
Noname manuscript No.
(will be inserted by the editor)

Discriminative Vessel Segmentation in Retinal Images by Fusing
Context-Aware Hybrid Features

Erkang Cheng · Liang Du · Yi Wu · Ying J. Zhu · Vasileios Megalooikonomou ·
Haibin Ling

Received: date / Accepted: date

Abstract Vessel segmentation is an important problem in
medical image analysis and is often challenging due to large
variations in vessel appearance and profiles, as well as im-
age noises. To address these challenges, we propose a so-
lution by combining heterogeneous context-aware features
with a discriminative learning framework. Our solution is
characterized by three key ingredients: First, we design a
hybrid feature pool containing recently invented descriptors
including the stroke width transform (SWT) and Weber’s
local descriptors (WLD), as well as classical local features
including intensity values, Gabor responses and vesselness
measurements. Second, we encode context information by
sampling the hybrid features from an orientation invariant
local context. Third, we treat pixel-level vessel segmenta-
tion as a discriminative classification problem, and use a
random forest to fuse the rich information encoded in the
hybrid context-aware features. For evaluation, the proposed
method is applied to retinal vessel segmentation using three
publicly available benchmark datasets. On the DRIVE and
STARE datasets, our approach achieves average classifica-
tion accuracies of 0.9474 and 0.9633, respectively. On the
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high resolution dataset HRFID, our approach achieves aver-
age classification accuracies of 0.9647, 0.9561 and 0.9634
on three different categories, respectively. Experiments are
also conducted to validate the superiority of hybrid feature
fusion over each individual component.

Keywords Vessel segmentation · Random forest · Stroke
width transform ·Weber’s local descriptors

1 Introduction

Assessment of the characteristics of blood vessels plays an
important role in automatic systems for detecting diseases
such as diabetes, hypertension, and arteriosclerosis. As an
initial step, accurate vessel segmentation lays down a criti-
cal basis for subsequent operations and therefore has been
attracting a great amount of research attention.

Existing vessel segmentation methods can be roughly
divided into two groups: rule-based methods and learning-
based ones. Rule-based methods find the vessel locations us-
ing presumed rules for vessels. For example, vessel tracking
methods utilize a profile model to incrementally trace along
and finally segment a vessel [4,15]. Mathematical morphol-
ogy is used to explore vasculature shape features such as
piecewise linearity and connectivity as prior [20]. The match
filters (MF) are designed to simulate the profile of the cross
section of a blood vessel for vessel localization [5,33]. A
likelihood ratio-based approach is introduced in [29] that
fuses matched filter responses, confidence measures and ves-
sel boundary measures for the extraction of vessel center-
lines. Vesselness is another popular approach that utilizes
eigenvalues of the Hessian matrix to enhance all vascular
structures including vessel bifurcations and to suppress non-
vessel structures [10]. Learning-based methods, in contrast,
turn the segmentation problem into a vessel/non-vessel clas-
sification task. Classifiers are trained from a set of features
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Fig. 1 An overview of our proposed vessel segmentation algorithm. (a) An input image I and a pixel x (in yellow) to be labeled as vessel or
non-vessel. Patch zoomed in is a part of green channel of I centered at x. (b) Detected local context P(x) (red rectangle) of x. (c) Extracted hybrid
feature Φ(x). (d) Random forest classifier learned from annotation. (e) Segmentation result of I.

along with labels [26]. Features like pixel intensities, edges
and Gabor wavelets are fed to different classifiers such as
multilayer neural network [27], Bayesian inference [28], ran-
dom forest [7], graph cut [23] and support vector machine
(SVM) [19,26]. These methods, by introducing discrimina-
tive power in modeling, often outperform traditional rule-
based solutions [19].

Despite many existing approaches, automatic vessel seg-
mentation remains a challenging task due to challenges aris-
ing from various sources such as the variation in vessel ap-
pearance, shape and orientations, the low contrast between
vasculature and background, the presence of noise, large ab-
normal regions due to the presence of lesions, exudates, and
other pathological regions [26]. For instance, the variation in
vessel shape and orientation can mislead the match filter to
respond to non-vessel edges [33]; the low contrast areas in
retinal images can cause similar problems. It is hard to use a
single type of feature to address all these challenges. A typi-
cal strategy is to employ additional post-processing steps in
vessel segmentation (e.g. [19]).

