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Abstract— Tracking for planar objects is an important issue
to vision-based robotic applications. In direct visual tracking
(DVT) methods, the similarity between two images is often
measured through the sum of squared differences (SSD) espe-
cially with the efficient second-order minimization (ESM) due
to its simplicity and efficiency. However, SSD-based ESM is not
robust to illumination changes since it is usually built upon the
brightness constancy assumption. Contrast to image brightness,
gradient orientations (GO) are invariant to both linear and non-
linear illumination changes as verified in practice. Based on GO,
we propose an illumination insensitive ESM method for planar
object tracking in this paper. In order to introduce GO into
the ESM, we generalized the original ESM formulas for multi-
dimensional features. In addition, a denoising method based on
the Perona-Malik function and a mask image were suggested
to improve GO’s robustness against image noise and low
texture. Our experimental results on dataset for planar objects
with illumination changes and a benchmark dataset confirm
the proposed method is robust to illumination variations and
capable to deal with the general tracking challenges.

I. INTRODUCTION

Visual tracking for planar objects is a fundamental tech-
nique of many vision-based robotic applications, such as
visual odometry [1], [2], visual servoing [3] and visual
SLAM [4]. Feature-based method and direct method are
the two main categories of visual tracking techniques. The
former solves tracking problem by detecting and matching
distinguishable features (e.g. corners or edges), while for the
latter only image intensity information is used. In this paper,
the direct visual tracking (DVT) methods will be mainly
addressed.

Typically, the objective of DVT methods is to obtain the
parameters of a transformation model as to minimize the sum
of squared differences (SSD) between the reference image
and the current image. For this nonlinear least squares prob-
lem, the efficient second-order minimization (ESM) [3], [5]
method is the most popularly used optimization technology
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because of its high convergence rate and low computation
cost. However, such SSD-based ESM is not robust under
illumination variations, since it is usually built upon the
brightness constancy assumption (BCA) [3], [6].

Currently, there are two main strategies to improve the
robustness of SSD-based ESM to illumination variations.
The first one is modelling the illumination changes. Accord-
ing to the references of [7]–[10], the illumination changes
were modeled as an affine transformation which only takes
global changes of illumination into consideration, while
other researches employed a more complete model based
on the thin-plate spline to compensate local illumination
variations [11], [12]. The second strategy is applying robust
similarity measures to replace the SSD. To handle complex
illumination variations, Scandaroli et al. [13] calculated the
local Normalized Cross Correlation (NCC), while Richa et
al. [14] used the sum of conditional variance (SCV) to cope
with non-linear illumination changes. Later, Richa et al. [15]
proposed LSCV to decrease the SCV’s sensitivity to local
illumination changes. In addition, mutual information (MI)
[16]–[18] and cross cumulative residual entropy (CCRE)
[19], [20] applied in the medical image registration domain
were also successfully introduced to improve the robustness
to illumination changes.

Unlike the strategies mentioned above, we introduced
robust dense features - the gradient orientations (GO) into
DVT methods for the first time, to our knowledge. This
choice was motivated by GO’s insensitivities to global illu-
mination changes [21], non-linear illumination changes [22]
and changes in illumination directions [23], which has been
verified in practice. Due to its robustness, GO is widely
used in computer vision applications, e.g. stereo matching
[24] and motion estimation [21], [25] and also used as
the component in common descriptors, e.g SIFT [22] and
HOG [26]. By using GO as features, here we propose a
novel robust DVT method GO-ESM based on ESM for
planar object tracking which is insensitive to illumination.
Since GO can be considered as a two-dimensional vector,
we generalized the original ESM [3] formulas for multi-
dimensional features, which allowed us to combine the
robustness of GO with the advantages of ESM method. To
introduce GO, we also suggested an anisotropic diffusion
denoising method based on the Perona-Malik function [27]
to handle image noise and applied a mask image to deal
with lox texture challenges. Fig. 1 shows an overview of
GO-ESM.

The GO-ESM was compared to the state-of-the-art track-
ing methods on dataset for planar objects with illumination
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Fig. 1. Overview of the proposed GO-ESM tracking method.

changes (POIC) and the TMT benchmark dataset [28]. The
obtained results demonstrate that GO-ESM is robust to
illumination variations as well as general tracking challenges.

