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Abstract

Scenes with cast shadows can produce complex sets of
images. These images cannot be well approximated by low-
dimensional linear subspaces. However, in this paper we
show that the set of images produced by a Lambertian scene
with cast shadows can be efficiently represented by a sparse
set of images generated by directional light sources. We first
model an image with cast shadows as composed of a diffu-
sive part (without cast shadows) and a residual part that
captures cast shadows. Then, we express the problem in an
`1-regularized least squares formulation, with nonnegativ-
ity constraints. This sparse representation enjoys an effec-
tive and fast solution, thanks to recent advances in compres-
sive sensing. In experiments on both synthetic and real data,
our approach performs favorably in comparison to several
previously proposed methods.

1. Introduction

Dealing with shadows is an important and challenging
problem in the study of illumination effects. This makes it
difficult to recover illumination from a scene given a sin-
gle input image. However, as observed in previous studies
[23, 19, 26], images with cast shadows can often be sparsely
represented, which is attractive since sparsity leads to ef-
ficient estimation, dimensionality reduction, and efficient
modeling.

In this paper, we solve the problem of illumination re-
covery from a single image with cast shadows and show
that the illumination can be well approximated by a com-
bination of low frequency spherical harmonics and a sparse
set of directional light sources. As in previous work, we
recover lighting using a prior model of the scene that cap-
tures geometry and albedos [3, 2, 26, 24, 25, 19, 28]. It is
pointed out in [12] that the assumption of known geometry
is required by many illumination estimation methods. Il-
lumination recovery with sparse light sources can be very

helpful for many applications. For example, by represent-
ing the lighting using a sparse set of directional sources, we
can save a large amount of time in rendering very complex
scenes while maintaining the quality of scene recovery.

We cast the problem of finding a sparse representation of
directional sources as an `1-regularized least squares prob-
lem. This is partly motivated by recent advances in com-
pressive sensing [4, 8]. Compared to `2 minimization, `1
minimization tends to find the most significant directional
sources and discard the insignificant ones. This is very suit-
able for our purpose in which we want to select a sparse
representation from about one thousand directional sources.
The solution to the `1-regularized least squares problem
using the truncated Newton interior-point method is very
fast and reliable, which enables our method to be used in
many areas, such as lighting design. The proposed method
is tested on synthetic and real images in which it outper-
forms other state-of-the-art approaches in both accuracy and
speed.

The main contribution of this paper is an efficient solu-
tion using the `1-regularized least squares for sparse light-
ing representation with cast shadows. In our experiments,
the proposed method compares favorably to previous ap-
proaches. We also feel that our result helps to understand
other approaches to lighting recovery, by elucidating ex-
actly which components of lighting are important in gen-
erating shadows.

The rest of the paper is organized as follows. Sec. 2
discusses related work. In Sec. 3, we show that the ef-
fects of cast shadows may not be well approximated by
any low-dimensional representation. However, when only
a few directional light sources illuminate a scene, they may
be compactly represented. After that, the model for illumi-
nation recovery is described and analyzed in Sec. 4. Then,
in Sec. 5, we propose a solution to find a sparse represen-
tation using the `1-regularized least squares. The experi-
ments are described in Sec. 6, where the proposed approach
demonstrates excellent performance in both accuracy and
efficiency. Finally, we conclude the paper in Sec. 7.
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2. Related Work
There has been a series of work aimed at understanding

the complexity of the set of images produced by Lamber-
tian objects lit by environment maps. It is shown in [27, 15]
that, when ignoring all shadows, the images of a Lamber-
tian scene lie in a three-dimensional linear subspace. When
including attached shadows, the set of images produced
by a Lambertian scene can be approximated by a low di-
mensional linear subspace. This is shown both empirically
[3, 10] and analytically [2, 21]. The sparsity of cast shad-
ows is recently studied in [23, 19]. The work in [23] shows
that, although the set of images produced by a scene with
cast shadows can be of high dimension, empirically this di-
mension does not grow too rapidly. In [19], a sparse repre-
sentation using a Haar wavelet basis is proposed to recover
lighting in images with cast shadows.

