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Revisiting Video Saliency Prediction
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Abstract—Predicting where people look in static scenes, a.k.a visual saliency, has received significant research interest recently.
However, relatively less effort has been spent in understanding and modeling visual attention over dynamic scenes. This work makes
three contributions to video saliency research. First, we introduce a new benchmark, called DHF1K (Dynamic Human Fixation 1K), for
predicting fixations during dynamic scene free-viewing, which is a long-time need in this field. DHF1K consists of 1K high-quality
elaborately-selected video sequences annotated by 17 observers using an eye tracker device. The videos span a wide range of
scenes, motions, object types and backgrounds. Second, we propose a novel video saliency model, called ACLNet (Attentive
CNN-LSTM Network), that augments the CNN-LSTM architecture with a supervised attention mechanism to enable fast end-to-end
saliency learning. The attention mechanism explicitly encodes static saliency information, thus allowing LSTM to focus on learning a
more flexible temporal saliency representation across successive frames. Such a design fully leverages existing large-scale static
fixation datasets, avoids overfitting, and significantly improves training efficiency and testing performance. Third, we perform an
extensive evaluation of the state-of-the-art saliency models on three datasets : DHF1K, Hollywood-2, and UCF sports. An
attribute-based analysis of previous saliency models and cross-dataset generalization are also presented. Experimental results over
more than 1.2K testing videos containing 400K frames demonstrate that ACLNet outperforms other contenders and has a fast
processing speed (40fps using a single GPU). Our code and all the results are available at https://github.com/wenguanwang/DHF1K.

Index Terms—Video saliency, dynamic visual attention, benchmark, deep learning.
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1 INTRODUCTION

HUMAN visual system (HVS) has an astonishing ability
to quickly select and concentrate on important regions

in the visual field. This cognitive process allows humans to
selectively process a vast amount of visual information and
attend to important parts of a crowded scene while ignoring
irrelevant information. This selective mechanism, known as
visual attention, allows humans to interpret complex scenes
in real time.

Over the last few decades, several computational models
have been proposed for imitating attentional mechanisms of
HVS during static scene viewing. Significant advances have
been achieved recently thanks to the rapid spread of deep
learning techniques and the availability of large-scale static
gaze datasets (e.g., SALICON [2]). In stark contrast, predict-
ing observers’ fixations during dynamic scene free-viewing
has been under-explored. This task, referred to as dynamic
fixation prediction or video saliency detection, is essential for
understanding human attention behaviors and has various
practical real-word applications (e.g., video captioning [3],
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compression [4], question answering [5], object segmenta-
tion [6], action recognition [7], etc.). It is thus highly desired
to have a standard, high-quality benchmark composed of
diverse and representative video stimuli. Existing datasets
are severely limited in their coverage and scalability, and
only include special scenarios such as limited human activi-
ties. They lack generic, representative, and diverse instances
in unconstrained task-independent scenarios. Consequently,
existing datasets fail to offer a rich set of fixations for
learning video saliency and to assess models. Moreover,
they do not provide an evaluation server with a standalone
held out test set to avoid potential dataset over-fitting.

While saliency benchmarks (e.g., MIT300 [8] and SALI-
CON [2]) have been very instrumental in progressing the
static saliency field [9], such standard widespread bench-
marks are missing for video saliency modeling. We believe
such benchmarks are highly desired to drive the field for-
ward. To this end, we propose a new benchmark, named
DHF1K (Dynamic Human Fixation 1K), with a public server
for reporting evaluation results on a preserved test set.
DHF1K comes with a dataset that is unique in terms of
generality, diversity and difficulty. It has 1K videos with
over 600K frames and per-frame fixation annotations from
17 observers. The sequences have been carefully collected
to cover diverse scenes, motion patterns, object categories,
and activities. DHF1K is accompanied by a comprehen-
sive evaluation of 23 state-of-the-art approaches [10]–[31].
Moreover, each video is annotated with a main category
label (e.g., daily activities, animals) and rich attributes (e.g.,
camera/content movement, scene lighting, presence of hu-
mans), which facilitate deeper understanding of gaze guid-
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ance in free viewing of dynamic scenes.
Further, we propose a novel video saliency model called

ACLNet (Attentive CNN-LSTM Network), which extends the
CNN-LSTM architecture [32] using a supervised attention
mechanism. CNN layers are used for extracting static fea-
tures within input frames [33], while convolutional LSTM
(convLSTM) [34] is used for sequential fixation prediction
over successive frames. An attention module, learned from
existing image saliency datasets, is used to enhance spatially
informative features of CNN. Such a design helps disen-
tangle underlying spatial and temporal factors of dynamic
attention and allows convLSTM to learn temporal saliency
representation efficiently. It also helps avoid overfitting
with relatively few video data. With such training protocol
leveraging both the dynamic and static fixation data, we
build an end-to-end trainable video saliency model and
experimentally demonstrate its superior performance and
high processing speed.

1.1 Contribution
In summary, our contributions are four-fold:
1) A large-scale eye-tracking dataset for dynamic free-

view fixation prediction. We introduce a benchmark of
1K videos covering a wide range of scenes, motions,
activities, etc. Existing video saliency datasets lack va-
riety and generality of common dynamic scenes and fall
short in covering challenging situations in unconstrained
environments. In contrast, DHF1K makes a significant
leap in terms of scalability, diversity and difficulty, and
is expected to boost video saliency modeling. To our
knowledge, DHF1K is the largest eye-tracking dataset for
dynamic, free-viewing fixation prediction.

2) A novel attentive CNN-LSTM architecture for dynamic
visual attention prediction. Through a supervised atten-
tive module, the proposed network is able to explicitly
encode static attention into dynamic saliency represen-
tation learning by leveraging both static and dynamic
fixation data. In addition, the attention module is trained
in both explicit and implicit manners. As far as we
know, we are the first to introduce such neural attention
mechanism and training protocol for this task. Results
show that our model significantly outperforms previous
methods with a much higher processing speed (40 fps on
a TITAN X GPU).

3) A comprehensive analysis of fixation prediction models
on existing dynamic eye-tracking datasets (Hollywood-
2 [35], UCF sports [35]) and our DHF1K. To the best
of our knowledge, such large-scale quantitative study
of the performance of visual attention models on dy-
namic fixation prediction has not been done before in
the computer vision community. We present a thorough
analysis including a comparison of the performance of
static attention models as well as dynamic attention ones,
a comparison of performance of deep learning and non-
deep learning attention models, a discussion regarding
how the performance of visual attention models on dy-
namic fixation prediction has evolved over the past 20
years and an attribute-level evaluation to provide better
insight into the performance of saliency models.

4) A cross-dataset generalization experiment to quanti-
tatively evaluate dataset bias. Previous video saliency

datasets started out with the goal of being as varied
and rich as possible, but fail to answer how well they
generalize to real visual world. We perform a cross-
dataset generalization study, for the first time in this field,
for exploring this essential but largely neglected issue.
This work extends our CVPR 2018 paper [1] in several

ways. First, we provide additional details of the proposed
DHF1K with respect to previous dynamic eye-tracking
datasets and offer a more in-depth discussion of the pro-
posed algorithm. Second, we provide a more comprehensive
analysis of saliency models (23 state-of-the-art approaches in
total) on three dynamic eye-tracking benchmarks and quan-
titatively assess their performances, analyze computation
time, summarize their features, and review the performance
improvement over the past 20 years. Third, more ablation
studies are performed for thorough and insightful exami-
nation. Forth, we perform an attribute-based study which
enables a deeper understanding of the results and points
towards promising avenues for future research. Fifth, we
perform a cross-dataset generalization analysis to quanti-
tatively measure dataset bias and generalization. Last but
not the least, based on our experiments, we draw several
important conclusions that are expected to inspire future
works in related topics.

1.2 Organization
In Sec. 2, we review previous benchmarks for dynamic
visual attention prediction and representative works related
to ours. Then, we elaborate our DHF1K dataset in Sec. 3. In
Sec. 4, we describe our attentive CNN-LSTM model for dy-
namic fixation prediction by allowing the use of both static
and dynamic eye-tracking data in an explicit and supervised
attention module. In Sec. 5, we offer both quantitative and
qualitative experimental analyses of our algorithm. Finally,
concluding remarks can be found in Sec. 6.

2 RELATED WORK

2.1 Video Eye-Tracking Datasets
There exist several datasets [35]–[38] for dynamic visual
saliency prediction, but they are often limited in variety,
generality and scalability of instances. Some statistics of
these datasets are summarized in Table 1. As seen, these
datasets differ in many aspects, such as the number of
participants, number of test images, types of stimuli, exper-
imental settings, post processing, etc.

Hollywood-2 [35] comprises all the 1, 707 videos from
Hollywood-2 action recognition dataset [39]. The videos
are collected from 69 Hollywood movies from 12 action
categories, such as eating, kissing and running. The human
fixation data were collected from 19 observers belonging to
3 groups for free viewing (3 observers), action recognition
(12 observers), and context recognition (4 observers). Al-
though this dataset is large, its content is limited to human
actions and movie scenes. It mainly focuses on task-driven
viewing mode rather than free viewing. With 1, 000 frames
randomly sampled from Hollywood-2, we found that 84.5%
of fixations are located around on the faces.