In this paper, we treat vessel segmentation as a pixel-
wise classification problem and present a solution that fuses
hybrid discriminative features with context modeling. There
are three key ingredients in our solution: hybrid features
which bring diverse types of discriminative information, lo-
cal context that provides clues to distinguish vessel pixels
from similar clutters, and a discriminative learning frame-
work that automatically leverages and fuses all information
encoded in the feature pool. The three ingredients, illus-
trated in Figure 1, are briefly summarized below:

– Hybrid features. We use a heterogeneous set of fea-
tures to form a rich feature pool. We first introduce two
recently invented image features, the stroke width trans-
form (SWT) [9] and the Weber’s local descriptor (WLD) [6],
both of which capture line-like structures to some extent
and have never been used for vessel segmentation. We
also include intensity, Gabor responses and vesselness,
all of which are previously used for vessel segmentation.
Furthermore, position information is encoded in the fea-
ture pool.

– Local context. For each pixel, we extract a local context
patch which is an oriented rectangle center at the pixel.
The orientation is estimated from local intensity pattern
to achieve rotation invariance. Then, the hybrid features
are extracted on sampled position inside the local con-
text to encode the context information.

– Discriminative learning. For fusing hybrid features ex-
tracted from context patch of a pixel, we build a classifier
using the random forest (RF) [3] by taking advantage of
its strong discriminative power and its flexibility of fus-
ing heterogeneous features.

We apply the proposed method to retinal vessel segmen-
tation and evaluate it using three publicly available datasets:
the DRIVE dataset [30], the STARE dataset [14], and the
High-Resolution Fundus Image Database (HRFID) [24]. Quan-
titative evaluation results demonstrate the effectiveness of
the proposed approach. Furthermore, we investigate the per-
formances of individual features and their behavior in the
experimental results. These studies confirm that the proposed
features are complimentary to each other and fusing them by
the random forest framework boosts the performance. Since
our method uses a general learning framework that automat-
ically exploits feature pools, it can be easily generalized to
other similar tasks for different clinical applications.

The rest of this paper is organized as follows: In the
next section, we describe the proposed vessel segmentation
method. After that, in Section 3, the experimental results are
presented and discussed. Finally, conclusions are drawn in
Section 4.

2 Method

2.1 Overview of the proposed method

We formulate vessel segmentation as a pixel-level classifica-
tion problem. Now we briefly summarize the proposed ap-
proach. Given an image I and a pixel x ∈ R2 to be classi-
fied, we first calculate an orientation invariant local context
P(x). Then, a feature representation, denoted as Φ(x), is
generated by extracting heterogeneous features from P(x).
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(a) (b) (c)

Fig. 3 Stroke width transform. (a) Example of an image patch. (b)
Edge extraction of (a). (c) Stroke width calculation at point p.

After that, Φ(x) is fed into a random forest classifier to
determine whether x is a vessel pixel. Figure 1 gives the
overview of our proposed algorithm.

In the following subsections, we first describe the hybrid
feature set, then detail the extraction of local context, and
present the random forest algorithm used in our approach.

2.2 Hybrid Features

To address the diverse range of challenges in vessel segmen-
tation, we use a hybrid set of features to capture discrim-
inative information from various aspects. Our feature pool
consists of recently proposed descriptors such as the stroke
width transform and the Weber’s local descriptors, the clas-
sical vessel features including pixel intensity, vesselness and
Gabor responses, as well as position information of each
pixel. Hybrid features are extracted from the green chan-
nel of retinal image because it presents the largest contrast
between vessels and the background. Figure 2 shows some
feature components used in our method.

Stroke width transform (φs). One difficulty in modeling
vessels lies in the large variance of vessel profile, includ-
ing vessel width, vessel orientation and local vessel shape.
Having observed that vessels are continuous parts of an im-
age with nearly constant width within a limited length, we
propose to use stroke width transform (SWT) to extract ves-
sel width features. SWT is a local descriptor that computes
per pixel the width of the most likely stroke-like structure
containing the pixel [9]. The output of SWT is a 2D matrix
with the same size as the input image. Each matrix element
contains the width of the stroke passing the corresponding
pixel. Another desirable property of SWT for vessel feature
extraction is its flexibility in extracting vessel features at ar-
bitrary orientations.

Figure 3 illustrates the calculation of SWT. The initial
SWT value for each pixel is set to ∞. First, the edge of the
original image is computed using the Canny edge detector
(Figure 3 (b)). Then, for each edge pixel p, a ray starts from
p along its gradient direction dp, i.e.,

y = p+ rdp, r > 0 (1)

till reaching another edge pixel q. The length of the ray w =

|p− q| is assigned as the stroke width to all pixels lying
between p and q (the blue line in Figure 3(c)). If several
rays intersect at a pixel, then the smallest w will be assigned
to that pixel. For a detailed explanation of SWT, one can
refer [9].