The studies in [26, 24, 25, 19] are most closely related to
our work. These studies propose recovering lighting from
cast shadows by a linear combination of basis elements that
represent the light. Specifically, in [19] a Haar wavelet basis
is used to effectively capture lighting sparsely. Some work
in precomputed radiance transfer and importance sampling
in computer graphics is also very relevant [1, 18, 30, 31].

There are many other methods to recover illumination
distributions from images; though cast shadows are not
handled specifically. The complexity of determining light-
ing grows dramatically when we must account for cast
shadows. A framework is proposed in [17] to accom-
plish photo-realistic view-dependent image synthesis from
a sparse image set and a geometric model. Two meth-
ods are presented for recovering the light source position
from a single image without the distant illumination as-
sumption [11]. Much more accurate multiple illumination
information is extracted from the shading of a sphere [33].
A signal-processing framework that describes the reflected
light field as a convolution of the lighting and BRDF is in-
troduced in [22]. This work suggests performing render-
ing using a combination of spherical harmonics and direc-
tional light sources with ray-tracing to check for shadows.
However, our motivation and algorithms are quite different
from theirs. Very recently, in [12], the number of point light
sources and the reflectance property of an object are simul-
taneously estimated using the EM algorithm.

Our solution using `1-regularized least squares is moti-
vated by recent advances in the field of compressed sensing
[4, 8]. A goal of compressed sensing is to exploit the com-
pressibility and sparsity of the true signal, which is an `0
minimization problem that is usually hard to solve. Recent
studies [4, 8] show that, under very flexible conditions, the
`0 minimization can be reduced to `1 minimization that fur-
ther results in a convex optimization, which can be solved
efficiently. The results from compressed sensing have been
applied to different computer vision tasks for problems such

as face recognition [32], background subtraction [5], me-
dia recovery [9], texture segmentation and feature selec-
tion [14]. There is also work related to lighting in graphics
[20, 29]. In this work, we show that the number of direc-
tional sources needed to approximate the lighting is greatly
compressible and the illumination recovery can be cast as
an `1-regularized least squares problem.

3. An Example
To strengthen our intuitions, we consider a very simple

example of a scene consisting of a flat playground with an
infinitely thin flag pole. We view the scene from directly
above, so that the playground is visible, but the flag pole
appears only as a negligible point. Suppose the scene is il-
luminated by an arbitrary set of directional lights of equal
intensity that each has an elevation of 45 degrees. In this
case, the intensity of the lighting can be described as a one-
dimensional function of azimuth. A single directional light
illuminates the playground to constant intensity except for
a thin, black shadow on it. The entire set of lights can
cause shadows in multiple directions. None of these shad-
ows overlap, because the pole is infinitely thin.

Now consider the linear subspace spanned by the images
that this scene can produce. We first consider the set of im-
ages that are each produced by a single directional source.
All images are nonnegative, linear combinations of these.
We represent each image as a vector. By symmetry, the
mean of these images will be the constant image produced
in the absence of cast shadows. Subtracting the mean, each
image is near zero, except for a large negative component
at the shadow. All these images have equal magnitude,
and are orthogonal to each other. Therefore, they span an
infinite-dimensional space, and Principal Component Anal-
ysis (PCA) will produce an infinite number of equally sig-
nificant components. A finite-dimensional linear subspace
cannot capture any significant fraction of the effects of cast
shadows.

But, let’s look at the images of this scene differently. A
single directional source produces a single, black shadow
(Figure 1(a)). Two sources produce two shadows (Figure
1(b)), but each shadow has half the intensity of the rest of
the playground, because each shadow is lit by one of the
lights. The more lights (e.g., Figure 1(c)) we have the more
shadows we have, but the lighter these shadows are. There-
fore, while a sparse set of lights can produce strong cast
shadows, many lights tend to wash out the effects of shad-
owing.