UCF sports [35] contains 150 videos taken from the
UCF sports action dataset [40]. The videos cover 9 common



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

TABLE 1
Statistics of typical dynamic eye-tracking datasets.

Dataset Publication Year #Videos Resolution Duration(s) #Viewers Task Description

CRCNS [36]1 TIP 2004 50 640×480 6-94 15 task-goal Videos typically include synthetic stimuli, outdoors day-
time and nighttime scenes, etc.

Hollywood-2 [35]2 TPAMI 2012 1,707 720×480 2-120 19 task-goal Videos are collected from 69 movies and annotated with
12 action categories, such as eating, kissing and running.

UCF sports [35]2 TPAMI 2012 150 720×480 2-14 19 task-goal Videos cover 9 common sports action classes, such as
diving, swinging and walking.

DIEM [37]3 Cognitive
Computation

2011 84 1280×720 27-217 ∼50 free-view Videos are collected from publicly accessible video re-
sources, including advertisements, documentaries, etc.

SFU [38]4 TIP 2012 12 352×288 3-10 15 free-view The eye-tracking data are captured during both the first
and second viewings.

DHF1K (Ours)5 CVPR 2018 1,000 640×360 17-42 17 free-view Videos were elaborately selected to cover a wide range of
scenes, motions, activities, etc. It is the largest eye-tracking
dataset for dynamic, free-viewing fixation prediction.

1 http://ilab.usc.edu/bu/compress/ 2 http://vision.imar.ro/eyetracking/description.php 3 https://thediemproject.wordpress.com
4 http://www.sfu.ca/∼ibajic/ 5 https://github.com/wenguanwang/DHF1K

sports action classes, such as diving, swinging and walking.
Similar to Hollywood-2, the viewers were biased towards
task-aware observation by being instructed to “identify the
actions occurring in the video sequence”. Statistics of 1, 000
frames randomly selected from UCF sports suggest that
82.3% of fixations fall inside the human body area.

DIEM [37] is a public video eye-tracking dataset that
has 84 videos collected from publicly accessible video re-
sources (e.g., advertisements, documentaries, sport events,
and movie trailers, etc.). For each video, free-viewing fixa-
tions of around 50 observers were collected. This dataset is
mainly limited in its coverage and scale.

Other datasets are either limited in terms of variety and
scale of video stimuli [36], [38], or collected for special pur-
poses (e.g., salient objects in videos [41]). More importantly,
none of the aforementioned datasets includes a preserved
test set for avoiding potential data overfitting, which may
seriously hamper the research process.

2.2 Computational Models of Fixation Prediction
The study of human gaze pattern in static scenes has
received significant interests, and dates back to [26], [42].
Visual attention allocation depends on two types of mech-
anisms. The bottom-up attentional mechanism is driven by
external environmental stimuli, involuntarily orienting at-
tention to external, discriminative stimulus features (ex-
ogenous) - a white spot against a black scene or sudden
movement against stable background. Bottom-up attention
mainly occurs during pre-attentive vision and free viewing.
Alternatively, the top-down mechanism is volitional, goal-
directed and accompanied by longer-term cognitive fac-
tors (endogenous). For instance, when inspecting surveillance
videos, guards are more likely to allocate their attention to
moving people for detecting suspicious behaviors. Only few
studies [43]–[45] have been so far specifically designed to
model top-down attentional allocation in scenes. Involun-
tary and exogenous control of attention should be consistent
across all human subjects, resulting in a high degree of
coordination in multiple viewers’ visual attention behav-
iors given the same stimuli. In contrast, attention across
individuals is less coordinated during endogenous control,
since the internal cognitive states of the individual and their
relation to the current stimuli are less predictable [37].

Early static saliency models [27], [46]–[52] are mostly
concerned with the bottom-up visual attention mechanism
(see [53], [54] for detailed review). Contrast is the most
widely used assumption that conspicuous visual features
pop out from its surroundings and involuntarily attract
human attention. Computational models compute multi-
ple visual features such as color, edge, and orientation at
multiple spatial scales to produce a “saliency map”: a 2D
distribution predicting the conspicuity of specific locations
and their likelihood in attracting fixations [37], [42]. The
locations with more distinct feature responses over sur-
roundings usually gain higher saliency values.

Recently, deep learning based static saliency mod-
els [28]–[30], [55]–[59] have achieved great improvements,
relying on the powerful end-to-end learning ability of neural
networks and the availability of large-scale static saliency
datasets [2]. More specially, Vig et al. [55] learned deep
features from scratch and adopted a linear SVM to classify
each local image location to be salient or non-salient (eDN
model). This represents an early attempt that applied neural
networks to visual attention prediction. Follow-up works
mainly focused on exploiting more effective network ar-
chitectures and leveraging transfer-learning techniques for
learning more representative features. For example, Deep-
Fix [56], DeepNet [30] and SALICON net [28] fine-tune
VGG-16 [60] pre-trained on image classification task. Mr-
CNN [57] was based on multi-streams that learn multi-
scale saliency information. DVA [29] fused features from
multiple layers of VGG-16 for saliency prediction. Pan et
al. [31] promote the performance of a VGG-16 based saliency
predictor with an adversarial training strategy.

The question of how humans distribute their attention
while viewing static scenes has drawn a great amount of
research effort. However, important dynamic behaviors of
HVS in dynamic scenes have not been thoroughly explored.
Previous investigations of dynamic scene viewing [10]–
[16], [61], [62] mainly focus on bottom-up attention ori-
enting, leveraging both static stimulus features and tem-
poral information (e.g., optical flow, difference-over-time,
etc). Some of these studies [11], [61], [62] can be viewed as
extensions of existing static saliency models with additional
motion features. Such models are mainly bound to signifi-
cant feature engineering and limited representation ability

http://ilab.usc.edu/bu/compress/
http://vision.imar.ro/eyetracking/description.php
https://thediemproject.wordpress.com
http://www.sfu.ca/~ibajic/
https://github.com/wenguanwang/DHF1K
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(a) (b) (c)

Fig. 1. Average attention maps of three benchmark datasets: (a)
Hollywood-2 [35], (b) UCF sports [35], and (c) DHF1K.

of hand-crafted features.
To date, only a few deep learning based video saliency

models [24], [25], [63], [64] exist in this field. They are
mainly based on the two-stream network architecture [65]
that accounts for color images and motion fields separately.
In [24], an extra stream is added for capturing object in-
formation. These works show a better performance and
demonstrate the potential advantages in applying neural
networks to this problem. In [63], a 7-layer encoder-decoder
network is designed to predict visual saliency for RGBD
videos. Concurrent with our work, Gorji et al. [64] augment
static saliency models with multi-stream LSTMs to predict
video saliency. However, they do not 1) consider attentive
mechanisms, 2) utilize existing large-scale static fixation
datasets, and 3) exhaustively assess their performance over
a large amount of data.

A related topic is salient object detection [66], [67] that
uniformly highlights salient object regions in images [68]–
[73], videos [74]–[79], image/video groups [80], or RGBD
data [81], [82]. However, such algorithms often focus on
inferring the main salient object(s), instead of investigating
the attention behavior of the HVS during scene free viewing.

2.3 Attention Mechanisms in Neural Networks

Recently, incorporating attention mechanisms into network
architectures has shown great successes in several computer
vision [83]–[86] and natural language processing tasks [87],
[88]. In these studies, the neural attention is differentiable
and can be learned in an automatic, top-down and task-
specific manner, allowing the network to focus on the most
relevant parts in images or sentences. In this paper, we
use the trainable neural attention for enhancing intra-frame
salient features, thus allowing LSTM to model dynamic rep-
resentations easily. In contrast to previous models that learn
attention implicitly, our attention module encodes strong
static saliency information and can be learned from existing
static saliency datasets in a supervised manner. This design
leads to improved generality and prediction performance.
As far as we know, it is the first attempt to incorporate a
supervised attention mechanism into the network structure
to achieve state-of-art results in dynamic fixation prediction.

3 THE DHF1K DATASET

We introduce DHF1K, a large-scale dataset of gaze during
free-viewing of videos. DHF1K includes 1K videos with
diverse content and length, with eye-tracking annotations
from 17 observers. Fig. 1 shows the center biases of DHF1K,
compared to Hollywood-2 [35], and UCF sports [35].

TABLE 2
Statistics for video categories in DHF1K dataset.

DHF1K
Human

Animal Artifact Scenery
Daily ac. Sports Social ac. Art

#sub-classes* 20 29 13 10 36 21 21
#videos 134 185 116 101 192 162 110
∗Numbers of sub-classes in each category are reported. For example,
Sports has sub-classes like swimming, jumping, etc.