Intuitively, if p lies on a vessel boundary, dp should be
roughly perpendicular to the orientation of the vessel and w
approximates the width of the vessel. For this reason, SWT
was originally proposed for text detection in natural scenes.

Ideally, SWT generates meaningful responses only on
edge pixels and leaves non-vessel areas untouched. In prac-
tice, we set the default SWT response values to 100, which
distinguishes most non-vessel pixels from vessel pixels. Some
example results are shown in Figure 2 (d). We denote the
SWT at a pixel x as φs(x).
Weber’s local descriptors (φw). Another challenge for ves-
sel detection in retinal images comes from the large low
contrast areas. We propose using the Weber’s local descrip-
tors (WLD) [6] to alleviate this problem. WLD is a simple,
yet very powerful and robust local descriptor inspired by the
Weber’s Law. Specifically, we use the differential excitation
component in the original WLD described below.

For a pixel x in a vessel image I, its differential exci-
tation component, denoted as φw(x), measures the relative
intensity differences of x against its neighbors:

φw(x) = arctan
(

∑
z∈N (x)

I(z)− I(x)
I(x)

)
, (2)

where N (x) is the set of pixels in x’s neighborhood. The
arc-tangent function is used to prevent the output from in-
creasing or decreasing too quickly.

Figure 2 (e) shows two example WLD results. We can
see that the low contrast areas are enhanced.

Intensity feature (φi). To a certain degree, vessel pixels
often distinguish themselves from background ones by in-
tensity. For example, vessels in retinal images often appear
darker than other areas as shown in Figure 2 (b). Inspired
by this observation, for each pixel x in a vessel image I, we
include its intensity I(x), denoted as φi(x), in our hybrid fea-
ture pool.

Gabor feature (φg). Gabor wavelet is known to be very ef-
fective for texture representation [28]. The center symmetric
Gabor wavelet filter used in our method is expressed as:

g(x;λ ,θ ,σ ,γ) = exp
(
− x′2 + γ2y′2

2σ2

)
exp
(
i(2π

x′

λ
)
)

x′ = xcos(θ)+ ysin(θ)

y′ =−xsin(θ)+ ycos(θ) ,

(3)

where x = (x,y) is a 2D point, λ represents the wavelength
of the sinusoidal factor, θ represents the orientation of the
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(a) Input (b) Intensity (c) Vesselness (d) SWT (e) WLD

Fig. 2 Components of hybrid feature used in the proposed method. (a) An input image. (b) Green channel intensity. (c) Vesselness enhancement.
(d) Stroke width transform. (e) Weber’s local descriptor. The original images of the first row and the second row are from the DRIVE and STARE
datasets, respectively.

normal to the parallel of the Gabor function, σ is the sigma
of the Gaussian envelope and γ is the spatial aspect ratio
which specifies the ellipticity of the support of the Gabor
function. The bandwidth of Gabor filter b is related to the
ratio σ/λ . Then, the Gabor response is parameterized by
G(x;λ ,θ ,b,γ). For each pixel position and considered scale
value (λ ,b,γ), we are interested in the maximum responses
of real, imaginary and magnitude over all orientations, de-
noted as,

Mc(x;λ ,b,γ) = argmax
θ∈Θ

‖Gc(x;λ ,θ ,b,γ)‖ , (4)

where Θ = {kπ/18,k = 0, . . . ,17}, c∈ {r, i,m}, and the cor-
responding Gr,Gi,Gm respectively denote the real, imagi-
nary and magnitude components of G(x;λ ,θ ,b,γ). Thus for
specific parameters (λ ,b,γ), three response values are ex-
tracted. A filter bank consisting of Gabor filters with multi-
ple scales is applied to a vessel image, and the responses of
pixel x form the Gabor feature vector φg(x).

In our implementation, the parameters are set as b ∈
{1,2}, λ ∈ {2,4,6,8} and γ ∈ {0.25,0.5}. This generates
2×4×2= 16 different configurations of Gabor filters. There-
fore, the Gabor feature φg(x) is a 16× 3 = 48 dimension
vector.