Now, suppose we approximate any possible image using
one image of constant intensity, and a small number of im-
ages that are each produced by a directional source. If the
actual image is produced by a small number of directional
sources, we can represent its shadows exactly. If the image
is produced by a large number of directional sources, we



(a) (b) (c)

Figure 1. A flagpole rendered with one directional source (a), two direc-
tional sources (b), and ten directional sources (c). The shadows are lighter
as the number of directional sources increases.

cannot represent the shadows well with a few sources, but
we do not need to, because they have only a small effect and
the image is approximately constant.

4. Modeling Images with Cast Shadows
We now model cast shadows in detail. We do not con-

sider specular reflections, and in fact there is no reason to
believe that sparse lighting can approximate the effects of
full environment map lighting when there are significant
specular reflections (instead of our playground example,
imagine images of a mirrored ball. Directional sources pro-
duce bright spots which do not get washed out as we add
more directional sources). We also do not consider the ef-
fects of saturated pixels. We assume the geometry of the
scene is given, so we can render directional source images
from it.

A scene is illuminated by light from all directions.
Therefore, an image I ∈ Rd (we stack image columns to
form a 1D vector) of a given scene has the following repre-
sentation

I =
∫

S
x(θ)Idir(θ)dθ , x(θ) ≥ 0 , (1)

where S is the unit sphere that contains all possible light
directions, Idir(θ) is the image generated by a directional
light source with angle θ ∈ S , and x(θ) is the weight (or
amount) of image Idir(θ).

For practical reason, integration over the continuous
space S is replaced by a superposition over a large dis-
crete set of lighting directions, say {θk}N

k=1 with a large
N . Denote the image generated by light from direction θk

as Ik = Idir(θk) and xk = x(θk); we approximate with the
discrete version of (1),

I =
N∑

k=1

xkIk , xk ≥ 0. (2)

It is known that in the absence of cast shadows, this
lighting can be approximated using low frequency spheri-
cal harmonics [2, 21]. We use a nine-dimensional spher-
ical harmonic subspace generated by rendering images of
the scene, including their cast shadows, using lighting that

consists of zero, first, and second order spherical harmon-
ics. We will therefore divide the effects of these directional
sources into low- and high-frequency components. We can
then capture the low-frequency components exactly using
a spherical harmonic basis. We will then approximate the
high frequency components of the lighting using a sparse
set of components that each represent the high frequency
part of a single directional source.

We project the directional source image Ik onto the
spherical harmonic subspace and it can be written as the
sum of the projection image Îk and residual image Ĩk. Then
Equation (2) can be written as:

I =
N∑

k=1

xk(Îk + Ĩk) , xk ≥ 0. (3)

We separate the low frequency component Îk from high
frequency component Ĩk and Equation 3 becomes:

I =
N∑

k=1

xk Îk +
N∑

k=1

xk Ĩk , xk ≥ 0. (4)

We know that the low frequency component
∑∞

k=1 xk Îk

lies in a low dimensional subspace and can be approximated
using Î by simply projecting I to the spherical harmonic
subspace. Equation (4) can be written as:

I = Î +
N∑

k=1

xk Ĩk , xk ≥ 0. (5)

Î is simply the component of the image due to low-
frequency lighting, where we solve for this component ex-
actly using the method of [2]. We then approximate the high
frequency components of the lighting using a sparse set of
values for xk. Note that these components will be reflected
only in the cast shadows of the scene, and we expect that
when these cast shadows are strong, a sparse approximation
will be accurate.

Our problem is now reduced to finding a certain number
of xk’s that best approximate the residual image Ĩ = I − Î .
It can be addressed as a least squares (LS) problem with
nonnegativity constraints:

arg min
x
||Ax− Ĩ||2, xk ≥ 0 , (6)

where A = [Ĩ1Ĩ2 · · · ĨN ] and x = (x1, ..., xN )>. To avoid
ambiguity, we assume all the residual directional source im-
ages Ĩk are normalized, i.e., ||Ik||2 = 1.

