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Abstract. This paper considers the problem of 3D patient body model-
ing. Such a 3D model provides valuable information for improving patient
care, streamlining clinical workflow, automated parameter optimization
for medical devices etc. With the popularity of 3D optical sensors and
the rise of deep learning, this problem has seen much recent development.
However, existing art is mostly constrained by requiring specific types of
sensors as well as limited data and labels, making them inflexible to be
ubiquitously used across various clinical applications. To address these
issues, we present a novel robust dynamic fusion technique that facilitates
flexible multi-modal inference, resulting in accurate 3D body modeling
even when the input sensor modality is only a subset of the training
modalities. This leads to a more scalable and generic framework that
does not require repeated application-specific data collection and model
retraining, hence achieving an important flexibility towards developing
cost-effective clinically-deployable machine learning models. We evalu-
ate our method on several patient positioning datasets and demonstrate
its efficacy compared to competing methods, even showing robustness in
challenging patient-under-the-cover clinical scenarios.

Keywords: 3D patient pose and shape · multi-modal

1 Introduction

We consider the problem of 3D patient body modeling. Given an image of a
patient, the aim is to estimate the pose and shape parameters of a 3D mesh that
digitally models the patient body. Such a 3D representation can help augment
existing capabilities in several applications. For instance, for CT isocentering, the
3D mesh can provide an accurate estimate of thickness for automated patient
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Fig. 1. We present a new approach for 3D patient body modeling that facilitates mesh
inference even when the input data is a subset of all the modalities used in training.

positioning [1] and radiation dose optimization [2]. In X-ray, the 3D mesh can
enable automated radiographic exposure factor selection [3], ensuring optimal ra-
diation dosage to the patient based on patient thickness estimates. Consequently,
patient body modeling has seen increasing utility in healthcare [4–7].

Much recent work [8–10] has focused on estimating the 2D or 3D keypoint
locations on the patient body. Such keypoints represent only a very sparse sam-
pling of the full 3D mesh in the 3D space that defines the digital human body.
The applications noted above necessitate that we go beyond just predicting key-
points and estimate the full 3D mesh representing the patient body. To address
this issue, Singh et al. [11] presented a technique, using depth sensor data, to
retrieve a full 3D patient mesh. However, this method is limited to CT-specific
poses and requires depth data. If we change either the application (e.g., X-
ray poses and protocols) or even the sensor (e.g., some applications may need
RGB-only sensor), this method will need (a) fresh collection and annotation of
data, and (b) retraining the model with this new data, both of which may be
prohibitively expensive to do repeatedly for each application separately. These
issues raise an important practical question: can we design generic models that
can be trained just once and universally used across various scan protocols and
application domains? Each application has its own needs and this can manifest
in the form of the sensor choice (e.g., RGB-only or RGB-thermal) or specific data
scenario (e.g., patient under the cover). To learn a model that can be trained
just once and have the capability to be applied across multiple such applications
requires what we call dynamic multi-modal inference capability. For instance,
such a model trained with both RGB and thermal data can now be applied to
the following three scenarios without needing any application-specific retraining:
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Fig. 2. RDF comprises multiple branches (three shown for illustration) of CNNs to
learn a joint multi-modal feature representation, which is used in conjunction with a
mesh parameter regressor that outputs the parameters of the 3D patient body mesh.

RGB-only, thermal-only, or RGB-thermal. This ensures flexibility of the trained
model to be used in applications that can have an RGB-only sensor, thermal-only
sensor or an RGB-thermal sensor. A useful byproduct of such multi-modal infer-
ence capability is built-in redundancy to ensure system robustness. For instance,
in an application with an RGB-thermal input sensor, even if one of the sensor
modalities fails (e.g., thermal stops working), the model above will still be able
to perform 3D patient body inference with the remaining RGB-only data. These
considerations, however, are not addressed by existing methods, presenting a
crucial gap in clinically-deployable and scalable algorithms.

To address the aforementioned issues, we present a new robust dynamic fu-
sion (RDF) algorithm for 3D patient body modeling. To achieve the multi-modal
inference capability discussed above, RDF comprises a multi-modal data fusion
strategy along with an associated training policy. Upon training, our RDF model
can be used for 3D patient body inference under any of the possible multi-modal
data modality combinations. We demonstrate these aspects under two different
two-modality scenarios: RGB-depth and RGB-thermal. In both cases, we eval-
uate on clinically-relevant patient positioning datasets and demonstrate efficacy
by means of extensive experimental comparisons with competing methods.