This paper is organized as follows. Followed by notations
and background in Sec. II, Sec. III introduces the proposed
GO-ESM tracking method. Then Sec. IV evaluates and
analyses experimental results and Sec. V concludes.

II. NOTATIONS AND BACKGROUND

Let I ∈ Rn×m be an image matrix and p = (u, v)> ∈
{1, 2, . . . , n} × {1, 2, . . . ,m} be pixel coordinates, I(p) is
therefore the intensity of the pixel p. Let warp function
w(x,p) be an image transformation function (e.g. a trans-
lation or a projective transformation) where x ∈ Rp is
transformation parameters.

DVT methods formulate tracking as an image registration
problem. For a planar object (also called the template)
which is selected in the reference image IR in some region
of q = n ·m pixels, there are parameters x of a planar
homographic warp that map the pixel of the template IR(p)
into its corresponding pixel IC(w(x,p)) in the current image
IC. Then, the goal in DVT is to obtain the estimation
of parameters x̂ that optimizes the similarity measures
S(IR(p), IC(w(x,p))), which can be simplified as S(x)
since IR is constant, between the template and the warped
current image. As mentioned above, the SSD is the most
used similarity measure because of its simplicity and effi-
ciency, which is usually built upon the brightness constancy
assumption (BCA) [3], [6]:

IC(w(x,pi)) = IR(pi), i ∈ {1, 2, . . . , q} (1)

Then, the tracking system can be expressed as an nonlinear
least squares problem:

x̂ = arg min
x
SSSD(x) (2)

where

SSSD(x) =

q∑
i=1

(IC(w(x,pi))− IR(pi))
2 (3)

The ESM [3], [5] method is popular to solve (2) since its
high convergence rate and low computation cost. According
to (1), we have:

di(x) = IC(w(x,pi))− IR(pi) = 0 (4)

Let d(x) ∈ Rq contain the image differences:

d(x) =
[
d1(x) d2(x) . . . dq(x)

]>
(5)

Consider the second-order Taylor series of d(x) about x̂c
and then evaluated at x = x̂c ◦ ∆x (where ◦ is the binary
operation following the definition in [5]):

d(x̂c ◦∆x) ≈ d(x̂c) + Jd(x̂c)∆x +
1

2
M(x̂c,∆x)∆x (6)

where x̂c and ∆x are the current estimation and increment
of parameters x, respectively; Jd(x) ∈ Rq×p is the Jacobian
matrix of d(x); while M(x̂c,∆x) is a matrix depending on
∆x and the Hessian matrices of d(x) evaluated at x̂c. ESM
is considered to be able to achieve a convergence rate as high
as the Newton’s method [29] and to avoid the computation
of the Hessian at the same time by using a first-order Taylor
series of Jd(x) about x̂c evaluated at (x̂c ◦∆x):

Jd(x̂c ◦∆x) ≈ Jd(x̂c) + M(x̂c,∆x) (7)

Besides, using the BCA (1), we also have:

d(x̂c ◦∆x) ≈ 0 (8)

and
Jd(x̂c ◦∆x) ≈ JR (9)

where JR ∈ Rq×p denotes the Jacobian matrix of
IR(w(x,p)) at x = e (where e is the parameters of an
identity warp). Inserting (7), (8) and (9) into (6), we can
obtain ∆x without computing M(x̂c,∆x):

∆x = −2(JR + Jd(x̂c))
+d(x̂c) (10)

where (·)+ is the pseudo-inverse of a matrix. The Jacobian
JR is constant which can be precomputed, while the Jacobian
Jd(x̂c) needs to be updated depending on x̂c (refer to [3] for



details of the Jacobian computations). The increment of the
parameters ∆x is estimated iteratively according to the ESM
update law (10), until it is below a threshold, i.e., ‖∆x‖ < ε.
At each iteration, the parameters x is updated as:

x̂ = x̂c ◦∆x (11)

III. THE PROPOSED VISUAL TRACKING METHOD

As mentioned in Sec. I, SSD-based ESM [3] is not robust
to illumination changes because it usually assumes brightness
constancy [3], [6]. Here, we propose a novel robust DVT
method on the basis of the illumination insensitive ESM
which uses gradient orientations (GO) as image features
(shown in Fig. 1).