The size of the image can be very large, which corre-
sponds to a large linear system Ax = Ĩ . To reduce the di-
mensionality and speed up the computation, we apply PCA
to the image set A. The standard PCA yields a projection



matrix W ∈ Rm×d that consists of the m most important
principal components of A.

Applying W to equation 6 yields:

arg min
x
||W (Ax− µ)−W (Ĩ − µ)||2

= arg min
x
||WAx−WĨ||2, xk ≥ 0 , (7)

where µ is the mean vector of columns of A.
The dimension m is typically chosen to be much smaller

than d. In this case, the system (7) is underdetermined in
the unknown x and simple least squares regression leads to
over-fitting.

5. `1-Regularized Least Squares
A standard technique to prevent over-fitting is `2 or

Tikhonov regularization [16], which can be written as

arg min
x
||WAx−WĨ||2 + λ||x||2, xk ≥ 0. (8)

where ||x||2 = (
∑N

k=1 x2
k)1/2 denotes the `2 norm of x and

λ > 0 is the regularization parameter.
We are concerned with the problem of low-complexity

recovery of the unknown vector x. Therefore, we exploit
the compressibility in the transform domain by solving the
problem as the `1-regularized least squares problem. We
substitute a sum of absolute values for the sum of squares
used in Tikhonov regularization:

arg min
x
||WAx−WĨ||2 + λ||x||1, xk ≥ 0. (9)

where ||x||1 =
∑N

k=1 |xk| denotes the `1 norm of x and
λ > 0 is the regularization parameter. This problem al-
ways has a solution, though not necessarily unique. `1-
regularized least squares (LS) typically yields a sparse vec-
tor x, which has relatively few nonzero coefficients. In con-
trast, the solution to the Tikhonov regularization problem
generally has all coefficients nonzero.

Since x is non-negative, the problem (9) can be reformu-
lated as

arg min
x
||WAx−WĨ||2 + λ

N∑

k=1

xk, xk ≥ 0. (10)

Figure 2 left and right show the recovered coefficients x
using `1-regularized LS and `2-regularized LS algorithms
respectively for the synthetic image rendered with the light
probe in Figure 3-left. The query image is approximated
using N=977 directional source images. The parameter λ’s
are tuned such that the two recoveries have similar errors.
The results show that `1 regularization gives a much sparser
representation, which fits our expectation.
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Figure 2. The recovered coefficients x from `1-Regularized LS (left) and
`2-Regularized LS (right).

Algorithm 1 Sparse representation for inverse lighting
1: Obtain N directional source images by rendering the

scene with N directional light sources uniformly sam-
pled from the upper hemisphere (object is put on a plane
and there is no light coming from beneath).

2: Project each directional source image Ik to the 9D
spherical harmonic subspace and obtain the corre-
sponding residual directional source image Ĩk.

3: Normalize Ĩk such that ||Ĩk||2 = 1.
4: Generate matrix A = [Ĩ1Ĩ2 · · · ĨN ].
5: Apply Principal Component Analysis to matrix A and

obtain the projection matrix W by stacking the m most
important principal components of A.

6: Project the query image I to the spherical harmonic
subspace and obtain the residual image Ĩ .

7: Solve the `1-regularized least squares problem with
nonnegativity constraints (10).

8: Render the scene with the spherical harmonic light-
ing plus the recovered sparse set of directional light
sources.

Algorithm 1 summarizes the whole illumination re-
covery procedure. Our implementation solves the `1-
regularized least squares problem via an interior-point
method based on [13]. The method uses the preconditioned
conjugate gradients (PCG) algorithm to compute the search
direction and the run time is determined by the product of
the total number of PCG steps required over all iterations
and the cost of a PCG step. We use the code from [6] for
the minimization task in (10).

6. Experiments
In this section, we describe our experiments for illumina-

tion recovery on both synthetic and real data, in comparison
with four other previous approaches.