Vesselness measurement (φv). Based on the observation that
the eigenvalues of Hessian matrices capture vessel like struc-
tures, Frangi et al. proposed vesselness measurement [10]
for vessel representation. Vesselness has been popularly used
for its effectiveness and computational efficiency. Examples
of vesselness measurements of given retinal images are pro-
vided in Figure 2 (c). We denote the vesselness of a pixel x
as φv(x).
Position information (φp). In some anatomic structures such
as retinal vessels, different locations in the FOV (field-of-
view) have different vessel-related priors. For example, the

distribution of vessel pixels is much sparser in peripheral
regions than around the center. Moreover, an optic disk is
unlikely located at the center of an image. Such information
can help detect vessel pixels at certain areas of an image.
Motivated by the observation, we include position-related
features in our hybrid feature set, denoted as φp(x) at pixel
x. In particular, let c be the center of the image, we have

φp(x) = (‖x− c‖,sin(θp),cos(θp),dm(x))> , (5)

where dm(x) is the distance from x to the boundary of the
FOV and θp is the angle of vector −→xc.

2.3 Feature Extraction from Orientation Invariant Local
Context

In practice, the information restricted on a single pixel is of-
ten insufficient to accurately determine its label (i.e., vessel
or not). Many previous approaches rely on post-processing
to aggregate context information from neighborhood, often
in an ad hoc fashion. We instead address this issue by explic-
itly modeling context information. Note that this approach
will result in a high dimensional feature space, which fortu-
nately poses no problem in our flexible learning framework.

Estimation of Local Context. For a pixel x of a given image
I, we define its local context P(x) as an oriented rectangular
region centered at x with fixed width and height. To achieve
insensitivity against rotation, we estimate the orientation of
x, denoted by θ(x), by a simple searching procedure

θ(x) = argmin
θ∈Θ

∑
p∈R(θ ,x)

I(p) , (6)

where R(θ ,x) is a rectangle centered at x with orientation
θ , Θ = {kπ/12,k = 0, . . . ,11} is the set of candidate orien-
tations. Note that there are many other ways for estimating
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local patch orientation, while the proposed strategy particu-
larly captures the property that vessel pixels are in general
darker than other pixels. The procedure is illustrated in Fig-
ure 4 (a-b). In our implementation, we fix the size of R(θ ,x)
as 3×11 pixels.

Once θ(x) is ready, the local context P(x) is formally
defined as a set of sample points uniformly sampled in the
rectangle centered at x and oriented at θ(x). In practice we
sample w = 5 pixels along one dimension and h = 11 along
the other, resulting np =w×h= 55 sample points, i.e., P(x)=
{pk,k = 1,2, . . . ,np}. An example is shown in Figure 4 (c).

Feature Aggregation. In order to use the context informa-
tion, we aggregate features extracted from all sample points
in P(x) for pixel x. In particular, for a feature function
φ ∈ {φs,φw,φi,φv}, we define the aggregated feature extrac-
tion as

φ̃(x) =
(
φ(p1),φ(p2), . . . ,φ(pnp), µ(x), σ(x)

)>
, (7)

where µ(x) and σ(x) denote respectively the mean and stan-
dard variation of {φ(p1), . . . ,φ(pnp)}, and pk ∈P(x),k =

1, . . . ,np. The calculation results a np +2 = 57 dimensional
feature vector.

Note that we do not apply the context aggregation for
all hybrid features described in Section 2.2. This is because
context information has been implicitly captured by Gabor
responses φg and is not applicable to position information
φp.

Now we can formally define the feature pool Φ(x) for
pixel x by combining all features, either with or without con-
text, as

Φ(x) =(
φ̃s(x)>, φ̃w(x)>, φ̃i(x)>, φ̃v(x)>, φg(x)>, φp(x)>

)>. (8)

2.4 Discriminative learning framework

The proposed hybrid features form a large feature pool. In
addition, we have a large number of training samples which
are essentially all pixels from the training images. To handle
the large heterogeneous feature pool and the large training
set, we choose the random forest framework [3] due to its
flexibility and robustness demonstrated in similar medical
image analysis tasks [8].

A random forest is an ensemble classifier that consists of
decision trees and each tree is constructed via some random-
ized configuration. The randomization allows the flexibility
to explore a large feature space effectively because it only
considers a subset of features in each tree node. Also, it has
the ability to handle huge training samples since each tree
is only fed with a random subset of the whole training data.
As illustrated in Figure 5, a leaf node encodes the class dis-
tribution for samples that reach it. An internal node instead

performs a binary test to split the samples to its child nodes.
The splitting terminates when a leaf node is reached. The
posterior probability at each leaf node is learned as the pro-
portion of the training samples labeled as vessels at the given
leaf node. Node optimization is the key to select a best fea-
ture while guiding the split. A stump is applied in our exper-
iments for the task. Specifically, for the input feature values
Φ i of samples S, a stump is used to select a best threshold
to split samples in S to minimize the mis-classification error.
More details can be found in [3] and [8].