3.1 Stimuli

The collection of dynamic stimuli mainly follows the follow-
ing four principles:
• Large scale and high quality. Large scale and high

quality are both necessary to ensure the content diversity
of a dataset and crucial to guarantee a longer lifespan
for a benchmark. To this end, we searched the YouTube
engine with about 200 key terms (e.g., dog, walking, car,
etc). The list of the key terms is mainly built upon the
labels of two datasets, MSCOCO [89] and FCVID [90], and
is supplemented with about 40 extra keywords proposed by
ourselves. The detailed keyword selection process and the
full keyword list can be found in the Supplemental Material.
From the retrieved results, we carefully selected 1, 000 video
sequences. Each video was then converted to a 30 fps Xvid
MPEG-4 video file in an AVI format and resized uniformly
into 640 × 360 spatial resolution. Thus, DHF1K comprises
a total of 1, 000 video sequences with 582, 605 frames with
total duration of 19, 420 seconds.
• Diverse content. Stimulus diversity is essential for

avoiding overfitting and to delay performance saturation.
It offers evenly distributed exogenous control for studying
person-external stimulus factors during scene free-viewing.
In DHF1K, each video is manually annotated with a cat-
egory label (totally 150 classes). These labels are further
classified into 7 main categories (see Table 2). These seman-
tic annotations enable deeper understanding of high-level
stimuli factors guiding human gaze in dynamic scenes and
benefit future research. Fig. 2 shows example frames from
each category.
• Varied motion patterns. Previous investigations [37],

[61], [91] suggested that motion is a key factor that directs
attention allocation in dynamic viewing. DHF1K is designed
to include various motion patterns (stable-/slow-/fast-motion
of content and camera). Please see Table 3 for the informa-
tion regarding motion patterns.
• Various objects. Previous studies [92]–[94] in cogni-

tive psychology and computer vision have confirmed that
objects guide human fixations. Objects in our dataset vary
in their categories (e.g., human, animal, in Table 2) and
frequency (Table 4). For each video, five subjects were in-
structed to count the number of main objects in each image.
The majority vote of their counts was considered as the final
count.

For completeness, in Tables 5 and 6 we also offer the
information regarding scene illumination and the number of
humans in the dataset. As demonstrated in [95], luminance
is an important exogenous factor for attentive selection.
Further, human beings are important high-level stimuli [96],
[97] in scene free-viewing.
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Daily activity Sport Artistic performanceSocial activity Animal Artifact Scenery

Fig. 2. Example frames from DHF1K with fixations and corresponding categories. Note that, for better visualization, we use enlarged red dots to
represent the human eye fixations. This figure is best viewed in color (zoom in for details).

TABLE 3
Statistics regarding motion patterns.

DHF1K
Content Motion Camera Motion

stable slow fast stable slow fast

#videos 126 505 369 343 386 271

TABLE 4
Statistics regarding number

of main objects.

DHF1K
#Objects

0 1 2 ≥3

#videos 56 335 254 355

TABLE 5
Statistics regarding scene

illumination.

DHF1K
Scene Illumination
day night indoor

#videos 577 37 386

TABLE 6
Statistics regarding number of

people.

DHF1K
#People

0 1 2 ≥3

#videos 345 307 236 112

3.2 Apparatus and Technical Specifications
Participants’ eye movements were monitored binocularly
using a Senso Motoric Instruments (SMI) RED 250 system
at a sampling rate of 250 Hz. The dynamic stimuli were dis-
played on a 19” display (resolution 1440× 900). A headrest
was used to stabilize participants’ heads at a distance of
around 68 cm, as advised by the product manual.

3.3 Participants
17 participants (10 males and 7 females, aging between 20
and 28) who passed the eye tracker calibration and had
less than 10% fixation dropping rate, were qualified for
our eye tracking experiment. All participants had normal
or corrected-to-normal vision. They had not participated
in any eye-tracking experiment nor seen the stimuli in
DHF1K before. All subjects provided informed consent and
were naı̈ve to the underlying purposes of the experiment.

3.4 Data Capturing
The subjects were informed that they would watch a series
of unrelated silent video clips1. The stimuli were equally
partitioned into 10 non-overlapping sessions. Participants
were required to freely view 10 sessions of videos in random
order. In each session, the videos were also displayed at
random. Before the experiments, eye tracker was calibrated
using the standard routine in product manual with rec-
ommended settings for the best results. The calibration
procedure was repeated until an acceptable calibration was
obtained as determined by means of validation procedure
offered by the product. This procedure expected participants
to look at four small circles near the middle of the screen.
The calibration was considered to be acceptable if a fixation
was shown for each circle and no fixation appeared in an
obvious outlier position. To avoid eye fatigue, each video
presentation was followed by a 5-second waiting interval
with black screen. After undergoing a session of videos, the
participant took a rest until she was ready for viewing the
next session. In this way, the video stimuli were shown

1. Note that the collected dynamic stimuli are accompanied with
audio, but we use silent videos during data capturing. That is because
in this work, we specifically focus on exploring the influence of visual
stimuli in human attention behavior during dynamic scene viewing.

to each subject in a different random order, and each of
the video stimuli was viewed by all the 17 subjects. The
raw data recorded by the eye tracker consisted of time and
position values for each frame. We filter out the fixations
which are outside of frames. Finally, 51, 038, 600 fixations
were recorded from 17 subjects on 1, 000 videos.

To convert the discrete fixation map into a continuous
saliency map, we convolve each fixation location (of all
subjects) with a small Gaussian filter. Following [8], [98], the
size of the Gaussian is set to about one degree of visual angle
(∼30 image pixels in our case). The finally stored continuous
saliency map is normalized to a range of 0-1.0.

3.5 Training/Testing Split

We split 1, 000 dynamic stimuli into training, validation
and test sets. Following random selection, we arrive at a
unique split consisting of 600 training and 100 validation
videos with publicly available fixation records, as well as
300 test videos with annotations held-out for benchmarking
purpose.

4 OUR APPROACH

Fig. 3 presents the overall architecture of our ACLNet. It
is based on a CNN-LSTM structure that combines convolu-
tional network and recurrent model to exploit both spatial
and temporal information for predicting video saliency. The
CNN-LSTM network is extended with a supervised atten-
tion mechanism, which explicitly captures static saliency
information and allows the LSTM to focus on learning
dynamic information. The attention module is trained from
rich static eye-tracking data. Thus, ACLNet is able to pro-
duce accurate video saliency with improved generalization
ability. Next, we elaborate each component of ACLNet.

4.1 The CNN-LSTM Architecture

Formally, given an input video {It}t, we first obtain a
sequence of convolutional features {Xt}t from CNN. Then,
the features {Xt}t are fed into a convLSTM [34] as input.
Here, the convLSTM is used for modeling the temporal na-
ture of this sequential problem, which is achieved by incor-
porating memory units with gated operations. Additionally,
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Fig. 3. Network architecture of the proposed video saliency model ACLNet. (a) Attentive CNN-LSTM architecture, (b) CNN layers with attention
module are used for learning intra-frame static features, where the attention module is learned with the supervision from static saliency data, and
(c) ConvLSTM used for learning sequential saliency representations.

by replacing dot products with convolution operations, the
convLSTM is able to preserve spatial information, which is
essential for making spatially-variant pixel-wise prediction.

More precisely, the convLSTM utilizes three convolution
gates (input, output and forget) to control the flow of signal
within a cell. With the input feature Xt at time step t,
the convLSTM outputs a hidden state Ht and maintains a
memory cell Ct for controlling state update and output:

it= σ(WXi ∗Xt+WHi ∗Ht−1+W Ci ◦ Ct−1+bi), (1)

ft= σ(WXf ∗Xt+WHf ∗Ht−1+W Cf ◦ Ct−1+bf ), (2)

ot= σ(WXo ∗Xt+WHo ∗Ht−1+W Co ◦ Ct+bo), (3)

Ct= ft ◦ Ct−1+it◦tanh(WXc ∗Xt+WHc ∗Ht−1+bc), (4)
Ht= ot ◦ tanh(Ct), (5)

where it, ft, ot are the gates. σ and tanh are respectively
the activation functions of logistic sigmoid and hyperbolic
tangent, ‘∗’ denotes the convolution operator and ‘◦’ repre-
sents Hadamard product. All the inputs X , cell memory C,
hidden states H and gates i, f, c are 3D tensors of the same
dimension. W s and bs are weights and biases which can be
learned with back-propagation. The dynamic fixation map
can be obtained via convolving the hidden states H with a
1× 1 kernel (see Fig. 3 (c)).

In our implementation, the first five conv blocks of VGG-
16 [60] are used. For preserving more spatial details, we
remove pool4 and pool5 layers, which results in ×8 instead
of ×32 downsampling. At time step t, with an input frame
It of resolution 224×224, we have Xt ∈ R28×28×512 and
a 28×28 dynamic saliency map from the convLSTM. The
kernel size of the conv layer in convLSTM is set to 3.

4.2 Neural Attention Module

We extend the above CNN-LSTM architecture with an at-
tention mechanism, which is learned from existing static
fixation data in a supervised manner. Such design is mainly
driven by the following three motivations:
• Previous studies [91], [99] have shown that human

attention is guided by both static and dynamic factors.
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Fig. 4. Performance of ACLNet with or without the attention module
on the training and validation sets of DHF1K. The attention module
significantly improves training efficiency and performance.