2 Method

The proposed robust dynamic fusion (RDF) framework for 3D patient body
modeling comprises several key steps, as summarized in Figure 2. Given multi-
modal data input, RDF first generates features in a joint multi-modal feature
space. While our discussion below assumes two modalities, RDF can be ex-
tended to many more modalities as well (Figure 2 shows the scenario with three
modalities). Furthermore, to make RDF robust to the absence of any particular
modality during testing, we present a probabilistic scheme to perturb the input
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data at various multi-modal permutation levels. Our hypothesis with this train-
ing policy is that the resulting model will have been trained to predict the 3D
patient model even in the absence of any particular input data modality (e.g.,
if the thermal sensor breaks down, leading to the availability of only the RGB
modality data).

Given inputs Im1 and Im2 from two modalities m1 (e.g., RGB) and m2 (e.g.,
thermal), RDF first generates feature representations for each modality fm1

and
fm2

with two separate branches of convolutional neural networks (CNN). These
individual feature vectors are then fused with our dynamic feature fusion module
to give the feature representation fDF of Im1

and Im2
in the joint multi-modal

feature space. Given fDF, RDF generates the parameters of the 3D mesh that
best describe (as measured by an objective function LDF

mesh on the mesh param-
eters) the patient in the input data. These parameters are then used in con-
junction with an image projection operation to predict the 2D keypoints, whose
error is penalized by means of an objective function LDF

2D measuring distance to
ground-truth keypoints. To strengthen the representation capability of features
in each modality, RDF also computes mesh parameters directly from each of fm1

and fm2 , each of which are penalized with objective functions (Lm1

mesh, L
m1

2D) and
(Lm2

mesh, L
m2

2D) respectively. RDF is then trained with the overall loss function:

L = LDF
mesh + LDF

2D +

M∑
i=1

(
Lmi

mesh + Lmi

2D

)
(1)

where M represents the number of input modalities (M = 2, e.g., RGB and
thermal, in the context above). Note that our proposed approach is substantially
different than existing state-of-the-art mesh estimation methods such as HMR
[12]. While HMR also regresses mesh parameters from feature representations,
it shares the same limitation as Singh et al. [11], i.e., it can be trained only
for one modality. Consequently, even if one were to use HMR in a multi-modal
scenario, it would have to be in a standard two-branch fashion that assumes
the availability of data from both modalities during both training and testing,
leading to the same limitations and considerations discussed in Section 1. We
next discuss each component of our RDF approach in greater detail.

Multi-modal training. To ensure multi-modal inference flexibility discussed
above, given Im1

and Im2
, during training, we simulate several inference-time

scenarios with a probabilistic data and training policy, which we achieve by
adding noise to our input data streams probabilistically. Specifically, we ran-
domly select one of the two streams m1/m2 with a probability p, and replace
the input data array of this stream with an array of zeros. With this strategy, as
training progresses, the model will have observed all the following three modality
possibilities: m1 only (Im2

set to zero), m2 only (Im1
set to zero), and both m1

and m2, thereby “teaching” the model how to infer under any of these scenar-
ios. Given Im1

and Im2
(with or without the zero changes as described above),

we first extract their individual feature representations fm1 and fm2 with their
corresponding CNN branches. We then concatenate these two feature vectors,
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giving fcat. Inspired by [13], we process fcat with our feature fusion module. This
fusion operation, also shown in Figure 2, essentially generates a new feature
representation, fDF , that captures interdependencies between different channels
and modalities of the input feature representation. Specifically, through a series
of fully connected and non-linear activation operations, we produce a vector sc
which can be thought of as a vector of weights highlighting the importance of
each channel in the input feature vector fcat. We then element-wise multiply fcat
and sc, which is then followed by one more fully connected unit to give fDF .