The GO of image I can be defined as two-dimensional
feature images obtained by dividing the gradient vectors by
their magnitudes at each pixel:[

Ox
Oy

]
=
[
∇xI
‖∇I‖

∇yI
‖∇I‖

]>
(12)

where ∇ denotes the gradient with the subscript x and y
denoting the x and y orientations, respectively. It should be
noted that GO is considered as a two-dimensional vector
(Ox,Oy) instead of angular values θ (rad), because based
on this definition the extra precaution needs not to be
taken to compute GO’s derivatives (difference between two
angles cannot exceed π [21]). However, the original ESM
[3] formulas do not apply to multi-dimensional features. To
address this problem, we generalize the ESM to the condition
of multi-dimension, which allows the combination of ESM
with GO. On the other hand, image noise and texture need
additional treatments for using GO since GO is sensitive
to them according to (12). To this end, we also suggest an
anisotropic diffusion denoising method which can preserve
the image structures while reducing noise, and employ a
mask image to handle lox texture.

To introduce GO-ESM method, the rest of this section
is divided into the following four subsections. First, the
robustness of using GO to image noise and low texture is
detailed in Sec. III-A and Sec. III-B, respectively. Then,
a generalization of ESM for multi-dimensional features is
derived in Sec. III-C. Finally, the GO-ESM is summarized
in Sec. III-D.

A. Robustness to image noise

It is obvious that GO is sensitive to image noise due to
the computation of (12). To handle this problem, the input
images need to be smoothed before extracting GO. However,
simply using a Gaussian filter with a fixed kernel could not
obtain a general good performance for different sequences
(will be shown in Fig. 4), since the image texture information
which the extraction of GO depends on is blurred by the
linear filter method.

The Perona-Malik function [27] is a kind of anisotropic
diffusion filter method in which the rate of diffusion is

controlled by the image gradient:
∂I

∂t
= div(c(‖∇I‖)∇I)

I(u, v, 0) = I0(u, v)
(13)

where I0 and I are the original image and the image over
time, respectively, div(·) denotes the divergence operator
and c(‖∇I‖) denotes the diffusion coefficient which can be
defined as follows (according to the proposal in [27]):

c(‖∇I‖) =
1

1 +
(
‖∇I‖
λ

)2 (14)

where λ is a constant usually set experimentally or by a
function of image noise. Using (14), large diffusion rate
performs strong smoothing for small gradient magnitude,
while small diffusion rate protects image structures (e.g.
edges or lines) in regions with big gradient magnitude.

In this work, we choose the Perona-Malik method [27] for
image denoising to preserve image texture information while
reducing noise.

B. Robustness to low texture

According to (12), GO is meaningless in image areas
with low texture where the gradient magnitudes are close to
zero. Usually, zeros are assigned to those invalid pixels. This
method can be formulated as masking the feature images of
GO by a mask image:

m(p) =

{
1, ‖∇I(p)‖ > τ,

0, otherwise.
(15)

where τ is the threshold of gradient magnitude usually fixed
at a small value.

There are two main cases of presenting low texture: the
texture of target object inherently is flat (Fig. 2(a)), and the
specular reflections blur or damage the texture information
of the target object (Fig. 2(b)). In order to handle both of the
two cases, the intersection of the mask images is employed
(Fig. 2(e)):

M(p) = mR(p) ∪mC(w(x̂c,p)) (16)

(a) IR(p) (b) IC(w(x̂c,p))

(c) mR(p)

⋃
(d) mC(w(x̂c,p))

=

(e) M(p)

Fig. 2. The mask images. (a) the template; (b) the warped current image;
(c) the mask image of the template; (d) the warped mask image of the
current image; (e) the proposed mask image.



where the mask image of the template mR(p) is constant,
which can be precomputed, while the warped mask image
of the current image mC(w(x̂c,p)) needs to be updated
depending on x̂c. Fig. 2(b) also shows that illumination
variations may produce confusing texture information in the
low texture areas. From Fig. 2(e), it can be seen that M
masks the low texture areas while discarding this confusing
texture information.