Through the additional attention module, CNN is enforced
to generate a more explicit spatial saliency representation.
This helps disentangle underlying spatial and temporal
factors of dynamic attention, and allows the convLSTM to
better capture temporal dynamics.
• The CNN-LSTM architecture introduces a large num-

ber of parameters for modeling spatial and temporal pat-
terns. However, for sequential data such as videos, obtain-
ing labeled data is costly. Even with large-scale datasets
like DHF1K with 1K videos, the amount of training data
is still insufficient, considering the high correlation among
those frames from the same video. The supervised attentive
module is able to leverage existing rich static fixation data
to improve the generalization power of ACLNet.
• In VGG-16, we remove the last two pooling layers to

obtain a large feature map. This dramatically decreases the
receptive field (212×212→140×140), which can not cover
the whole frame (224×224). To remedy this, we insert a
set of down- and up-sampling operations into the attention
module, which enhance the intra-frame saliency informa-
tion with an enlarged receptive field. ACLNet is thus able
to make more accurate predictions from a global view.

As demonstrated in Fig. 3 (b), our attentive module is
built upon the conv5-3 layer, as an additional branch of
several conv layers interleaved with pooling and upsam-
pling operations. Given the input feature X , with pooling
layers (detailed in Sec. 5.1), the attention module generates
a downsampled attention map (7×7) with an enlarged re-
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Dynamic stimuli Ground-truth Saliency prediction Attention module

Dynamic stimuli Ground-truth Saliency prediction Attention module

Fig. 5. Illustration of the attention maps predicted by our ACLNet and
the attention module on two dynamic stimuli. Best viewed in color.

ceptive field (260×260). Note that our attention module is
equipped with a sigmoid function, which relaxes the sum-to-
one constraint in the soft-max based neural attention [83].
Then, the small attention map is ×4 upsampled as the
same spatial dimensions of X . Let M ∈ [0, 1]28×28 be the
upsampled attention map, the feature X ∈ R28×28×512 from
conv5-3 layer can be further enhanced by:

X̂ c =M ◦ X c, (6)

where c ∈ {1, . . . , 512} is the channel index, and ‘◦’ in-
dicates Hadamard product defined in Sec. 4.1. Here, the
attention module works as a feature selector to enhance
feature representation.

The above attention module may lose useful information
for learning a dynamic saliency representation, as the atten-
tion module only considers static saliency information in
still video frames. For this, inspired by the recent advances
of attention mechanism and residual connection [86], [100],
we improve Equ. 6 in the residual form:

X̂ c = (1 +M) ◦ X c. (7)

With the residual connection, both the original CNN fea-
tures and the enhanced features are combined and fed to
the LSTM model. In Fig. 4, we observe that the model
with the supervised attention module gains better training
efficiency on the training set and improved performance on
the validation set. Fig. 5 visualizes the attention maps pre-
dicted by the proposed ACLNet and the attention module
on two videos, showing that with the differentiable attention
module, ACLNet is able to capture the visually important
regions during dynamic scene viewing. In Sec. 5.3 and
5.7, more detailed quantitative explorations of the attention
module are offered.

Different from previous attention mechanisms that learn
task-related attention in an implicit manner, our attention
module can learn from existing large-scale static fixation
data in an explicit and supervised manner, as described in
the following subsections.

4.3 Loss Functions
We use the loss function as in [28] that considers three
different saliency evaluation metrics instead of one. The

rationale is that no single metric can fully capture how
satisfactory a saliency map is. We use different metrics to
capture several quality factors.

We denote the predicted saliency map as Y ∈ [0, 1]28×28,
the map of fixation locations as P ∈ {0, 1}28×28 and the
continuous saliency map (distribution) as Q ∈ [0, 1]28×28.
Here the fixation map P is discrete, and records whether a
pixel receives human fixation. The continuous saliency map
is obtained via blurring each fixation location with a small
Gaussian kernel (see Sec. 3.4). Our loss function is defined
as follows:

L(Y, P,Q)=LKL(Y,Q)+α1LCC(Y,Q)+α2LNSS(Y,P ),
(8)

where LKL, LCC and LNSS are the Kullback-Leibler (KL)
divergence, the Linear Correlation Coefficient (CC), and the Nor-
malized Scanpath Saliency (NSS), respectively, which are de-
rived from commonly used metrics [53] to evaluate saliency
prediction models. α1 and α2 are balance parameters and
are empirically set to α1 = α2 = 0.1.
LKL is widely adopted for training saliency models and

is chosen as the primary loss in our work:

LKL(Y,Q) =
∑

x
Q(x) log

(Q(x)

Y (x)

)
. (9)

LCC measures the linear relationship between Y and Q:

LCC(Y,Q) = − cov(Y,Q)

ρ(Y )ρ(Q)
, (10)

where cov(Y,Q) is the covariance of Y and Q, and ρ(·)
stands for standard deviation.
LNSS is derived from the NSS metric:

LNSS(Y, P ) = −
1

N

∑
x
Y (x)P (x), (11)

where Y = Y−µ(Y )
ρ(Y ) and N =

∑
x P (x). It is calculated by

taking the mean of scores from the normalized saliency map
Y (with zero mean and unit standard deviation) at human
fixations P . Since CC and NSS are similarity metrics, their
negatives are adopted for minimization.

4.4 Training Protocol
Our model is iteratively trained with sequential fixation
and image data. In training, a video training batch is cas-
caded with an image training batch. More specifically, in
a video training batch, we apply a loss defined over the
final dynamic saliency prediction from LSTM. Let {Y dt }Tt=1,
{P dt }Tt=1, and {Qdt }Tt=1 be the dynamic saliency predictions,
the dynamic fixation sequence and the continuous ground-
truth saliency maps, we minimize the following loss:

Ld =
∑T

t=1
L(Y dt , P dt , Qdt ). (12)

In this process, the attention module is trained in an implicit
way, since we do not have the groundtruth fixation of each
frame in static scenes.

In an image training batch, we only train our attention
module via minimizing

Ls = L(M,P s, Qs), (13)

where M , P s, Qs indicate the attention map for our static
attention module, the ground-truth static fixation map, and



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

TABLE 7
Statistics and features of saliency prediction algorithms used in our evaluation.

Model Ref. Year Pub. Input Size Deep
Learning

Run-
time(s) Implementation Network Architecture Size (MB)

∗ITTI [26] 1998 TPAMI full size 0.9 Matlab Classic
∗GBVS [27] 2007 NIPS full size 2.7 Matlab+C Classic

∗SALICON [28] 2015 ICCV max{w,h}=800 X 0.3† Caffe VGG-16 [60] 117
∗Shallow-Net [30] 2016 CVPR 320×240 X 0.08† Python+Theano self-designed network 244
∗Deep-Net [30] 2016 CVPR 320×240 X 0.1† Python+Caffe VGG-16 [60] 103
∗ SalGAN [31] 2017 CVPR-workshop 256×192 X 0.02† Python+Theano VGG-16 [60] 130
∗DVA [29] 2018 TIP max{w,h}=256 X 0.1† Python+Caffe VGG-16 [60] 100
PQFT [10] 2010 TIP 64×64 1.2 Matlab Classic

Seo et al. [11] 2009 JoV full size 2.3 Matlab Classic
Rudoy et al. [12] 2013 CVPR h =144 180 Matlab Classic

Hou et al. [13] 2009 NIPS 120×80 0.7 Matlab Classic
Fang et al. [14] 2014 TIP full size 147 Matlab Classic

OBDL [15] 2015 CVPR h = 288 0.8 Matlab Classic
AWS-D [16] 2017 TPAMI full size 9 Matlab Classic

PMES [17] 2001 ICIP full size 579 Matlab Classic
MAM [19] 2002 ICIP full size 778 Matlab Classic

PIM-ZEN [18] 2003 ICME full size 43 Matlab Classic
PIM-MCS [20] 2004 ICASSP full size 10 Matlab Classic

MCSDM [21] 2009 ICIS full size 15 Matlab Classic
MSM-SM [22] 2013 SPL full size 8 Matlab Classic
PNSP-CS [23] 2014 TCSVT full size 895 Matlab Classic

OM-CNN [24] 2018 ECCV 448×448 X 0.05† Python+Tensorflow VGG-16 [60]+YOLO [101]+ 344FlowNet [102]+2×LSTM

Two-stream [25] 2018 TMM 640×480 X 20† Python+Caffe 2×Deep-Net [30] 315(optical flow as extra input)
ACLNet - 2018 CVPR 224×224 X 0.02† Python+Tensorflow VGG-16 [60]+convLSTM 250

∗Static attention model. †Runtime with GPU.

the ground-truth static saliency map, respectively. In this
process, the training of attention module is supervised by
the ground-truth static fixation. Note that, in the image
training batch, we do not train our LSTM module, which
is used for learning the dynamic representation.

For each video training batch, 20 consecutive frames
from the same video are used. Both the video and the start
frame are randomly selected. For each image training batch,
we set the batch size to 20, and the images are randomly
sampled from existing static fixation dataset. More imple-
mentation details can be found in Sec. 5.1.