In the testing phase, the feature Φ(x) of a pixel x is first
fed into the root of each tree and then it follows the split-
ting rule till it reaches a leaf (red paths in Figure 5). Each
tree returns a posterior probability that x belongs to a vessel.
The mean of leaf distributions from all trees is used for final
decision. Specifically, the probability that x is a vessel pixel
is estimated by

Pr(vessel|x) = 1
T

T

∑
t=1

pt(vessel|Φ(x)), (9)

where pt(.) is the output from the t-th tree and T is the num-
ber of trees in the forest.

3 Experiments

In this section, we evaluate our algorithm on two groups
of datasets. The first group includes two publicly available
datasets: the DRIVE dataset [30] and the STARE dataset [14],
both containing low resolution images. The second group in-
cludes the High-Resolution Fundus Image Database, which
contains high resolution images. Experimental results on both
low and high resolution datasets show the effectiveness of
our algorithm. In the first group of datasets, we also con-
duct detailed comparisons of the hybrid features with indi-
vidual components. The results demonstrate that the hybrid
features outperform the individual ones.

3.1 Low resolution dataset

3.1.1 Implementation details

Datasets. Two public datasets, the DRIVE dataset [30] and
the STARE dataset [14], are used in our evaluation. The
DRIVE dataset consists of 40 images. The images are di-
vided into a training set and a testing set. Ground truth of
vessel segmentation is available for all the images in DRIVE
dataset. FOV binary masks are also provided for all the train-
ing and testing images in the DRIVE dataset. For the images
in the testing set, a second independent manual segmenta-
tion is also given.

The STARE dataset has 20 images, 10 of them are from
healthy ocular fundi and the other 10 from unhealthy ones.
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(a) (b) (c)

Fig. 4 Orientation invariant local context. (a) An input image I and a pixel x (yellow circle) whose local context is to be estimated. (b) Orientation
approximation: Rectangles are aligned with different orientation candidates. The solid rectangle reflects the true vessel orientation θ . (c) Local
context P(x) with sample points.

Fig. 5 A random forest consists of T individual decision trees. The internal nodes (in blue) are stump classifiers and the leaves (green circles)
store an estimated vessel distribution p(vessel). A query pixel x with computed feature Φ(x) traverses each tree (the red paths) to reach leaf nodes.
Then, pt(.) of the visited leaf node is the result of each tree. The final output is the average of all the trees.

Manually labeled vessel groundtruth is also provided for the
STARE dataset. The STARE dataset does not have separate
training and testing sets. We follow the approach in [28]
to create FOV binary mask for each image in the STARE
dataset.

Experiment protocol. For the DRIVE dataset, the classifier
is built on training set. To train each tree, 10,000 positive
(vessel) and 10,000 negative (non-vessel) samples are ran-
domly selected from each training image. The results are
collected on the separate testing set.

Due to that there are no available labeled training im-
ages for the STARE dataset. Soares et al. [28] and Staal et
al. [30] performed leave-one-out tests on this database (i.e.,
every image is classified by using samples from the other 19
images), while Ricci et al. [26] and Marin et al. [19] built
their classifier by using a training set comprising samples
randomly extracted from test images.

We follow the experiment setup in [26] and [19] on the
STARE dataset. To train each tree, 10,000 positive (vessel)
and 10,000 negative (non-vessel) samples are randomly se-
lected from each image. The results are evaluated on the
whole dataset. Note that, due to the sampling, only around
6% of the pixels are involved when training a tree of the
random forest.

There is no post-processing in the experiments for both
DRIVE and STARE datasets.

Parameters. For a pixel x in an image I, we use 5×11 sam-
ples around it to extract context information for SWT, WLD,
intensity and vesselness features, resulting in 4× (55+ 2)
feature values. In addition, we have a 48 dimensional Ga-
bor feature and a 4 dimensional position feature. So the fi-
nal hybrid feature vector, i.e., Φ(x), has the dimension of
57×4+48+4 = 280. Details can be found in Sections 2.2
and 2.3.

For the learning framework, we construct a random for-
est using 100 decision trees. Each decision tree is of depth
15 and built in a parallel fashion. Stump classifiers are used
for internal tree nodes. Finally, 100 features are randomly
selected from the 280-dimensional feature pool to train an
internal node.