Mesh recovery. Given fDF , RDF comprises a mesh parameter regressor mod-
ule (a set of fully connected units) that estimates the parameters of the 3D
patient mesh (we use Skinned Multi-Person Linear (SMPL) [14]). SMPL is a
statistical model parameterized by shape β ∈ R10 and pose parameters θ ∈ R72.
The mesh parameter regressor module takes fDF as input and produces the pa-
rameter estimates θ̂ and β̂, which are penalized by an l1 distance loss with the
ground-truth parameters θ and β:

Lmesh =
∥∥[θ, β]− [θ̂, β̂]

∥∥
1

(2)

Keypoints estimation. To ensure accurate estimation of keypoints on the
image, our method projects the 3D joints from the estimated mesh to image
points. This is achieved using a weak-perspective projection operation [12] that
consists of a translation ρ ∈ R2 and a scale t ∈ R. The 2D keypoints are then
computed as x̂i = s

∏
(Xi) + ρ, where Xi is the ith 3D joint. We then supervise

these predictions using an l1 loss:

L2D =
∑
i

∥∥xi − x̂i

∥∥
1

(3)

where xi is the corresponding 2D ground truth.

3 Experiments

Preliminaries. As noted previously, our proposed RDF framework can in-
principle be used with any number of input modalities (we only need to in-
crease the number of input streams in Figure 2). However, for simplicity, we
demonstrate results with two separate two-modality scenarios: (m1 = RGB,
m2 = thermal) and (m1 = RGB, m2 = depth). In each case, we empirically
show the flexibility of RDF in inferring the 3D patient body when any subset
of (m1,m2) modalities is available at test time. To evaluate the performance
of our proposed RDF algorithm, we compare it to a competing state-of-the-art
mesh recovery algorithm, HMR [12]. Note that the crux of our evaluation is in
demonstrating RDF’s flexibility with multi-modal inference. HMR, by design,
can be used with only one data modality at a time. Consequently, the only way
it can process two data modalities is by means of a two-stream architecture with
data from both modalities as input. For this two-stream HMR, note that we use
the concatenated features to regress the mesh parameters.
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SLP Train Test 2D MPJPE ↓ 3D MPJPE↓

HMR[12]
RGB RGB 37.2 155

T T 34.2 149
RGB-T RGB-T 34.1 143

RDF RGB-T
RGB 36.6 144

T 34.7 138
RGB-T 32.7 137

SCAN Train Test 2D MPJPE↓ 3D MPJPE↓

HMR[12]
RGB RGB 25.6 168

D D 23.7 150
RGB-D RGB-D 21.8 144

RDF RGB-D
RGB 17.8 117

D 21.6 116
RGB-D 16.2 103

CAD Train Test 2D MPJPE ↓ 3D MPJPE↓

HMR[12]
RGB RGB 7.9 120

D D 9.2 118
RGB-D RGB-D 6.7 103

RDF RGB-D
RGB 6.1 106

D 7.2 104
RGB-D 5.7 97

PKU Train Test 2D MPJPE↓ 3D MPJPE↓

HMR[12]
RGB RGB 8.8 127

D D 13.2 150
RGB-D RGB-D 8.2 118

RDF RGB-D
RGB 7.7 123

D 11.8 133
RGB-D 8.1 106

Table 1. Results on SLP, SCAN, CAD, and PKU. “T”: thermal, “D”: depth.

SLP Train Test 2D MPJPE ↓ 3D MPJPE↓

RDF RGB-D-T
RGB 37.7 144

T 35.5 135
RGB-T 34.0 138

CAD Train Test 2D MPJPE ↓ 3D MPJPE↓

RDF RGB-D-T
RGB 6.7 108

D 7.0 107
RGB-D 5.9 93

Table 2. Results on SLP and CAD with three mod. “T”: thermal, “D”: depth.

Datasets, implementation details, and evaluation metrics. We use the
SLP [10] dataset with images of multiple people lying on a bed for the RGB-
thermal experiments. These images correspond to 15 poses collected under three
different cloth coverage conditions: uncover, “light” cover (referred to as cover1),
and “heavy” cover (cover2). We use PKU [15], CAD [16] and an internally-
collected set of RGB-D images from a medical scan patient setup (SCAN) for
the RGB-depth experiments. PKU and CAD contain a set of complex human
activities recorded in daily environment, whereas the SCAN dataset has 700 im-
ages of 12 patients lying on a bed in 8 different poses. For SCAN, we create an
equal 350-image/6-patient train and test split, and follow the standard protocol
for other datasets. In the RDF pipeline, both modality-specific encoder networks
are realized with a ResNet50 [17] architecture, which, along with the mesh pa-
rameter regressor network, is pretrained with the Humans3.6M dataset [18]. We
set an initial learning rate to 0.0001, which is multiplied by 0.9 every 1,000 iter-
ations. We use the Adam optimizer with a batch size of 64 (input image size is
224 × 224) and implement all code in PyTorch. All loss terms in our objective
function have an equal weight of 1.0. For evaluation, we use standard metrics
[18]: 2D mean per joint position error (MPJPE) in pixels and 3D MPJPE in
millimeters.

