARCHIE++ is manageable for developers to integrate
into existing systems. For the two test conditions (described
below), each code base required only 97 additional lines of
code, whereas the prototypes evaluated in our prior work
[33] required anywhere from 150 to 350 additional lines of
code (a 35 - 72% decrease).

6.1 Test Set-up

One of our evaluation goals was to show how ARCHIE++
impacts system performance when performing different
AR operations. To this end, we tested using applications
configured to perform two types of sensing tasks:

• Environment: For the Environment condition, the
system utilizes ground plane recognition from Vu-
foria. It presents a reticule on the ground plane, and
places a 3D label reading “Hello ARCHIE” when the
user touches the plane.

• Object: For the Object condition, the system utilizes
3D object recognition offered by Vuforia. (For our
purposes, we used a coffee mug as shown in Figure
1.) The system then automatically detects the object
when it comes into camera view, and places a 3D
label reading “Hello ARCHIE” in front of the object.

These applications (Environment and Object) were con-
sidered our “original” conditions. Once the initial test con-
ditions were established, we modified the code bases to in-
corporate ARCHIE++, yielding with two new applications.
For these new conditions (With ARCHIE++), the labels were
set to change font sizes every 10 seconds (from small to
large), and the feedback form to display every 30 seconds.
All four applications were implemented using the Unity3D
IDE and executed on an iPhone 8 Plus with a six-core A11
processor, 3GB of memory, 64GB of storage, and a full HD
screen (1920 x 1080 pixels). We elected to use a smartphone
as our runtime device because it can also represent a head-
mounted or augmented windshield display if a tester has
the correct mount.

6.2 System Overhead

For our system overhead evaluations, we compared the run-
time performance of the original Environment and Object

test conditions with those counterparts that incorporated
ARCHIE++. The test procedure involved 15 second intervals
of pointing the device camera toward a recognized target
(i.e. ground plane after touching or the pre-scanned mug),
and a “neutral” view (i.e. a website with a stopwatch
timer). These intervals were repeated for a 2 minute period,
yielding four sessions for each view. When testing with an
ARCHIE++ version, the feedback form was also displayed
and submitted every 30 seconds after the first minute.

The results of those trials can be found in Figures 11 and
12 respectively. The raw signals were sampled at a rate of
1 Hz, and have been de-noised with a weighted moving
average function. Our first observation is that, even though
the same testing procedure was utilized in both conditions,
the resource consumption for the Environment condition
stays relatively flat while the traces for the Object condition
exhibit distinct peaks and valleys. This is because general-
purpose ground plane detection is a consistent process
executed on every frame, where, once a predefined target
has been identified, per-frame recognition attempts cease
and the library switches to tracking the identified target.

While the system does experience an increase in CPU
and memory consumption when incorporating ARCHIE++,
the user experience does not seem to be affected, as evi-
denced by the lack of impact to the FPS. There is a sudden
drop in FPS when the feedback form is displayed, as evi-
denced by the dips in Figures 11c and 12c, but the decrease
lasts for only a single reading and does not significantly
impact the average overall (30.12 to 29.96 for the Environ-
ment condition and 30.07 to 29.9 for the Object condition).
Based on this, and the fact that ARCHIE++ is intended to be
a testing platform and not utilized in everyday application
use, we consider the increased resource consumption to be
permissible.

6.3 Network and Storage Overhead
We also evaluated the bandwidth requirements to transmit
and store framework artifacts in Firebase. This is important
to help maintain a balance between storing large bodies of
data with their helpfulness during post-processing. For this
evaluation we considered transmissions for both the Envi-
ronmental and Object test conditions, with both “simple”
(a plain white wall) and “busy” (a densely patterned rug)
backgrounds. It should be noted that, since the artifacts



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL X, NO. Y, MONTH YEAR 13

(a) CPU (Perc) (b) Memory (MB) (c) FPS

Fig. 12: Resource consumption over time for Object test condition before and after incorporating ARCHIE++

Fig. 13: Reported file sizes in kB when uploading to Firebase

are transmitted asynchronously from the test instance and
evaluated en masse after the instance is over, we do not
consider transmission latency in our evaluations.

Figure 13 shows the file sizes in KB when transmitting
data packets to Firebase. All transmission packets were 360
KB or less, with corresponding contributions of the different
files varying by condition and background. (It should be
noted that the feedback file sizes are on the order of bytes
rather than KB, and so are not visible in the graph.) While
360 KB is not an unreasonably large packet size, it can
become burdensome to an AUT if many packets are being
sent. Developers can control this to some extent by carefully
managing the conditions under which feedback is being
requested (described in Sections 4.3 and 4.4) and disabling
the collection of either the raw or augmented input images if
applicable. In future work, we wish to also explore the trade-
offs of dynamically adjusting the resolution of the captured
images during run-time, in order to balance transmission
size and efficacy of the post-processing workflow.