6.1. Experimental Setup

6.1.1 Data

Both synthetic and real datasets are used in our experi-
ments. The synthetic scene is composed of a coffee cup



Figure 3. Light probes [7] used to generate our synthetic dataset: kitchen
(left), grace (center), and building (right). The light probes are sphere maps
and shown in low-dynamic range for display purposes.

and a spoon, with a plate underneath them (see Figure 4).
Three synthetic images are obtained by rendering the scene
with environment maps (namely kitchen, grace, and build-
ing, see Figure 3) provided by [7]. We considered a scene
where the objects were placed on an infinite plane, so only
lights coming from the upper hemisphere are taken into ac-
count.

For the real objects, we built CAD models of three ob-
jects (namely chair1, chair2, and couch, see Figures 5 and
6) and printed them with a 3D printer. The only difference
between chair1 and chair2 is the number of backrest bars.
These objects are placed under natural indoor illumination
and images are taken by a Canon EOS Digital Rebel XT
camera. The 3D models are registered to corresponding im-
ages by minimizing the distance between the feature points
on the image and the corresponding feature points from the
3D model, projected onto the image.

One of our experiments involves recovering lighting
from one object (chair1), and using it to render a model of
a second object (chair2) [19]. For this reason, we take pic-
tures of chair1 and chair2 in exactly the same illumination
environment.

6.1.2 Methods for Comparison

We compare our proposed algorithm with Spherical Har-
monics [2, 21], Non-Negative Least squares (NNL) [3],
Semidefinite Programming (SDP) [28], and Haar wavelets
[19] algorithms . NNL [3] finds the non-negative combina-
tion of directional sources that produce the best approxima-
tion to an image. To make this algorithm comparable, we
use 100 directional sources to represent the lighting which
is obtained from 977 possible directional sources. The rea-
son that we choose 100 sources is because by examining the
coefficients for all the experiments, we find that the coeffi-
cients become zero or very small after 100 sources. The λ
in Equation (10) is set to 0.01 for all the experiments. We
approximate the query image using 977 directional sources
and pick the 100 directional sources which have the largest
coefficients. SDP [28] is applied to perform a constrained
optimization to quickly and accurately find the non-negative
linear combination of spherical harmonics up to the order

10. The total harmonics used in SDP is (10 + 1)2 = 121.
It has been applied for specular object recognition on both
synthetic and real data. This paper is the first to show that
SDP can also be used to handle shadows. Haar wavelets
[19] are used to recover illumination from cast shadows and
are shown to be more reliable than spherical harmonics in
reproducing cast shadows. We use the same procedure in
[19] to estimate illumination using 102 Haar wavelet basis
functions. To have a fair comparison with these methods,
we use 100 directional sources for the illumination recov-
ery from 977 possible directional sources.

6.1.3 Evaluation Criterion

Accuracy. To evaluate the accuracy of different algorithms,
we use the Root-Mean-Square (RMS) errors of pixel values,
which is also used in [19]. Specifically, for an input image
I ∈ Rd and its recovery Î ∈ Rd, the RMS between them is
defined as r(I, Î) = ||I − Î||2.
Run Time. We divide the run time for illumination recov-
ery into three parts: (1) preprocessing time, (2) time for
solving the lighting recovery algorithm (e.g., solving the
`1-regularized LS, SDP), and (3) rendering the scene with
recovered lighting. First, part (1) can be done off-line and
is actually similar for all methods. In fact, preprocessing
time is dominated by the time for generating images using
different directional light sources (via PovRay for all exper-
iments). These images are pre-computed off-line, and are
actually used in all methods.1 Second, part (3) is usually
much faster than the other two parts and therefore can be
ignored. For the above reasons, in the paper we focus only
on the part (2), which measures the time efficiency of dif-
ferent illumination recovery approaches.

All the algorithms were run in MATLAB 7.4.0. The
computer used was a Intel Core Duo at 1.73GHz with
2.0GB RAM laptop.