Quantitative evaluation. The initial output of our segmen-
tation system is a probability map obtained by the voting
of all the trees (e.g., Figure 8 and 9). The vessel segmenta-
tion is achieved by applying a threshold (0≤ θth ≤ 1) to the
probability map.

For quantitative evaluation of the segmentation results,
we follow previous studies [19] by using sensitivity (SE),
specificity (SP) and classification accuracy (ACC). In addi-
tion, the performance is also evaluated by receiver operating
characteristic (ROC) curves. Figure 6 shows the ROC curves
using different types of features on the DRIVE dataset. Fig-
ure 7 gives the ROC curves of different experimental proto-
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Table 1 Comparison with state-of-the-art methods on the DRIVE dataset. (ACC-CT denotes classification accuracy in cross training mode.)

Type Methods SE SP ACC AUC ACC-CT
2nd Human Observer 0.7796 0.9717 0.9470 – –

U
ns

up
er

vi
se

d
Chaudhuri et al. [5] – – 0.9284 – –

Zana et al. [32] 0.7796 0.9717 0.9470 – –
Jiang et al. [15] 0.6971 – 0.9377 0.8984 –

Mendonca et al. [20] – – 0.9212 0.9114 –
Perfetti et al. [25] – – 0.0.9261 – –
Al-Diri et al. [2] 0.7344 0.9764 0.9452 – –
Lam et al. [16] – – 0.9472 0.9614 –

Zhang et al. [33] – – 0.9382 – –
Miri et al. [21] 0.7352 0.9795 0.9458 – –
Fraz et al. [11] 0.7152 0.9759 0.9430 – –
You et al. [31] 0.7410 0.9751 0.9434 – –

Su
pe

rv
is

ed

Niemeijer et al. [22] – – 0.9416 0.9294 –
Soares et al. [28] 0.7332 0.9782 0.9461 0.9614 0.9397
Staal et al. [30] – – 0.9441 0.9520 –
Ricci et al. [26] – – 0.9595 0.9558 0.9266

Lupascu et al. [18] 0.7200 – 0.9597 0.9561 –
Fraz et al. [13] 0.7406 0.9807 0.9480 0.9747 0.9456

Marin et al. [19] 0.7067 0.9801 0.9452 0.9588 0.9448
Proposed 0.7252 0.9798 0.9474 0.9648 0.9384

Table 2 Comparison with state-of-the-art methods on the STARE dataset. (ACC-CT denotes classification accuracy in cross training mode.)

Type Methods SE SP ACC AUC ACC-CT
2nd Human Observer 0.8951 0.9384 0.9348 – –

U
ns

up
er

vi
se

d

Chaudhuri et al. [5] – – 0.9276 – –
Hoover et al. [14] 0.6747 0.9565 0.9264 – –
Jiang et al. [15] – – 0.9009 – –

Mendonca et al. [20] 0.6996 0.9730 0.9440 – –
Lam et al. [17] – – 0.9474 0.9392 –

Al-Diri et al. [2] 0.7521 0.9681 – – –
Lam et al. [16] – – 0.9567 0.9739 –
Fraz et al. [11] 0.7311 0.9680 0.9442 – –
You et al. [31] 0.7260 0.9756 0.9497 – –

Su
pe

rv
is

ed

Staal et al. [30] – – 0.9516 0.9614 –
Soares et al. [28] 0.7207 0.9747 0.9479 0.9671 0.9327
Ricci et al. [26] – – 0.9584 0.9602 0.9464
Fraz et al. [13] 0.7548 0.9763 0.9534 0.9768 0.9493

Marin et al. [19] 0.6944 0.9819 0.9526 0.9769 0.9526
Proposed 0.7813 0.9843 0.9633 0.9844 0.9476

Fig. 6 ROC curves of different features on the DRIVE dataset.

cols on the DRIVE and STARE datasets. The area under the
curve (AUC) is also calculated for evaluation.

Fig. 7 ROC curves of different protocols on the DRIVE and STARE
datasets.

For each dataset, the performance results are obtained
considering the same threshold value θth for all the images
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(a) Input

(b) Intensity

(c) SWT

(d) WLD

(e) Gabor

(f) Vessel

(g) Hybrid

(h) GT

Fig. 8 Example results from the DRIVE dataset. From top to bottom: input image (a), probability maps using intensity (b), SWT (c), WLD (d),
Gabor (e), Vesselness (f), the proposed hybrid combination (g), and the ground truth (GT) (h).
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Table 3 Performance of individual feature components on the DRIVE
dataset.