Bi-modal inference evaluation. Table 1 shows RGB-T results on the SLP
dataset and RGB-D results on the SCAN, CAD, and PKU datasets. In the
“HMR” row (in both tables), “RGB” indicates training and testing on RGB-
only data (similarly for thermal “T” and depth “D”). The “RGB-T” (and simi-
larly “RGB-D”) row indicates a two-stream baseline with the two modality data
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Test modality RGB Thermal RGB-T

Cover condition uncover cover1 cover2 uncover cover1 cover2 uncover cover1 cover2

HMR[12] 139 150 154 145 149 151 141 145 143

RDF 137 146 150 135 138 140 134 137 141

Table 3. 3D MPJPE (mm) results of SLP evaluation under different cover scenarios.

streams as input. On the other hand, our proposed algorithm processes, during
training, both RGB and thermal (or depth) streams of data. However, a key dif-
ference between our method and the baseline is how these algorithms are used in
inference. During testing, HMR can only process data from the same modality
as in training. On the other hand, RDF can infer the mesh with any subset of the
input training modalities. One can note from the RGB-T results that RDF with
RGB data (144mm 3D MPJPE) is better than the baseline (155mm 3D MPJPE)
since it has access to the additional thermal modality data, thereby improving
the inference results with the RGB-only modality. A similar observation can be
made for the performance comparison on thermal data. RDF (137mm) performs
better than the baseline (143mm) in the RGB-T scenario as well, substantiating
the role of our feature fusion operation. Similar observations can be made from
the evaluation on the SCAN/CAD/PKU datasets too.

Tri-modal inference evaluation. We also evaluate our method with three
modalities- RGB, depth, and thermal (RGB-D-T). Since aligned and annotated
RGB-D-T data is not available, we instead use our multi-modal training policy
to train with pairs of RGB-D and RGB-T data by combining the RGB-T dataset
(SLP) with one RGB-D dataset (CAD). The results are shown in Table 2, where
one can note our three-branch model is quite competitive when compared to the
corresponding separately trained two-branch baselines (3D MPJPE of 93 mm
vs. two-branch RDF 97 mm on CAD RGB-D data, 138 mm vs. two-branch RDF
137 mm on SLP RGB-T data).

Under-the-cover evaluation. In Table 3, we evaluate the impact of patient
cloth coverage on the final performance. To this end, we use “uncover”, “cover1”,
and “cover2” labels of SLP dataset and report individual performance numbers.
One can note that increasing the cloth coverage generally reduces the perfor-
mance, which is not surprising. Furthermore, since there is only so much infor-
mation the RGB modality can access in the covered scenarios, as opposed to
the thermal modality, the performance with RGB data is also on the lower side.
However, RDF generally performs better than the baseline across all these con-
ditions, providing further evidence for the benefits of our method. Finally, some
qualitative results from the output of our method are shown in Figure 3.

Noise robustness. We also evaluate the noise robustness of RDF and compare
to HMR. In this experiment, with probability p, we replace a particular branch’s
input with an array of zeros, thus simulating the probabilistic absence of any
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Fig. 3. Qualitative results of the proposed approach on the SCAN and SLP datasets.

Fig. 4. HMR vs. RDF at various noise levels. “T”: thermal, “D”: depth.

modality’s input during inference (note we ignore the case where both the inputs
of both branches are zeros). In Figure 4, we show a matrix representation of the
2D MPJPE of our method as well as baseline HMR, where one can note that
with increasing noise level, both methods’ performance reduces. Crucially, this
performance reduction is lower for our method when compared to the baseline
(see difference figure), providing evidence for improved robustness of our method.

4 Summary

We presented a new approach, called robust dynamic fusion (RDF), for 3D
patient body modeling. RDF was motivated by a crucial gap of scalability and
generality in existing methods, which was addressed by means of RDF’s multi-
modal inference capability. This was achieved by means of a novel multi-modal
fusion strategy, along with an associated training policy, which enabled RDF to
infer the 3D patient mesh even when the input at test time is only a subset of
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the data modalities used in training. We evaluated these aspects by means of
extensive experiments on various patient positioning datasets and demonstrated
improved performance compared to existing methods.
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