6.2. Experiments with Synthetic Data

In this section, we deal first with synthetic data, show-
ing that illumination can be accurately recovered by using
our proposed method. Comparison between our proposed
method and other methods is made in terms of accuracy and
speed.

Using the POV-Ray ray tracer we generate directional
images, each using a single directional light source. We
obtain directions by uniformly sampling the upper hemi-
sphere. Using these images, we numerically integrate to
compute nine images of the scene, each with lighting con-
sisting of a single spherical harmonic.

For this evaluation, we used synthetic images rendered
with three environment maps provided by [7], from high

1The spherical harmonics and Haar wavelets also need these images for
basis image estimation.



Table 1. RMS errors and average run time on the synthetic image
dataset. Note: the running time does not include the preprocessing
for generating “basis” images (same for Tables 2 and 3).

Probe Probe Probe Avg. Run
Method Kitchen Grace Building Time (sec.)

Spherical Harmonics 8.00 12.23 12.21 0.01
NNL (100 DS) 55.74 17.31 39.41 9389.8
NNL (300 DS) 5.96 2.80 1.87 9389.8

SDP 3.21 4.11 3.48 10.9
Haar Wav. (102 basis) 3.42 3.12 1.61 1322.0
Our method (100 DS) 2.33 2.69 1.22 11.8

dynamic range light probe images, and recovered illumina-
tion from them. Figure 3 shows the sphere maps of three
of the light probes used in our experiments. We considered
a scene where the objects were placed on an infinite plane,
so only lights coming from the upper hemisphere are taken
into account.

Figure 4 shows the ground truth images (a)-(c) and im-
ages obtained by using the method based on spherical har-
monics (d), NNL with 100 directional sources (DS) (e),
NNL with 300 DS (f), SDP (g), Haar wavelets (h), and
our method (i). We recovered illumination distributions
from input images (a)-(c) rendered with the sphere maps
of kitchen, grace, and building (Figure 3), respectively. The
image approximated using spherical harmonics is obtained
by projecting the image onto the harmonic subspace. It
fails to capture the apparent shadows cast on the plate and
ground. For NNL, we tested two versions, using the 100
and 300 largest DS respectively, from 977 possible ones.
The reason is, as illustrated in Figure 4, NNL with 100 DS
failed to generate a reasonable result. This tells us the re-
sults of NNL is not sparse and require a large number of
directional sources in order to produce good results. Com-
paring with spherical harmonics, SDP captures more details
of the cast shadows, but the shadows are very fuzzy and the
shadow boundaries are unclear. We render the image with
102 Haar basis functions as in [19]. Both Haar wavelets and
our method reproduce the shadows reliably.

To quantitatively evaluate the performance of the meth-
ods in terms of speed and accuracy, we measure the quality
of the approximation by looking at RMS and the speed by
run time. The errors in pixel values and run time in sec-
onds are shown in Table 1. One can find that the error in
our method is the smallest of all the listed methods and the
run time is much smaller than the Haar wavelets method
which has comparable accuracy to our method. Therefore,
our method works best for recovering illumination from cast
shadows in terms of both accuracy and speed.

(a) kitchen (b) grace (c) building

(d) spherical harmonics

(e) NNL (100 DS)

(f) NNL (300 DS)

(g) SDP

(h) Haar wavelets (102 basis)

(i) our method (100 DS)
Figure 4. Experiments on synthetic images. (a)-(c): ground truth images
from different lighting probes as indicated. (d)-(i) images recovered dif-
ferent approaches.

6.3. Experiments with Real Data

For real images, we conduct two kinds of experiments.
First, all the algorithms are tested for illumination recovery
tasks on chair1 and couch. The results are shown in the left



Table 2. RMS errors and run times on the real images of chair1 and
chair2. The RMS for chair1 is for lighting recovery (Fig. 5 left);
while the RMS for chair2 is for lighting evaluation (Fig. 5 right).

Chair1 RMS Chair2 RMS Run time
Method Estimation Evaluation (sec.)