5 EXPERIMENTS

First, Sec. 5.1 details our experimental settings. Analyses of
model size and runtime can be found in Sec. 5.2. In Sec. 5.3,
quantitative experiments on three eye-tracking benchmarks
(Hollywood-2 [35], UCF sports [35], and DHF1K) in com-
parison with 23 popular visual attention models demon-
strate the robustness, effectiveness, and efficiency of our
algorithm. Further, Sec. 5.4 provides more insights into
the experimental results and gives suggestions for further
work. Qualitative results and attribute-level evaluation are
reported in Sec. 5.5 and 5.6, respectively. To better under-
stand the contributions of different ingredients of ACLNet,
in Sec. 5.7, we implement several variants of our method
to conduct ablative studies. In Sec. 5.8, we perform a cross-
dataset generalization experiment to study the generaliza-
tion of current video saliency datasets.

5.1 Experimental Setup
5.1.1 Training and Testing Protocols
We use the static stimuli (10, 000 images) from the training
set of the SALICON [2] dataset for training our attention

module. For dynamic stimuli, we consider 4 settings: using
the training set(s) from (i) DHF1K, (ii) Hollywood-2, (iii)
UCF sports, and (iv) DHF1K+Hollywood-2+UCF sports.
For DHF1K, we use the original training/validation/testing
splitting (600/100/300). For Hollywood-2, following [39],
we use 823 videos for training and 884 videos for testing.
Note that the videos are further divided into short clips
during training and testing. For UCF sports, the training
and testing sets include 103 and 47 videos, respectively, as
suggested by [40]. We randomly sample 10% videos from
the training sets of Hollywood-2, and UCF sports as their
validation sets. We evaluate ACLNet on the testing sets
of DHF1K, Hollywood-2, and UCF sports dataset, in total
1, 231 video sequences with more than 400K frames.

5.1.2 Implementation Details
ACLNet is implemented in Python on Keras, and trained
with the Adam optimizer [103]. Our attention module is
implemented as: downsampling(×2) → conv(1×1, 64) →
conv(3×3, 128) → downsampling(×2) → conv(1×1, 64) →
conv(3×3, 128) → conv(1×1, 1) → upsampling(×4). The
conv layer is represented as (kernel, channel). The imple-
mentation of our model can be found at https://github.
com/wenguanwang/DHF1K. During training, the learning
rate was set to 0.0001 and was decreased by a factor of
10 every 2 epochs. The network was trained for 10 epochs.
The whole model is trained in an end-to-end manner. The
entire training procedure takes about 30 hours using a single
NVIDIA TITAN X GPU (in training setting (iv)).

5.1.3 Compared Computational Saliency Models
We compare our model with sixteen dynamic saliency
models including: PQFT [10], Seo et al. [11], Rudoy et
al. [12], Hou et al. [13], Fang et al. [14], OBDL [15], AWS-
D [16], PMES [17], PIM-ZEN [18], MAM [19], PIM-MCS [20],

https://github.com/wenguanwang/DHF1K
https://github.com/wenguanwang/DHF1K
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TABLE 8
Quantitative results on DHF1K. The best scores are marked in bold.
Training settings (Sec. 5.1) for video saliency datasets: (i) DHF1K, (ii)

Hollywood-2, (iii) UCF sports, and (iv) DHF1K+Hollywood-2+UCF
sports. Symbol ∗ indicates non-deep learning models. See Sec. 5.3 for

details. These notes are the same for Table 9 and Table 10.

Method
Dataset DHF1K

AUC-J↑ SIM↑ s-AUC↑ CC↑ NSS↑

Baseline
∗center prior 0.854 0.238 0.503 0.302 0.167

∗chance 0.500 0.330 0.500 0.000 0.000
∗PQFT [10] 0.699 0.139 0.562 0.137 0.749

∗Seo et al. [11] 0.635 0.142 0.499 0.070 0.334
Dynamic ∗Rudoy et al. [12] 0.769 0.214 0.501 0.285 1.498
models ∗Hou et al. [13] 0.726 0.167 0.545 0.150 0.847

∗Fang et al. [14] 0.819 0.198 0.537 0.273 1.539
∗OBDL [15] 0.638 0.171 0.500 0.117 0.495
∗AWS-D [16] 0.703 0.157 0.513 0.174 0.940
∗PMES [17] 0.545 0.093 0.502 0.055 0.237
∗MAM [19] 0.551 0.108 0.500 0.041 0.214

∗PIM-ZEN [18] 0.552 0.095 0.498 0.062 0.280
∗PIM-MCS [20] 0.551 0.094 0.499 0.053 0.242
∗MCSDM [21] 0.591 0.110 0.500 0.047 0.247
∗MSM-SM [22] 0.582 0.143 0.500 0.058 0.245
∗PNSP-CS [23] 0.543 0.085 0.499 0.028 0.121
OM-CNN [24] 0.856 0.256 0.583 0.344 1.911

Two-stream [25] 0.834 0.197 0.581 0.325 1.632
∗ITTI [26] 0.774 0.162 0.553 0.233 1.207
∗GBVS [27] 0.828 0.186 0.554 0.283 1.474

Static SALICON [28] 0.857 0.232 0.590 0.327 1.901
models Shallow-Net [30] 0.833 0.182 0.529 0.295 1.509

Deep-Net [30] 0.855 0.201 0.592 0.331 1.775
DVA [29] 0.860 0.262 0.595 0.358 2.013

SalGAN [31] 0.866 0.262 0.709 0.370 2.043
Training ACLNet 0.885 0.311 0.553 0.415 2.259
setting (i) Attention module 0.854 0.251 0.545 0.332 1.755
Training ACLNet 0.878 0.297 0.543 0.388 2.125
setting (ii) Attention module 0.855 0.250 0.541 0.318 1.703
Training ACLNet 0.866 0.277 0.596 0.362 1.951
setting (iii) Attention module 0.852 0.260 0.582 0.350 1.945
Training ACLNet 0.890 0.315 0.601 0.434 2.354
setting (iv) Attention module 0.870 0.273 0.577 0.380 2.077

MCSDM [21], MSM-SM [22], PNSP-CS [23], OM-CNN [24],
and Two-stream [25]. For the sake of completeness, we
further include seven state-of-the-art static attention models:
ITTI [26], GBVS [27], SALICON [28], SalGAN [31], DVA [29],
Shallow-Net [30], and Deep-Net [30]. Among all these
models, OM-CNN, Two-stream, SALICON, SalGAN, DVA,
Shallow-Net, and Deep-Net are deep learning models, and
others are classical saliency one. These models are selected
due to: 1) representing the diversity of the state-of-the-art; or
2) publicly available implementations. We re-implemented
[25] since the official code does not run properly. For
SALICON [28], we use the open source implementation
in https://github.com/CLT29/OpenSALICON. For other
methods with publicly available implementations, we use
the parameters provided by authors and keep them fixed
for all the experiments. In Table 7, detailed statistics and
features of above saliency models are summarized.

5.1.4 Baseline Models

We derive 8 baselines from the proposed ACLNet. For
each training setting, we derive two baselines: ACLNet and
Attention module, referring to our final dynamic saliency
prediction and the intermediate output of our attention

TABLE 9
Quantitative results on Hollywood-2 [35].

Method
Dataset Hollywood-2

AUC-J↑ SIM↑ s-AUC↑ CC↑ NSS↑

Baseline
∗center prior 0.869 0.331 0.615 0.421 1.808

∗chance 0.500 0.330 0.500 0.000 0.000
∗PQFT [10] 0.723 0.201 0.621 0.153 0.755

∗Seo et al. [11] 0.652 0.155 0.530 0.076 0.346
Dynamic ∗Rudoy et al. [12] 0.783 0.315 0.536 0.302 1.570
models ∗Hou et al. [13] 0.731 0.202 0.580 0.146 0.684

∗Fang et al. [14] 0.859 0.272 0.659 0.358 1.667
∗OBDL [15] 0.640 0.170 0.541 0.106 0.462
∗AWS-D [16] 0.694 0.175 0.637 0.146 0.742
∗PMES [17] 0.696 0.180 0.620 0.177 0.867
∗MAM [19] 0.630 0.153 0.562 0.099 0.494

∗PIM-ZEN [18] 0.670 0.167 0.598 0.134 0.667
∗PIM-MCS [20] 0.663 0.163 0.570 0.118 0.584
∗MCSDM [21] 0.618 0.147 0.524 0.067 0.288
∗MSM-SM [22] 0.683 0.180 0.561 0.132 0.682
∗PNSP-CS [23] 0.647 0.146 0.548 0.077 0.370
OM-CNN [24] 0.887 0.356 0.693 0.446 2.313

Two-stream [25] 0.863 0.276 0.710 0.382 1.748
SalGAN [31] 0.901 0.393 0.789 0.535 2.542
∗ITTI [26] 0.788 0.221 0.607 0.257 1.076
∗GBVS [27] 0.837 0.257 0.633 0.308 1.336

Static SALICON [28] 0.856 0.321 0.711 0.425 2.013
models Shallow-Net [30] 0.851 0.276 0.694 0.423 1.680

Deep-Net [30] 0.884 0.300 0.736 0.451 2.066
DVA [29] 0.886 0.372 0.727 0.482 2.459

Training ACLNet 0.905 0.471 0.757 0.577 2.517
setting (i) Attention module 0.880 0.415 0.748 0.529 2.283
Training ACLNet 0.912 0.519 0.754 0.609 3.049
setting (ii) Attention module 0.885 0.416 0.690 0.490 2.113
Training ACLNet 0.884 0.449 0.749 0.534 2.647
setting (iii) Attention module 0.898 0.429 0.763 0.543 2.409
Training ACLNet 0.913 0.542 0.757 0.623 3.086
setting (iv) Attention module 0.878 0.479 0.686 0.478 2.060

module, respectively. We also offer another two baselines:
center prior and chance. Baseline center prior is obtained as the
averaged saliency map over the training set of Hollywood-
2, UCF sports, or DHF1K dataset. Baseline center prior is a
weak baseline that randomly selects pixels as salient.