Methods SE SP ACC AUC
2nd Human Observer 0.7796 0.9717 0.9470 –

Intensity 0.6158 0.9739 0.9284 0.9303
Gabor 0.6723 0.9736 0.9353 0.9514
SWT 0.5526 0.9718 0.9184 0.9303
WLD 0.6198 0.9782 0.9326 0.9320

Vesselness 0.6468 0.9755 0.9337 0.9504
Proposed 0.7252 0.9798 0.9474 0.9648

in the same dataset. θth is taken to provide the maximum
average classification accuracy. For a detailed explanation
of θth, one can refer to [19]. The optimal threshold value for
both the DRIVE and STARE datasets is θth = 0.84.

3.1.2 Experimental results

Tables 1 and 2 list the performance of our approach along
with the results reported in previous studies for DRIVE and
STARE datasets. Results of previous methods are reproduced
from [12,13]. From the tables we see that the proposed method
produces excellent results and outperforms previous state-
of-the-art solutions and even the 2nd human observer. In
addition, we also conduct a cross training experiment on
both DRIVE and STARE datasets. In particular, the clas-
sifier trained on images in DRIVE (or STARE) is tested on
images images in STARE (or DRIVE). The accuracies are
listed in the last column (“ACC-CT”) of Tables 1 and 2.
Evaluation results show that our method performs similarly
with the state-of-the-art methods.

To further study the effects of individual feature com-
ponents in our method, we have also conducted segmenta-
tion experiments using each individual feature component.
In particular, a series of segmentation algorithms that are
similar to the proposed solution. The only difference is that,
instead of using the hybrid features, each algorithm here
uses a specific type of feature, and the configuration of the
random forest is adjusted accordingly. To simplify the ex-
periments, all the classifiers are trained on training images
in the DRIVE dataset. Tables 3 and 4 summarize the results
in comparison with the proposed solution. Figures 8 and 9
show some example results on the two datasets for qualita-
tive evaluation. The figures show that the probability maps
from our method resemble very much the ground truth.

There are mainly two pieces of conclusion from the eval-
uations. First, the proposed method, by combining hybrid
features, context information and a discriminative learning
framework, effectively handles challenges in vessel segmen-
tation. Second, the heterogeneous types of features act com-
plementarity in the proposed approach.

Table 4 Performance of individual feature components on the STARE
dataset.

Methods SE SP ACC AUC
2nd Human Observer 0.8951 0.9384 0.9348 –

Intensity 0.4795 0.9809 0.9289 0.8943
Gabor 0.4978 0.9781 0.9284 0.9194
SWT 0.5224 0.9759 0.9289 0.9082
WLD 0.5475 0.9783 0.9336 0.9280

Vesselness 0.5491 0.9787 0.9342 0.9342
Proposed 0.6340 0.9839 0.9476 0.9465

Fig. 10 Feature importance in the random forest. (S: STW; W: WLD;
I: Intensity; G: Gabor; V: Vesselness; P: Position.)

3.1.3 Feature importance analysis

To further understand the roles of individual features in the
proposed method, we explore the discriminability of each
feature by calculating the frequency by which it is being se-
lected in the forest. When training the random forest, each
node chooses one optimal feature from 100 randomly sam-
pled feature subset. The relative frequency of a type of fea-
ture being selected reflects its importance in the classifier
learned. In particular, for each feature type, we are inter-
ested in the ratio of the number of features from this type to
the total number of features (i.e., ratio in feature space), and
the ratio of the number of selected features from this type
to the total number of selected features (i.e., ratio being se-
lected). The results are provided in Figure 10. It is clear that
all the features make significant contributions to the final in-
ference, which is consistent with our intuition. In addition,
the results show that the WLD feature is indeed the most ef-
fective one, followed by Gabor, Vesselness, intensity, SWT
and the position feature.

3.1.4 Computation time analysis

The computation time of the proposed method for segment-
ing an input image is composed of two main parts: feature
extraction and random forest inference. The computation for
feature extraction involves mainly four components: Gabor
responses, vesselness, SWT, and WLD. Techniques such as
direct Gabor response index and integral images have been
implemented for improving the efficiency. For random for-
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(a) Input

(b) Intensity

(c) SWT

(d) WLD

(e) Gabor

(f) Vessel

(g) Hybrid

(h) GT

Fig. 9 Example results from the STARE dataset. From top to bottom: input image (a), probability maps using intensity (b), SWT (c), WLD (d),
Gabor (e), Vesselness (f), the proposed hybrid combination (g), and the ground truth (GT) (h).

est inference, the calculation mainly lies in the traverse of
decision tress of depth 15, and at each node only one feature
needs to be calculated. In our experiments, the average time
for segmenting an image is less than 1 minute.