C. ESM for multi-dimensional features

Let F ∈ Rn×m×k be the multi-dimensional feature images
of image I ∈ Rn×m, where k is the total number of feature
dimensions. Let superscript i be the ith dimension of image
features, then F i(P) denotes the pixel p’s feature value of
the ith dimension such that ∀i ∈ {1, 2, . . . , k}. In order to
handle multi-dimensional features, we redefine the constancy
assumption (1), given by:

F iC(w(x,pj)) = F iR(pj), j ∈ {1, 2, . . . , q} (17)

Then the SSD between the multi-dimensional feature images
of the template FR(p) and the warped multi-dimensional
feature images of the current image FC(w(x,p)) can be
computed as:

SmSSD(x) =

q∑
j=1

k∑
i=1

(F iC(w(x,pj))−F iR(pj))
2

=

k∑
i=1

q∑
j=1

(F iC(w(x,pj))−F iR(pj))
2

(18)

This generalization of SSD on dimensionality (18) allows
the original ESM [3] method to be used on each feature
dimension for the Jacobian computations. According to (17),
we have:

dij(x) = F iC(w(x,pj))−F iR(pj) = 0 (19)

then (5) can be rewritten as:

d(x) =
[
d1(x)> d2(x)> . . . dk(x)>

]>
(20)

where di(x) is the image feature differences of the ith

dimension:

di(x) =
[
di1(x) di2(x) . . . diq(x)

]>
(21)

Let Jdi(x) ∈ Rq×p be the Jacobian matrix of di(x)
and JRi ∈ Rq×p be the Jacobian matrix of F iR(w(x,p))
at x = e. Accordingly, Jd(x) and JR can be computed,
respectively, given by:

Jd(x) =
[
Jd1(x)> Jd2(x)> . . . Jdk(x)>

]>
(22)

and
JR =

[
JR1

> JR2
> . . . JRk

> ]> (23)

Then, using the constancy assumption (17), we also have:

di(x̂c ◦∆x) ≈ 0 (24)

and
Jdi(x̂c ◦∆x) ≈ JRi (25)

Algorithm 1. The proposed GO-ESM method

Input: the reference image IR, threshold ε, maximum iteration l̄
1: denoise IR, c.f. Sec. III-A
2: compute FR(p) and mR(p) via (12) and (15), respectively
3: compute JR via (23)
4: for each new image IC do
5: set number of iterations l = 0
6: warp all pixels of IC using x̂0 and denoise it, c.f. Sec. III-A
7: compute FC and mC via (12) and (15), respectively
8: repeat
9: warp FC and mC using x̂l

10: compute M(w(x̂l,p)) via (16)
11: compute J(x̂l) and ∆x via (22) and (10), respectively
12: update x̂l+1 = x̂l ◦∆x and l = l + 1
13: until ‖∆x‖ < ε or l > l̄
14: end for

Equations (24) and (25) assure that the ESM update law (10)
can be applied to multi-dimensional image features such as
GO.

D. Summary of the GO-ESM

Algorithm 1 summarizes the proposed DVT method with
Fig. 1 showing its overview. Some implementation details
are highlighted as follows:
• To reduce effect of changes in orientations of gradient

vectors resulting from image rotation, we warp all pix-
els of the current image IC using the initial estimation
of the transformation parameters x̂0 before extracting
GO.

• For each new image IC, both the extraction of GO and
the computation of mC are executed only once outside
the iteration, and then the warp function is directly
operated on the GO images FC or the mask image mC

using the current estimation x̂l at the (l+1)th iteration.
• In this work, we set λ = 5 for the diffusion coeffi-

cient function (14). Besides, the threshold of gradient
magnitude τ is set to 0.005 from experience.