5.1.5 Evaluation Metrics
There are several ways to measure the agreement be-
tween model predictions and human eye movements [29],
[53]. In our experiments, we employ five classic metrics,
namely Normalized Scanpath Saliency (NSS), Similarity
Metric (SIM), Linear Correlation Coefficient (CC), AUC-
Judd (AUC-J), and shuffled AUC (s-AUC).

5.2 Runtime Analysis
In Table 7, we report the speed of our model and other
saliency models. For all the methods, we include their
computation time of optical flow (if used) and exclude the
I/O time. For the non-deep learning methods, ITTI [26] is
the fastest method (0.9s per frame on CPU) among static
models and Hou et al. [13] is the fastest dynamic saliency
model (0.7s per frame on CPU). Since our model does not
need any pre- or post-processing, it takes only about 0.024s
to process a frame of size 224 × 224, which is faster than
previous deep dynamic attention models: OM-CNN (0.05s)
and Two-stream (20s). We also observe ACLNet is the fastest

https://github.com/CLT29/OpenSALICON
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TABLE 10
Quantitative results on UCF sports [35].

Method
Dataset UCF sports

AUC-J↑ SIM↑ s-AUC↑ CC↑ NSS↑

Baseline
∗center prior 0.834 0.299 0.566 0.350 1.585

∗chance 0.500 0.330 0.500 0.000 0.000
∗PQFT [10] 0.825 0.250 0.722 0.338 1.780

∗Seo et al. [11] 0.831 0.308 0.666 0.336 1.690
Dynamic ∗Rudoy et al. [12] 0.763 0.271 0.637 0.344 1.619
models ∗Hou et al. [13] 0.819 0.276 0.674 0.292 1.399

∗Fang et al. [14] 0.845 0.307 0.674 0.395 1.787
∗OBDL [15] 0.759 0.193 0.634 0.234 1.382
∗AWS-D [16] 0.823 0.228 0.750 0.306 1.631
∗PMES [17] 0.756 0.263 0.714 0.349 1.788
∗MAM [19] 0.669 0.213 0.624 0.218 1.130

∗PIM-ZEN [18] 0.760 0.234 0.702 0.306 1.657
∗PIM-MCS [20] 0.777 0.238 0.695 0.303 1.596
∗MCSDM [21] 0.756 0.228 0.626 0.230 1.091
∗MSM-SM [22] 0.752 0.262 0.634 0.280 1.584
∗PNSP-CS [23] 0.755 0.210 0.628 0.218 1.091
OM-CNN [24] 0.870 0.321 0.691 0.405 2.089

Two-stream [25] 0.832 0.264 0.685 0.343 1.753
∗ITTI [26] 0.847 0.251 0.725 0.356 1.640
∗GBVS [27] 0.859 0.274 0.697 0.396 1.818

Static SALICON [28] 0.848 0.304 0.738 0.375 1.838
models Shallow-Net [30] 0.846 0.276 0.691 0.382 1.789

Deep-Net [30] 0.861 0.282 0.719 0.414 1.903
DVA [29] 0.872 0.339 0.725 0.439 2.311

SalGAN [31] 0.876 0.332 0.762 0.470 2.238
Training ACLNet 0.894 0.403 0.742 0.517 2.559
setting (i) Attention module 0.853 0.333 0.719 0.435 1.946
Training ACLNet 0.874 0.364 0.727 0.452 2.186
setting (ii) Attention module 0.860 0.322 0.656 0.367 1.667
Training ACLNet 0.905 0.496 0.767 0.603 3.200
setting (iii) Attention module 0.884 0.354 0.743 0.500 2.339
Training ACLNet 0.897 0.406 0.744 0.510 2.567
setting (iv) Attention module 0.877 0.379 0.685 0.411 1.899

one among all the deep-learning models and our real-time
processing speed brings high applicability. In addition, our
model (250 MB) is smaller than deep dynamic attention
models: OM-CNN (344 MB) and Two-stream (315 MB).

5.3 Quantitative Evaluation and Model Comparison
The section presents quantitative evaluation results on
DHF1K, Hollywood-2 and UCF sports datasets.
• Performance on DHF1K. Table 8 reports the compara-

tive results with the aforementioned saliency models on the
test set (300 video sequences) of DHF1K. It can be observed
that our model consistently and significantly outperforms
other competitors in all metrics. This can be attributed
to our specially designed attention module which allows
our model to explicitly learn static and dynamic saliency
representations in CNN and LSTM separately. Notice that
our model does not even use any optical flow algorithm.
This significantly improves the applicability of our model
and demonstrates the effectiveness of our training protocol
in leveraging both static and dynamic stimuli.
• Performance on Hollywood-2. We further test our

model on Hollywood-2 where the testing set comprises
884 video sequences. The results are summarized in Table
9. Again, our model performs significantly higher than
other methods across various metrics. Besides, when we
go insight into the performance with training settings, the
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Fig. 6. Dynamic saliency prediction performance over time, evaluated on
the DHF1K test set. The static (dynamic) saliency models are plotted as
black (red) dots, and the deep learning based models are represented
by black boxes. It can be observed a performance improvement starting
in 2015, corresponding to the application of deep learning techniques to
visual saliency detection. See Sec. 5.4 for details.

performance improves by increasing the amount of training
data. This suggests that the large-scale training data volume
is important for the performance of neural networks.
• Performance on UCF sports. On the test set (47 video

sequences) of UCF sports, ACLNet again generates consis-
tently better results than other state-of-the-art solutions (see
Table 10). Interestingly, we find that with small amount of
training data (training setting (iii), 103 video stimuli from
UCF sports), ACLNet achieves a very high performance,
even better than the model (ACLNet, training setting (iv))
trained with large-scale data (1.5K video stimuli). This can
be explained by the lack of diversity in the training data, as
the videos in UCF sports are highly related (with similar
scenes and actors) and due to small scale. This is also
consistent with our observation on UCF sports videos where
82.3% fixations are located on the human body (see Sec. 2.1).

5.4 Further Analyses
Now we provide detailed analyses to gain deeper insights
on previous studies and suggest hints for future research.
• Dynamic saliency models: deep vs non-deep learn-

ing. In dynamic scenes, previous deep learning based dy-
namic saliency models (i.e., OM-CNN, Two-stream) show
significant improvements over classic dynamic models (e.g.,
PQFT, Seo et al., Rudoy et al., Hou et al., and Fang et al.).
This demonstrates the strong learning capacity and premise
of neural networks for modeling dynamic saliency.
• Non-deep learning models: static vs dynamic. An

interesting finding is that classic dynamic methods (i.e.,
PQFT, Seo et al., Rudoy et al., Hou et al., and Fang et al.)
do not perform as well as their static counterparts: ITTI and
GBVS. This is probably due to two reasons. First, the per-
ceptual cues and underlying mechanisms of visual attention
allocation during dynamic viewing are more complex and
still not clear. Second, previous studies are more focused on
computational models of static saliency, while less efforts
were paid for modeling dynamic saliency.
• Deep learning models: static vs dynamic. Compared

with state-of-the-art deep learning based static models (i.e.,
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TABLE 11
Attribute-based study w.r.t. content motion, camera motion, number of objects, scene illumination and number of people in DHF1K dataset.
ND-avg indicates the average score of three top-performing heuristic models: GBVS [27], Fang et al . [14], and ITTI [26]. D-avg refers to the
average score of three top-performing deep learning models: ACLNet, SalGAN [31] and DVA [29], according to Table 8. Symbol ∗ indicates

non-deep learning models. See Sec. 5.6 for details. These notes are the same for Table 12.