3.1.5 Failure analysis

To analyze weaknesses of the proposed method, failure anal-
ysis of one sample image is shown in Figure 11. In this

figure (a) is an input image from DRIVE dataset, and (b)
is the probabilistic map calculated by our approach. Vessel
segmentation result is then achieved by thresholding (θth =

0.84) of the probabilistic map. The segmentation results are
color-coded in (c): true positives are indicated in red, false
positives in green, and missing vessels in blue. Figure 11
demonstrates that our proposed method sometimes fails to
capture thin vessel structures.
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(a) Original image (b) Probabilistic map (c) Failure analysis

Fig. 11 Failure analysis of the proposed method. (a) Original image;
(b) Probabilistic map computed by the proposed method; (c) Failure
analysis of vessel segmentation by thresholding (b) with θth = 0.84.
True positives are shown in red; false positives in green; and missing
vessels in blue.

3.2 High resolution dataset

3.2.1 Implementation details

Datasets. The high resolution images used in our evaluation
is from the High-Resolution Fundus Image Database [24]
(HRFID). The dataset has 45 retinal fundus images of size
2336×3504. These images are divided into three categories:
healthy images (HI), diabetic retinopathy images (DRI) and
glaucomatous images (GI). Each category has 15 images.
Ground truth for vessel segmentation and FOV binary masks
are provided for all the images in this dataset.

Experiment protocol. Since there is no previous protocol
for splitting the dataset to training and testing sets, we use
a three-fold cross validation for the evaluation. Each fold is
composed of 15 images, 5 from each of the three categories.
Therefore, for each run, we have 30 training images and 15
testing ones. In the training of each of the three runs, 10,000
positive (vessel) and 10,000 negative (non-vessel) samples
are randomly selected to train a decision tree. The testing
results are collected from the random forest results without
further post-processing.

Parameters. For a pixel x in an image I, we use a sampled
pattern of size 21×45 around it to extract context informa-
tion for SWT, WLD, intensity and vesselness features. The
sampling step size is set to 4, resulting in 4×(72+2) feature
values. In addition, we have a 48 dimensional Gabor feature.
So the final hybrid feature vector, i.e., Φ(x), has a dimension
of 74×4+48 = 344. We construct a random forest using 50
decision trees. The other parameters of random forest are the
same as in the experiments with the low resolution datasets.

3.2.2 Experimental results

Similar to the experiment on low resolution images, we re-
port sensitivity (SE), specificity (SP) and the classification
accuracy (ACC) as evaluation metric. The comparison with

the state-of-the-art method1 is presented in Table 5. Fig-
ure 12 shows some example results on three categories in
this dataset for qualitative evaluation. It can be seen that
the probability maps from our method are very close to the
ground truth.

4 Conclusions

In this paper, we proposed a method for discriminative ves-
sel segmentation by fusing hybrid features with local context
modeling. In particular, new vessel features as well as tra-
ditional filter-based features extracted from orientation in-
variant local context are fed into a random forest framework
for pixel level vessel determination. The effectiveness of the
proposed method is validated through experiments on three
public benchmark datasets, where our approach outperforms
other state-of-the-art solutions.

In the future, we plan to investigate the use of high level
semantic priors of vessel structures for further improvement.
In addition, we are also interested in extending the proposed
method for 3D vessel segmentation.
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30. Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., van
Ginneken, B.: Ridge-based vessel segmentation in color images
of the retina. Medical Imaging, IEEE Transactions on 23(4), 501–
509 (2004)

31. You, X., Peng, Q., Yuan, Y., Cheung, Y.m., Lei, J.: Segmenta-
tion of retinal blood vessels using the radial projection and semi-
supervised approach. Pattern Recognition 44(10), 2314–2324
(2011)

32. Zana, F., Klein, J.: Segmentation of vessel-like patterns using
mathematical morphology and curvature evaluation. Image Pro-
cessing, IEEE Transactions on 10(7), 1010–1019 (2001)

33. Zhang, B., Zhang, L., Zhang, L., Karray, F.: Retinal vessel ex-
traction by matched filter with first-order derivative of gaussian.
Computers in Biology and Medicine 40(4), 438–445 (2010)