IV. EXPERIMENTAL RESULTS

To evaluate the robustness of the proposed method to illu-
mination changes as well as to general tracking challenges,
the GO-ESM is tested on two datasets: our POIC dataset
and the TMT benchmark dataset [28] with ground truth.
According to the Modular Tracking Framework (MTF) [30]
(which decomposes a registration based tracker into three
sub modules - appearance model (AM), state space model
(SSM) and search method (SM)), the GO-ESM is compared
against trackers with ESM [3] AM and SL(3) Homography
SSM using the state-of-the-art SMs - NCC [13], SCV [14],
LSCV [15], MI [16], [17] and CCRE [19], [20]. In addition
to these, the original SSD-based ESM [3] and the ESM with
a gain and bias (GB) illumination compensation model [9]
are also included into the comparison.

All results are generated using a fixed sampling resolution
of 100 × 100. For all trackers, we set ε = 0.01, and use
maximum number of iterations of 200 and 30 for our POIC
dataset and the TMT benchmark dataset, respectively. All
tests are run on an Intel i5 3.3GHz PC with 8G RAM.
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number of iterations of 14.22, 14.85, 7.25, respectively, to converge. Note
that ESM and GB-ESM lose track at frame #72 and #147, respectively.

A non-optimized implementation in Matlab of the GO-
ESM runs at about 15.8ms/iteration for an image region of
100×100, which is about 1.7 times slower than the original
ESM [3] running under the same condition. Although the
proposed method is somewhat more complex, it is more
robust and need fewer iterations than the ESM and GB-ESM
when severe illumination changes occur (see Fig. 3).

A. Effectiveness of the proposed denoising method

Fig. 4 shows some tracking results using the GO-ESM
with and without denoise processing on BOOK and BEAR
sequences [12]. It can be seen that the performance with de-
noise processing is superior than without denoise processing,
and the Perona-Malik method [27] is superior to the Gauss.

B. Evaluation on the POIC dataset

To evaluate the performance of GO-ESM with difficult
illumination environments, experiments were made on our
POIC dataset which contains ten video sequences with a
total of 6,663 frames. Among the ten sequences, BEAR and
BOOK sequences are from reference [12], while the other
eight sequences were recorded by the author. The objects
with varying texture and lambertian/specular materials were
chosen to have a full spectrum of challenges. In addition,
our POIC dataset presents extreme real-world situations with
various types of illumination changes. All sequences are
resized into 600× 800 pixels for test.

Fig. 5 shows some key frames from our method together
with the other seven methods compared. Clearly, GO-ESM
outperforms all the other methods, indicating its robustness
to kinds of illumination variations, including linear and non-
linear changes.

Fig. 4. Comparison of the denoising methods. Gauss and P-M denote the
Gauss filter and Perona-Malik method [27], respectively. The baseline is
obtained without any denoise processing. From left to right, samples are
from BOOK and BEAR sequences [12].

1) Diffuse and specular reflections and inter reflection:
Though the LSCV, MI and GO-ESM completed the notebook
sequence with slight diffuse and specular reflections, the
LSCV and MI had intermittent failures during tracking
resulting from specular reflections (e.g., #109, and #159),
while GO-ESM succeeded for all frames. For the BEAR
sequence where the target underwent severe specular reflec-
tions, the GB-ESM, NCC, LSCV and GO-ESM completed
the entire sequence. However, all the methods except GO-
ESM suffered a lot of intermittent failures during tracking
(e.g., #536, #754 and #1179). In addition, the GO-ESM was
the only one to succeed on the boxI sequence, whereas others
had different problems caused by severe diffuse and specular
reflections (e.g., #308 and #331).

The disk and tea sequences with plastics and metal at
surface, respectively, presented inter-reflection (e.g., #192
and #349 for disk, #206 and #303 for tea) and irregular
specular reflection (e.g., #84, and #463 for disk, #133 for
tea). Again only the GO-ESM fully completed both of them.

The above superior performance of GO-ESM is believed
to benefit from GO’s insensitivity to kinds of illumination
changes. Besides, the robustness of GO-ESM to specular
reflections confirms the effectiveness of the proposed mask
image M .

2) Shadow: From Fig. 5, the boxII sequence presented
large surface obliquity with irregular specular reflection (e.g.,
#616) and shadows (e.g., #675). Except ESM, GB-ESM and
SCV, all the other methods could complete the full sequence.
The BOOK sequence suffered from variable illumination
and shadows (e.g., #118 and #248). The MI and GO-ESM
performed better than other trackers, while the MI failed
around frame #248 due to shadows. These comparison results
demonstrate that GO-ESM is robust to shadows which can
be attributed to the robustness of GO.