7 ADDITIONAL DISCUSSION

Supplementing standard usability questionnaires.
ARCHIE++ is intended to supplement rather than replicate
or replace standard usability questionnaires such as the
SUS [46] and the NASA TLX [11]. It does this by gathering
data on system behavior, environmental inputs, and
tester-observed issues during runtime. This additional
data gives researchers a better understanding of contexts

which precipitate poor usability feedback than usability
questionnaires could on their own. The choice to prompt
testers only for general usability scores and a list of
observed issues was done to limit the impact of ARCHIE++
on the user experience. If the user was being stopped in the
middle of their current task to answer lengthy questions
on a mobile device, there could be significant impacts: at
best, the tester’s mental flow would be disrupted, while at
worst, their situational awareness and overall safety could
be affected. Therefore, we collect only what data we need
during runtime, and rely on traditional methods to collect
more generalized usability information.

Providing feedback with non-touchscreen modalities.
While the current iteration of ARCHIE++ assumes the avail-
ability of a touchscreen interface for the purposes of this
paper, the system can easily extend to display the feedback
form on a companion device if the primary display is
incompatible, such as an HMD or augmented windshield.
In these cases, the feedback form could be displayed on a
tethered smartphone or similar device to capture user input.
In future work, we would like to explore the use of voice
recognition to allow testers to speak their feedback rather
than inputting it onto a physical form.

Supplementing standard data science toolkits.
ARCHIE++ is also intended to supplement rather than repli-
cate or replace traditional data science toolkits and work-
flows. Indeed, ARCHIE++’s post-processing workflow gives
developers a “first line of defense” in terms of sanitizing
and organizing data as it comes in, smoothing the way for
more in-depth analyses later. Developers could apply, for
example, a filter based on the algorithms presented in [42],
where images taken in sensitive areas such as bathrooms
and bedrooms are automatically dropped from storage, or
those presented in [49], where individual sensitive items
in pictures such as faces or license plates are proactively
blurred out. Developers could, alternatively, use the data
packets coming in to extract or calculate additional data
points that construct a separate supplementary data set,
such as the edge and saliency maps presented in Section
5.2. All of this data could then be processed using traditional
analysis methods as necessary.

Privacy concerns when collecting camera frames. While
there are legitimate privacy concerns inherent in collecting
images from users’ devices, ARCHIE++ is ultimately a test-



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL X, NO. Y, MONTH YEAR 14

ing tool; as such, we can make certain assumptions. First, we
assume that developers have obtained the appropriate IRB
approval, as well as permission from testers to collect im-
ages as part of their study. Second, we assume that users will
be interacting with the system only for a pre-determined
amount of time, limiting the amount of data captured by
the system. Finally, we assume that research teams utilizing
ARCHIE++ are taking the appropriate privacy precautions,
such as (but not limited to), screening or sanitizing images
as necessary using techniques such as those presented in
[42], [49].

Moving beyond AR. Finally, we would like to address
the inevitable question of whether ARCHIE++ can support
VR applications. A team wishing to utilize ARCHIE++
to evaluate a VR application could absolutely do so; the
client-side Unity plugin and device-agnostic Firebase back-
end could support it. The team could utilize ARCHIE++
to compare functional options such as different types of
avatars, different methods of data visualization, and more.
However, the current input method for the feedback form
would need to be updated, as it assumes a touch-screen
interface, either through the device itself or a companion
device, visible through a see-through HMD. We also would
anticipate that some of the data collected by ARCHIE++
would be somewhat redundant to developers, as the testers
are constrained to a predetermined virtual environment,
rather than moving through an open-ended physical one.

8 CONCLUSIONS

In this paper, we presented ARCHIE++, the Augmented
Reality Computer-Human Interaction Evaluator framework
for conducting AR system testing and tester feedback col-
lection in the wild. We demonstrated the need for scalable,
reproducible usability testing in AR, and described our sys-
tem architecture to support this need. We also demonstrated
how ARCHIE++ can be incorporated into an existing AR
system with acceptable system overhead, and presented a
real-world case study for our framework. In the future,
we would like to investigate real-world trade-offs between
screenshot size and the accuracy of post-processing analysis,
and explore security implications of keeping in-the-wild
camera frames in third-party cloud storage.

ACKNOWLEDGMENTS

Dr. Ling was partially supported by NSF grants 2006665,
2128350 and 2128187.