Spherical Harmonics 13.99 15.31 0.01
NNL (100 DS) 10.26 10.35 1854.89

SDP 9.38 9.40 10.88
Haar Wav. (102 basis) 10.75 11.02 1529.60
Our method (100 DS) 7.50 8.24 14.54

Table 3. RMS errors and run times on real images for the couch.
Method RMS Run time (sec.)

Spherical Harmonics 9.39 0.01
NNL (100 DS) 7.37 2050.22

SDP 7.01 14.62
Haar Wav. (102 basis) 7.84 1585.27
Our method (100 DS) 6.56 13.82

column of Figure 5 and in Figure 6. Second, we apply the
recovered illumination from chair1 to the model of chair2
and then compare the results to the ground truth image. The
second test is similar to those used for lighting recovery in
[19]. The results are shown in the right column of Figure 5.
The RMS errors and run time statistics are summarized in
Tables 2 and 3.

All these experiments show the superiority of our meth-
ods. Spherical harmonics fail to capture the apparent shad-
ows cast on the seat of the chair and the ground. In com-
parison, SDP captures more details of the cast shadows, but
the shadows are very fuzzy and there are some highlights
on the ground. NNL can produce accurate shadows, but
the shadows are intersecting and overlapping each other,
causing the image to be unrealistic to the user. The Haar
wavelets method produces accurate shadows, but there are
some highlights on the ground. Our method generates visu-
ally realistic images and produces accurate shadows both on
the seat and the ground. In addition, Table 2 shows the RMS
error and run time for all the methods. Our method achieves
the smallest error of all the methods in only tens of seconds
run time. Figure 6 and Table 3 show the experimental re-
sults for the couch under natural indoor lighting. Again,
our method achieves the best results in terms of speed and
accuracy. Hence, it can be concluded that our method works
reliably and accurately in recovering illumination and pro-
ducing cast shadows for real images as well.

6.4. Sparsity Evaluation

In the previous section, we argue that we can approx-
imate the query image well using a sparse set of direc-
tional light sources. To justify our argument, we conduct
experiments on synthetic and real images. Figure 7 shows

(a) ground truth (b) sph. harmonics (c) NNL

(d) SDP (e) Wavelets (f) our method
Figure 6. (a) Ground truth image of couch. (b)-(f) show the image ren-
dered with the lighting recovered from (a) using different approaches,
where (c) and (3) use 100 directional sources (DS), and (e) uses 102
wavelet basis.
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Figure 7. The improvement in accuracy by adding directional sources.
RMS versus number of directional sources for a synthetic image rendered
with grace light probe (left) and a real image in Figure 5 (a) (right) under
natural indoor lighting.

the RMS versus number of possible directional sources for
synthetic images rendered with the grace light probe (left)
and a real image (right) under natural indoor lighting. The
accuracy improves gradually as the number of directional
sources increases. From the plots, we can see after a cer-
tain number of directional sources (≈ 50 for the left and
≈ 180 for the right), the error remains constant. It matches
the argument that we can approximate the query image well
enough using only a sparse set of directional sources and
after a certain number of directional sources, increasing the
number of directional sources does not improve the accu-
racy.

7. Conclusions
In this paper, we start from a simple example and explain

that although the dimensionality of the subspace of images
with cast shadows can go up to infinity, the illumination
can still be well approximated by a sparse set of directional
sources. Following this example, we derive a theoretical
model and cast illumination recovery as an `1-regularized
least squares problem. An efficient and fast solution is pro-
vided to find the most significant directional sources for the
estimation. Experiments on both synthetic and real images



(a) ground truth (b) spherical harmonics (c) NNL (d) SDP (e) Haar wavelets (f) our method
Figure 5. Column (a): Top - the image of chair 1. Bottom - the image of chair under the same lighting as chair 1. Columns (b–f): the images rendered with
the lighting recovered from chair 1 (top of (a)) using different methods. The method in (c,d,f) use 100 directional light sources, while that in (e) uses 102
souces.

have shown the effectiveness of our method in both accu-
racy and speed.
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