3) Global and local illumination changes: All methods
accurately tracked magazine sequence with slight global and
local illumination changes, except the original ESM [3] (e.g.,
#364). For the boxIII sequence presenting severe and instan-
taneous changes of global intensity (e.g., #247 and #572),
the GB-ESM, NCC and GO-ESM were able to succeed on it.
Contrast to boxIII, the envelope sequence underwent severe
and gradual changes both global (e.g., #391 and #415) and
local (e.g., #245, #340 and #382) intensity, the NCC and
GO-ESM still outperform other methods, while the GB-ESM
somehow got stuck from frame #245. The above observations
illustrate that while the GB illumination compensation model
[9] is not effective for non-linear lighting changes due to the
limitation of the model itself, our method does not have this
limitation.

C. Evaluation on the TMT Benchmark Dataset

To illustrate the GO-ESM’s robustness to general tracking
challenges, we choose the TMT benchmark dataset [28] for
the test. This choice is motivated by that the TMT benchmark
covers a wider range of challenges [28] (see Fig. 8) and
is more suitable for the 2D planar object tracking than
most of the other publicly reported datasets (e.g. [31] dose
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not consider perspective challenge and only covers 2 DOF
transformation). Besides, the TMT uses eight different target
objects (shown in Fig. 6) and has 109 sequences with a total
of 70,592 frames.

The object positions estimated by the tracker were com-
pared to the ground truth in Alignment Error (EAL) [32],
and the tracking was considered successful if EAL was less
than a threshold tp which was set to 10 through all tests.
Accuracy of a tracker was measured through its success rate
(SR):

SR =
|S|
|F |

, S = {f (i) ∈ F : E
(i)
AL < tp} (26)

where F is the set of all frames and E(i)
AL is the error in the

ith frame f (i) [30].
Fig. 7 plots for the overall success rate (SR) of the eight

comparing methods. It can be noted that the GO-ESM ranks
first among all trackers, while NCC ranks second better than
SCV which is slightly superior to LSCV. These observations
are in agreement with the reports from reference [30].

Table I shows the SR scores of all methods for each object
as well as for the overall TMT dataset, with the best results
marked in red and the second best in blue. It can be seen
that GO-ESM achieves the best for the entire dataset and
ranks among top two for five objects. Although the NCC
ranks among top two for seven objects, which seems to be
superior to GO-ESM, its SR scores are 13% and 9% less
than GO-ESM for newspaperI and book objects, respectively.
While GO-ESM’s SR scores are only less than NCC in a
small percent, e.g. 2% for cereal object. In other words, our
method is more consistent and robust than NCC for different
objects.

Fig. 8 shows the SR plots of each method on eight tracking
challenges. It can be seen that for all tracking challenges
GO-ESM ranks among top tree except for perspective defor-
mation (PR). In the case of occlusion (OC) only GO-ESM
achieves good performance (Fig. 8(e)), while for low texture
(TX) the GB-ESM and GO-ESM are significantly better than
the others (see Fig. 8(g)), which benefits from the advantages
of the proposed mask image.

It is worth noting that although the NCC is only slightly
worse performance than GO-ESM on TMT benchmark, it is
much inferior than the proposed method on our POIC dataset
(see Fig. 5). These results of the evaluation verify that GO-
ESM is not only particularly robust to illumination changes
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Fig. 7. Comparison of the overall success rate of the TMT [28] benchmark
dataset (the legends are ranked by SR scores on all 109 sequences).

but also robust against general challenges in visual tracking
with competitive tracking performance.

V. CONCLUSION

We have proposed an illumination-insensitive ESM for
planar object tracking by introducing GO into DVT problem.
To address image noise and low texture challenges, the
Perona-Malik method [27] and mask images were suggested.
In addition, we generalized the original ESM method to
combine GO features with ESM method. The results of the
experimental test on both our POIC dataset and the bench-
mark dataset achieved excellent performance, which clearly
indicate robustness of the proposed method to illumination
changes and to general tracking challenges.
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