REFERENCES

[1] Compositor mirror — oculus documentation.
https://developer.oculus.com/documentation/pcsdk/latest/
concepts/dg-compositor-mirror/. Accessed: 2020-09-09.

[2] Oculus debug tool — oculus documentation.
https://developer.oculus.com/documentation/pcsdk/latest/
concepts/dg-debug-tool/. Accessed: 2020-09-09.

[3] Perception simulation - mixed reality — microsoft
docs. https://docs.microsoft.com/en-us/windows/mixed-
reality/perception-simulation. Accessed: 2019-10-22.

[4] Performance heads-up display — oculus documentation.
https://developer.oculus.com/documentation/pcsdk/latest/
concepts/dg-hud/. Accessed: 2020-09-09.

[5] Profiler tool reference — unreal engine doc-
umentation. https://docs.unrealengine.com/en-
US/Engine/Performance/Profiler/index.html. Accessed:
2020-09-09.

[6] Reality composer - augmented reality - apple developer.
https://developer.apple.com/augmented-reality/reality-
composer/. Accessed: 2020-09-09.

[7] Testing your app on hololens - mixed reality — microsoft
docs. https://docs.microsoft.com/en-us/windows/mixed-
reality/testing-your-app-on-hololens. Accessed: 2020-09-09.

[8] Using the hololens emulator - mixed reality — microsoft
docs. https://docs.microsoft.com/en-us/windows/mixed-
reality/using-the-hololens-emulator. Accessed: 2019-10-22.

[9] Using the windows mixed reality simulator - mixed
reality — microsoft docs. https://docs.microsoft.com/en-
us/windows/mixed-reality/using-the-windows-mixed-reality-
simulator. Accessed: 2020-09-09.

[10] VR performance optimization guide — oculus documentation.
https://developer.oculus.com/documentation/pcsdk/latest/
concepts/dg-performance-opt-guide/. Accessed: 2020-09-09.

[11] N. Aeronautics and S. Administration. TLX @ NASA ames - home.
https://humansystems.arc.nasa.gov/ groups/TLX/. Accessed:
2020-07-23.

[12] M. Akçayır and G. Akçayır. Advantages and challenges associated
with augmented reality for education: A systematic review of the
literature. Educational Research Review, 20:1–11, 2017.

[13] J. An, L.-P. Poly, and T. A. Holme. Usability testing and the
development of an augmented reality application for laboratory
learning. Journal of Chemical Education, 97(1):97–105, 2019.

[14] S. Barbieri, G. Vettore, V. Pietrantonio, R. Snenghi, A. Tredese,
M. Bergamini, S. Previato, A. Stefanati, R. M. Gaudio, and P. Fel-
tracco. Pedestrian inattention blindness while playing pokémon
go as an emerging health-risk behavior: a case report. Journal of
medical internet research, 19(4):e86, 2017.

[15] S. Bernhardt, S. A. Nicolau, L. Soler, and C. Doignon. The status
of augmented reality in laparoscopic surgery as of 2016. Medical
image analysis, 37:66–90, 2017.

[16] M. Billinghurst, A. Clark, and G. Lee. A survey of augmented
reality. Foundations and Trends in Human-Computer Interaction, 2015.

[17] F. Bonetti, G. Warnaby, and L. Quinn. Augmented reality and
virtual reality in physical and online retailing: A review, synthesis
and research agenda. In Augmented reality and virtual reality, pp.
119–132. Springer, 2018.

[18] M. Brehmer, B. Lee, P. Isenberg, and E. K. Choe. A comparative
evaluation of animation and small multiples for trend visualiza-
tion on mobile phones. IEEE Transactions on Visualization and
Computer Graphics, 26(1):364–374, 2019.

[19] P. W. Butcher, N. W. John, and P. D. Ritsos. VRIA: A web-based
framework for creating immersive analytics experiences. IEEE
Transactions on visualization and computer graphics, 27(7):3213–3225,
2020.

[20] P. Chen, X. Liu, W. Cheng, and R. Huang. A review of using
augmented reality in education from 2011 to 2016. In Innovations
in smart learning, pp. 13–18. Springer, 2017.

[21] L. Costa, M. Aliannejadi, and F. Crestani. A tool for conducting
user studies on mobile devices. In Proceedings of the 2020 Conference
on Human Information Interaction and Retrieval, pp. 462–466, 2020.

[22] S. G. Dacko. Enabling smart retail settings via mobile augmented
reality shopping apps. Technological Forecasting and Social Change,
124:243–256, 2017.