Metric Method Content Motion Camera Motion #Objects Scene Illumination #People
stable slow fast stable slow fast 0 1 2 ≥3 day night indoor 0 1 2 ≥3

AUC-J ↑

∗ITTI [26] 0.768 0.798 0.799 0.779 0.801 0.803 0.799 0.828 0.794 0.767 0.807 0.751 0.780 0.798 0.801 0.788 0.783
∗PQFT [10] 0.685 0.692 0.709 0.715 0.692 0.683 0.710 0.710 0.718 0.671 0.690 0.665 0.710 0.671 0.726 0.700 0.693

DVA [29] 0.880 0.862 0.855 0.862 0.866 0.855 0.883 0.879 0.870 0.839 0.861 0.822 0.867 0.857 0.876 0.860 0.850
OM-CNN [24] 0.867 0.852 0.857 0.844 0.860 0.862 0.889 0.874 0.862 0.831 0.858 0.788 0.858 0.847 0.866 0.863 0.849

ACLNet 0.896 0.886 0.886 0.884 0.887 0.891 0.919 0.902 0.892 0.866 0.888 0.812 0.891 0.876 0.898 0.895 0.880
∗ND-avg 0.814 0.822 0.829 0.815 0.826 0.830 0.835 0.849 0.829 0.797 0.831 0.769 0.817 0.826 0.836 0.816 0.809

D-avg 0.883 0.867 0.868 0.864 0.872 0.873 0.897 0.887 0.876 0.846 0.872 0.803 0.871 0.862 0.880 0.877 0.860

DVA, Deep-Net), previous deep learning based dynamic
models (i.e., OM-CNN, Two-stream) only obtain slightly
better performance (or are on par). Although strong motion
information (i.e., optical flow, motion network) have been
encoded into OM-CNN and Two-stream, their performance
are still limited. We attribute this to the inherent difficulties
of video saliency prediction and previous models’ neglect of
utilizing existing rich static saliency data.
• Performance change over the past 20 years. Fig. 6

plots the s-AUC over time, evaluated on the DHF1K test
set. The first observation is that the performance gradually
improved over time, which demonstrates the progress of vi-
sual saliency computation models. We also find a relatively
rapid performance improvement starting in 2015, with the
application of deep learning techniques to visual saliency
modeling. A closer look reveals surprisingly that the ITTI
model, as an early proposed saliency model, achieves far
better performance than most non-deep learning dynamic
saliency models. This indicates that previous heuristic video
saliency models may be over-fitted over small datasets.

5.5 Qualitative Evaluation and Model Comparison
Fig. 7 gives visual results of ACLNet and four representative
saliency models: ITTI [26], DVA [29], PQFT [10], and OM-
CNN [24] on UCF sports [35] (a, b), Hollywood-2 [35] (c, d)
and DHF1K (e, f). ITTI and PQFT are popular heuristic mod-
els which focus on static and dynamic saliency prediction,
respectively. The other two, DVA and OM-CNN, are deep
learning methods, showing promising performance among
previous static and dynamic saliency models respectively,
according to our prior quantitative study.

In Fig. 7 (a), most saliency models successfully detect
semantically-meaningful parts (which typically attract hu-
man attention), such as human and text. However, previous
methods fail to discriminate the correct relative importance
among different parts. They assign high saliency to the diver
while wrongly highlighting the importance of advertising
text. ITTI performs worse as parts of the background are
detected as salient. PQFT, yet another heuristic method,
improves the results significantly. This highlights the impor-
tance of dynamic information in video saliency prediction.
DVA also performs well, showing the advantage of applying
neural networks in this field. But it is still worse than OM-
CNN and ACLNet, which explicitly utilize motion informa-
tion or model temporal dynamics using LSTMs. Fig. 7 (b)
shows a crowded scene. In this case, ITTI fails to find the

salient regions, due to the noise in the crowded background.
PQFT is more favored, as the noise responses from parts of
the background are successfully removed. In some frames,
its performance is even better than DVA, showing again the
importance of modeling temporal dynamics in this problem.

From Fig. 7 (c) we observe that, although OM-CNN
accurately focuses on human faces, it fails to discriminate
the most important one. This suggests a high-level un-
derstanding of the video content is needed. PQFT seems
to be less effective, perhaps because the motion informa-
tion is not important in this case, and introduces noise.
This demonstrates how to fuse appearance, motion, and
semantic information is essential in designing a heuristic
dynamic saliency model. The difficulty of fusing motion
and appearance features may be the main reason that
PQFT gains lower overall performance than ITTI, though
it makes better predictions in some cases. As depicted in
Fig. 7 (d), deep learning methods such as ACLNet, DAV,
and OM-CNN, show advantage over heuristic methods, as
they can detect semantically-meaningful parts effectively.
Besides, the third and forth columns show two adjacent
frames which are almost the same. However, interestingly
OM-CNN yields different results for these two very similar
frames indicating the potential instability of deep learning
models. Thus, exploring more stable and interpretable deep
saliency models may be a promising and essential direc-
tion. Fig. 7 (e) shows a challenging scene with a highly-
cluttered background and similar appearance distributions
of the foreground and background. Traditional methods
like ITTI and PQFT face difficulties while deep models
perform more favorably. Among deep models, OM-CNN
performs the worst as it fails to find the objects. Fig. 7 (d)
gives an example that challenges all the methods. Clearly,
ITTI and PQFT, dominated by the low-level handcrafted
features, fail to interpret such a difficult scene. Though deep
methods implicitly leverage semantically-rich features, they
fall short to reason about the high-level knowledge, i.e., the
most important player, and tactical awareness behind their
actions and movements.

5.6 Attribute-based Study
As stated in Sec. 3.1, to enable a deeper analysis and
understanding of the performance of saliency models, we
annotate the video sequences in DHF1K with a set of seven
main categories (i.e., daily activity, sport, artistic performance,
social activity, animal, artifact, and scenery), and five attributes
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Fig. 7. Qualitative results of our ACLNet and four representative saliency models: ITTI [26] (non-deep static saliency model), DVA [29] (deep
static saliency model), PQFT [10] (non-deep dynamic saliency model), and OM-CNN [24] (deep dynamic saliency model) on three video saliency
datasets: UCF sports [35] (a, b), Hollywood-2 [35] (c, d) and DHF1K (e, f). Best viewed in color. It can be observed that the proposed ACLNet is
able to handle various challenging scenes well and produces more accurate video saliency results than other competitors. See Sec. 5.5 for details.
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TABLE 12
Attribute-based study w.r.t. video category on DHF1K dataset.

Metric Method
Human

Animal Artifact SceneryDaily
Activ.

Sports
Social
Activ.

Art

AUC-J↑

∗ITTI [26] 0.777 0.821 0.767 0.786 0.822 0.794 0.760
∗PQFT [10] 0.716 0.713 0.651 0.757 0.678 0.726 0.619

DVA [29] 0.865 0.868 0.838 0.887 0.888 0.855 0.803
OM-CNN [24] 0.838 0.882 0.836 0.888 0.880 0.831 0.805

ACLNet 0.883 0.907 0.870 0.909 0.905 0.865 0.844
∗ND-avg 0.812 0.846 0.794 0.827 0.852 0.815 0.788

D-avg 0.861 0.888 0.848 0.897 0.893 0.851 0.818

regarding content motion, camera motion, number of ob-
jects, scene illumination and number of people. By using
these annotations, in this section, we construct subsets of
the testset of DHF1K with different dominant features and
analyze the performance of saliency models (i.e., ACLNet ,
ITTI [26], DVA [29], PQFT [10], and OM-CNN [24]) for each
video attributes/categories.

Table 11 and 12 report the performance on subsets
of the testset of DHF1K (characterized by a particular
attribute/category), measured by AUC-J. Due to limited
space, we provides the results of ACLNet and the four rep-
resentative saliency models: ITTI [26], DVA [29], PQFT [10],
and OM-CNN [24] used in our qualitative study in Sec. 5.5.
In addition, two extra baselines: ND-avg and D-avg, are
included. ND-avg represents the average results of three
top-performing non-deep learning models: GBVS [27], Fang
et al. [14] and ITTI [26]; D-avg indicates average results of
three top-performing deep learning models: ACLNet, Sal-
GAN [31] and DVA [29], according to Table 8. Overall, from
Table 11 and 12, it can be observed that ACLNet consistently
outperforms other competitors in all settings. This verifies
again the effectiveness of ACLNet. Next, we provide more
detailed attribute-based analyses.
•What is the most challenging situation for deep/non-

deep learning based saliency models? As demonstrated
in Table 11, nighttime setting poses the greatest challenge
to both non-deep learning (ND-avg: 0.769) and deep learn-
ing saliency models (D-avg: 0.803). This is sensible since
the visually important regions are not easily discriminated
from the background in dim environments. The scenes with
multiple objects (≥3) also represent a major difficulty to
current state-of-the-art saliency models (ND-avg: 0.797, D-
avg: 0.846). In such cases, the relative importance among
several main objects is needed to be accurately assigned. Un-
fortunately, such high-level scene understanding/reasoning
is a hard task even for current top-performing heuristic
and deep saliency models. This is consistent with the ob-
servation in [97]. Bylinskii et al. [97] found that humans
tend to fixate people that are central to an event, or stand
out from the crowd (discriminated by high-level factors
such as facial expression, age, accessories, etc.). Interestingly,
saliency models, either non-deep learning (ND-avg: 0.809)
or deep learning models (D-avg: 0.860), also perform worse
over scenes with multiple people (≥3). This hints again that
the assignment of relative importance to objects (people) is
one of the main challenges in this field.
• What is the most challenging scene for deep/non-

deep learning based saliency models? As shown in Ta-

TABLE 13
Ablation study on DHF1K dataset. See Sec. 5.7 for details.

Aspects Variants AUC-J↑ SIM↑ s-AUC↑ CC↑ NSS↑

ACLNet
training setting (iv)
(1.5K videos+10K images)

0.890 0.315 0.601 0.434 2.354

Attention
module

attention module
(1.5K videos+10K images)

0.870 0.273 0.577 0.380 2.077

w/o attention
(1.5K videos)

0.847 0.236 0.579 0.306 1.685

w/ implicit attention
(1.5K videos)

0.854 0.238 0.586 0.343 1.762

implicit attention module
(1.5K videos)

0.831 0.217 0.554 0.307 1.573

w/ center bias
(1.5K videos)

0.851 0.230 0.582 0.324 1.731

w/o residual connection
(1.5K videos+10K images)

0.874 0.303 0.594 0.401 2.174

w/o downsampling
(1.5K videos+10K images)

0.870 0.298 0.583 0.389 2.085

Training reduced training samples
(1.5K videos+5K images)

0.877 0.297 0.588 0.372 2.098

convLSTM
w/o convLSTM
(1.5K videos+10K images)

0.867 0.269 0.573 0.382 2.034

chance 0.500 0.330 0.500 0.000 0.000

ble 12, among different video categories, scenery scenes are
very challenging to saliency models (ND-avg: 0.788, D-avg:
0.818). The main reason because it is hard to determine
obvious salient areas on these cases, thus saliency models
do not predict fixations well. To solve this issue, a deeper
exploration of pure stimuli-driven human visual attention
behavior is needed. Another difficult subset is social activity
videos (ND-avg: 0.794, D-avg: 0.848). In this case, humans
typically interact with each other (e.g., hug, conversation,
cooperation) or manipulate objects (e.g., instrument). Thus,
commonsense regarding human social behavior may be an
essential factor that should be considered when creating an
effective saliency model.
• Do deep saliency models bring additional benefits

other than improving performance? The results in Table 11
and 12 demonstrate deep saliency models consistently im-
prove performance over all the attributes and categories,
especially when compared with heuristic methods. How-
ever, it is interesting to see the most difficult subsets (i.e.,
nighttime setting, multiple objects, multiple people, scenery
videos, and social activity videos) for the heuristic methods
are all exactly the hardest ones for deep models (even with
the same rank of difficulties). These observations imply
that, although deep learning techniques greatly advance the
state-of-the-art, they do not bring much insight into this
problem. The performance improvement is mainly driven
by the availability of large-scale data and the strong learn-
ing ability of neural networks. Efforts towards exploring
the underlying mechanisms of human attention allocation
behavior are still highly-needed to move this field forward.

5.7 Ablation Study
Now we perform detailed analysis of our proposed ap-
proach in several aspects on DHF1K. We verify the effective-
ness of the proposed mechanism, and examine the influence
of different training protocols, as summarized in Table 13.
• Effect of attention mechanism. By disabling the atten-

tion module and training only with video stimuli (baseline:
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TABLE 14
Results for cross-dataset generalization experiment. Performance (left: AUC-J, right: SIM) for dynamic saliency prediction when training on one
dataset (rows) and testing on another (columns), i.e., each row is: training on one dataset and testing on all the datasets. “Self” refers to training
and testing on the same dataset (same as diagonal). “Mean Others” indicates average performance on all except self. See Sec. 5.8 for details.

Metric AUC-J ↑ Metric SIM ↑

Train on:

Test on:
DHF1K Hollywood-2 UCF sports Self

Mean
others

Percent
drop ↓ Train on:

Test on:
DHF1K Hollywood-2 UCF sports Self

Mean
others

Percent
drop ↓

DHF1K 0.833 0.852 0.842 0.833 0.847 -2% DHF1K 0.219 0.330 0.302 0.219 0.316 -44%
Hollywood-2 0.818 0.859 0.822 0.859 0.820 5% Hollywood-2 0.214 0.365 0.262 0.365 0.238 35%

UCF sports 0.820 0.828 0.851 0.824 0.875 3% UCF sports 0.204 0.327 0.348 0.348 0.266 25%

Mean others 0.819 0.840 0.832 - - - Mean others 0.209 0.328 0.282 - - -

w/o attention), we observe clear performance drop (e.g. AUC-
J: 0.890→0.847), showing the effectiveness of the attention
module and showing that leveraging static stimuli indeed
improves the predication accuracy in dynamic scenes. Our
attention module is trained over existing static eye-tracking
datasets in an explicit manner. We replace our attention
module with a traditional implicit attention mechanism,
which is achieved via replacing the last sigmoid activation
with a spatial softmax operation and only using dynamic
eye-tracking data. We find that the implicit attention mech-
anism boosts the performance, compared to the model
without attention. But it is worse than the proposed explicit
attention module, which can be directly trained from data.

To gain more insight about the attention module, i.e.,
what does the attention module learn, we offer two base-
lines attention module and implicit attention module. The two
baselines represent the attention maps predicted by the
proposed attention module (trained with both implicit and
explicit manners) and the implicit attention module (trained
only in an implicit way), respectively. From their results we
draw two conclusions. First, both attention modules can
capture visual importance, as the performance is signifi-
cantly above chance. Second, the attention module trained
in both implicit and explicit manners performs better than
the implicit attention module, hence resulting in better final
dynamic fixation prediction results.

For baseline w/ center bias, we replace our attention mod-
ule with a pre-computed center prior, which is calculated
by averaging all the saliency maps over the training set in
DHF1K dataset. The model equipped with the center prior
gains higher performance over all the metrics, except the
s-AUC which is specially designed for alleviating the bias
borrowed by the center prior.

To explore the effect of the residual connection in atten-
tion module (Equ. 8), we train the model based on Equ. 5
(without residual connection). We observe a minor decrease
showing that employing residual connection could avoid
distorting spatial features in frames.

In our attention module, we apply down-sampling for
enlarging the receptive field. We also study the influence
of such design. We find that the attention module with
enlarged receptive field leads to better performance, since
the model could make prediction in global view.
• Training. We assess different training protocols. By re-

ducing the amount of static training stimuli from 10K to 5K,
we observe a performance drop (e.g., AUC-J: 0.890→0.877).
The baseline (w/o attention) can also be viewed as the model
without any static training stimuli, which gains worse per-

formance (e.g., AUC-J: 0.890→0.847).
• Effect of convLSTM. To study the influence of convL-

STM, we re-train our model without convLSTM (using train-
ing setting (iv)) and obtain a baseline: w/o convLSTM. We
observe a drop in performance showing that the dynamic
information learned in convLSTM boosts the performance.

5.8 Cross-Dataset Generalization

Datasets play an important role in advancing visual saliency
prediction, not just as source for training models, but also
as a means for measuring and comparing performance.
Datasets are collected with the goal of representing the
visual world, summarizing the algorithm as a single bench-
mark performance number. A concern thus comes into view:
it is necessary to evaluate how well a particular dataset
represent the real visual world. Or more specially, quanti-
tatively measuring the dataset’s generalization ability. Here,
we follow [104] to assess how general video saliency dataset
are. We study cross-dataset generalization, e.g., training on
DHF1K and testing on Hollywood-2.

Following [104], for each dataset, we re-train our
ACLNet (w/o attention module and static training data)
with 103 videos and test it on 47 videos. Both the numbers
of training and test videos are the maximum ones possible
due to the limited size of the UCF sports dataset. Results are
summarized in Table 14. Each column corresponds to the
performance when training on all the datasets respectively
and testing on one dataset. Each row corresponds to training
on one dataset and testing on all the datasets. Note that
since our training/testing protocol is different from the one
used in benchmarks mentioned in previous sections, the
actual performance numbers are not meaningful. Rather,
it is the relative performance difference that matters. Not
surprisingly, we observe that the best results are achieved
when training and testing on the same dataset. By looking
at the numbers across one row, we can determine how good
a dataset is at generalizing to the others. By looking at the
numbers across each column, we can determine how easy
a dataset is for the other datasets. We find that DHF1K is
the most difficult dataset (lowest column averages across
two metrics; AUC-J: 0.819, SIM: 0.209) and generalizes the
best (highest row averages on Mean others and lowest row
averages on Percent drop).

Overall, this analysis demonstrates that the proposed
DHF1K dataset has made significant improvement in terms
of generalization and hardness, compared with previous
eye-tracking datasets: Hollywood-2 and UCF sports.
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6 DISCUSSION AND CONCLUSION

In this paper, we presented the Dynamic Human Fixa-
tion 1K (DHF1K) dataset, which is a large-scale carefully
designed and systematically collected benchmark dataset
for video saliency analysis. It contains 1K videos captur-
ing representative instances, diverse contents and various
motions, with human eye-tracking records and attribute
annotations. We further proposed a novel deep learning
based video saliency model ACLNet, which leverages a
supervised attention mechanism to explicitly capture static
saliency information and help LSTM better capture dynamic
saliency representations over successive frames. Then, we
performed extensive experiments on DHF1K, Hollywood-2,
and UCF-sports datasets. To the best of our knowledge, our
experiments form the largest scale performance evaluation
of dynamic saliency models. We compared our model with
previous visual saliency models and showed that it outper-
forms other contenders and runs very efficiently. We also
performed attribute-level evaluation, and assessed the gen-
eralization ability of video saliency datasets. Our analyses
and benchmark are expected to motivate future interests in
this field.
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