[23] A. Ewais and O. D. Troyer. A usability and acceptance evaluation
of the use of augmented reality for learning atoms and molecules
reaction by primary school female students in palestine. Journal of
Educational Computing Research, 57(7):1643–1670, 2019.

[24] P. Fraga-Lamas, T. M. Fernández-Caramés, Ó. Blanco-Novoa, and
M. A. Vilar-Montesinos. A review on industrial augmented reality
systems for the industry 4.0 shipyard. Ieee Access, 6:13358–13375,
2018.

[25] Google. Firebase. https://firebase.google.com. Accessed: 2021-09-
26.

[26] C. L. Hughes, C. Fidopiastis, K. M. Stanney, P. S. Bailey, and
E. Ruiz. The psychometrics of cybersickness in augmented reality.
Frontiers in Virtual Reality, 1:34, 2020.

[27] S. Inc. Snapchat - apps on google play.
https://play.google.com/store/apps/details?id=com.snapchat.
android. Accessed: 2020-08-23.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL X, NO. Y, MONTH YEAR 15

[28] M. Y. Ivory and M. A. Hearst. The state of the art in automating
usability evaluation of user interfaces. ACM Computing Surveys
(CSUR), 33(4):470–516, 2001.

[29] B. Joseph and D. G. Armstrong. Potential perils of peri-pokémon
perambulation: the dark reality of augmented reality? Oxford
medical case reports, 2016(10), 2016.

[30] R. M. Kelly, H. S. Ferdous, N. Wouters, and F. Vetere. Can mobile
augmented reality stimulate a honeypot effect? observations from
santa’s lil helper. In Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems, pp. 1–13, 2019.

[31] S. Kim, M. A. Nussbaum, and J. L. Gabbard. Influences of
augmented reality head-worn display type and user interface
design on performance and usability in simulated warehouse
order picking. Applied ergonomics, 74:186–193, 2019.

[32] E. M. Kolasinski. Simulator sickness in virtual environments, vol.
1027. US Army Research Institute for the Behavioral and Social
Sciences, 1995.

[33] S. M. Lehman, H. Ling, and C. C. Tan. ARCHIE: A user-focused
framework for testing augmented reality applications in the wild.
In 2020 IEEE Conference on Virtual Reality and 3D User Interfaces
(VR), pp. 903–912. IEEE, 2020.

[34] D. Lindlbauer, A. M. Feit, and O. Hilliges. Context-aware online
adaptation of mixed reality interfaces. In Proceedings of the 32nd
Annual ACM Symposium on User Interface Software and Technology,
pp. 147–160, 2019.

[35] A. Mottelson and K. Hornbæk. Virtual reality studies outside the
laboratory. In Proceedings of the 23rd acm symposium on virtual reality
software and technology, pp. 1–10, 2017.

[36] M. Nebeling, M. Speicher, X. Wang, S. Rajaram, B. D. Hall, Z. Xie,
A. R. Raistrick, M. Aebersold, E. G. Happ, J. Wang, et al. MRAT:
The mixed reality analytics toolkit. In Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems, pp. 1–12, 2020.

[37] R. Palmarini, J. A. Erkoyuncu, R. Roy, and H. Torabmostaedi. A
systematic review of augmented reality applications in mainte-
nance. Robotics and Computer-Integrated Manufacturing, 49:215–228,
2018.

[38] L. Poretski, O. Arazy, J. Lanir, S. Shahar, and O. Nov. Virtual objects
in the physical world: Relatedness and psychological ownership
in augmented reality. In Proceedings of the 2019 CHI Conference on
Human Factors in Computing Systems, pp. 1–13, 2019.

[39] I. Radu, B. MacIntyre, and S. Lourenco. Comparing children’s
crosshair and finger interactions in handheld augmented reality:
Relationships between usability and child development. In Pro-
ceedings of the The 15th International Conference on Interaction Design
and Children, pp. 288–298, 2016.

[40] P. Roberto, F. Emanuele, Z. Primo, M. Adriano, L. Jelena, and
P. Marina. Design, large-scale usage testing, and important metrics
for augmented reality gaming applications. ACM Transactions on
Multimedia Computing, Communications, and Applications (TOMM),
15(2):1–18, 2019.

[41] L. R. Rochlen, R. Levine, and A. R. Tait. First person point of view
augmented reality for central line insertion training: A usability
and feasibility study. Simulation in healthcare: journal of the Society
for Simulation in Healthcare, 12(1):57, 2017.

[42] R. Templeman, M. Korayem, D. J. Crandall, and A. Kapadia.
PlaceAvoider: Steering first-person cameras away from sensitive
spaces. In NDSS, pp. 23–26. Citeseer, 2014.

[43] Unity3D. Platform development.
https://docs.unity3d.com/Manual/PlatformSpecific.html.
Accessed: 2021-09-04.

[44] Unity3D. Unity3D game engine. www.unity3d.com. Accessed:
2021-09-04.

[45] Unity3D. XR suggested platforms.
https://docs.unity3d.com/Manual/XR.html. Accessed: 2021-09-
04.

[46] Usability.gov. System usability scale (SUS).
https://www.usability.gov/how-to-and-tools/methods/system-
usability-scale.html. Accessed: 2020-07-23.

[47] P. Vávra, J. Roman, P. Zonča, P. Ihnát, M. Němec, J. Kumar,
N. Habib, and A. El-Gendi. Recent development of augmented
reality in surgery: a review. Journal of healthcare engineering, 2017,
2017.

[48] A. Vovk, F. Wild, W. Guest, and T. Kuula. Simulator sickness
in augmented reality training using the microsoft hololens. In
Proceedings of the 2018 CHI conference on human factors in computing
systems, pp. 1–9, 2018.

[49] E. Zarepour, M. Hosseini, S. S. Kanhere, and A. Sowmya. A
context-based privacy preserving framework for wearable visual
lifeloggers. In 2016 IEEE International Conference on Pervasive
Computing and Communication Workshops (PerCom Workshops), pp.
1–4. IEEE, 2016.

Sarah M. Lehman (student member, IEEE) re-
ceived her B.A. in Computer Science from Mes-
siah College in 2010 and her Masters in Soft-
ware Engineering from the Pennsylvania State
University in 2015. She is currently completing
her final year as a PhD student of Computer Sci-
ence at Temple University where her research
focuses on testing and usability problems of mo-
bile augmented reality systems.

Semir Elezovikj received the B.S. degree in
Computer Science from Jacobs University, Bre-
men, Germany in 2008. He received the M.S.
degree in Computer Science from Temple Uni-
versity in 2014. He is currently a PhD Candidate
in Computer Vision with the Department of Com-
puter and Information Sciences at Temple. His
research interests include computer vision, aug-
mented reality, machine learning and multipath
trajectory prediction in the domain of self-driving
vehicles.

Dr. Haibin Ling received the B.S. and M.S. de-
grees from Peking University in 1997 and 2000,
respectively, and the Ph.D. degree from the Uni-
versity of Maryland, College Park, in 2006. From
2000 to 2001, he was an assistant researcher at
Microsoft Research Asia. From 2006 to 2007, he
worked as a postdoctoral scientist at the Univer-
sity of California Los Angeles. In 2007, he joined
Siemens Corporate Research as a research sci-
entist; then, from 2008 to 2019, he worked as an
Assistant Professor and then Associate Profes-

sor at Temple University. In fall 2019, he joined Stony Brook University
as a SUNY Empire Innovation Professor in the Department of Computer
Science. His research interests include computer vision, augmented
reality, medical image analysis, machine learning, and human com-
puter interaction. He received Best Student Paper Award at ACM UIST
(2003), Best Journal Paper Award at IEEE VR (2021), NSF CAREER
Award (2014), Yahoo Faculty Research and Engagement Award (2019),
and Amazon Machine Learning Research Award (2019). He serves or
served as Associate Editors for IEEE Trans. on Pattern Analysis and
Machine Intelligence (PAMI), Pattern Recognition (PR), and Computer
Vision and Image Understanding (CVIU). He has served as Area Chair
various times for CVPR and ECCV.

Dr. Chiu C. Tan (member, IEEE) received the
B.A. and B.S. degrees from the University of
Texas at Austin in 2004, and the Ph.D. degree
from the College of William and Mary in 2010. He
is currently an Associate Professor with the De-
partment of Computer and Information Sciences
at Temple University. His research interests are
in the areas of cyber security, mobile AR/VR,
camera networks, smart health systems, and
wireless network security (main 802.11, RFID,
and sensor networks).


	Introduction
	Related Work
	Understanding AR Testing Practices
	Methodology
	Results
	Challenges of Current Testing Practices in the Wild

	System Design
	Testing Challenge Impacts on System Design
	Framework Architecture
	Phase 1: Pre-deployment and Initialization
	Phase 2: Run-time Execution
	Phase 3: Post-processing and Analysis

	Case Studies
	Comparison Testing
	Runtime Diagnostics
	Scalable Long-term Testing

	Evaluations
	Test Set-up
	System Overhead
	Network and Storage Overhead

	Additional Discussion
	Conclusions
	References
	Biographies
	Sarah M. Lehman
	Semir Elezovikj
	Dr. Haibin Ling
	Dr. Chiu C. Tan


