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Abstract— Understanding traffic scene images taken from
vehicle mounted cameras provides important information for
high level tasks such as autonomous driving and advanced
driver assistance. The problem is far from trivial especially
due to challenges from weather and illumination variation. To
facilitate the research against such challenges, in this paper
we present a new benchmark for cross-weather traffic scene
understanding'. The dataset consists of 1,356 traffic scene
images collected at 226 different locations. For each location,
there are six images taken by a vehicle mounted camera under
different weather/illumination conditions including sunny day,
night, snowy day, rainy night, cloudy day I and cloudy day II.
We manually annotated each image with scene understanding
labels such as road, sky, building, etc. To the best of our
knowledge, this is the first carefully collected benchmark for
cross-weather traffic scenes. In addition, we also provide results
from two popular scene parsing systems as the baselines. We
expect the benchmark to help boost research in improving the
robustness of traffic scene understanding algorithms.

[. INTRODUCTION

With the development of autonomous driving and driver
assistance systems [21], [22], [23], [24], visual sensors play
an increasingly important role in related tasks. In particular,
reliable and efficient understanding of road scene images,
which are taken from vehicle mounted cameras, often serves
as an important basis for high level situation awareness tasks.
While traffic scene understanding in the condition of well-
structured roads is already available in modern vehicles, it
remains an unsolved problem in terms of system reliability
e.g., traffic scene understanding influenced by various illu-
mination and weather conditions.

In this paper, we propose a traffic scene dataset, which
includes different illumination and weather scenarios of the
same road route. In short, 1,356 traffic scene images of 226
different locations are included in our proposed dataset. At
each location, images of 6 different scenarios were captured
respectively i.e., sunny day, night, snowy day, rainy night,
cloudy day I and cloudy day II. All images are manually
annotated by LabelMe [1]. Note that the illumination is
different between cloudy day I and cloudy day II. For our
proposed dataset, we intend to understand traffic scene by
using label transfer e.g., understanding traffic scene in the
challenging scenarios with the help of scenes of the same
location, but different time periods. More specifically, given
a test scene image, the similar images named as nearest
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neighbor set are first found by using similarity measure in the
Convolutional Neural Network (CNN) based feature space.
Then, dense correspondences between the test image and
each of the nearest neighbors are computed. Finally, labels of
images in the nearest neighbor set are transferred to the test
image based on the dense correspondences between them.

The contributions of this paper can be concluded as
follows. We first propose a new traffic scene dataset. To our
best knowledge, this is the first traffic scene dataset which
contains various illumination and weather conditions of the
same road route. In addition, we benchmark the state-of-the-
art dense correspondence methods on our proposed dataset
in order to understand traffic scenes via label transfer.

The rest of the paper is organized as follows. After
summarizing related work in Section 2, the description of our
proposed dataset is given in Section 3. Then we compare our
dataset with existing traffic scene datasets in Section 4. The
evaluation for baseline methods on our dataset is presented
in Section 5, followed by the conclusion in Section 6.

II. RELATED WORK
A. Traffic Scene Datasets

Existing traffic scene related datasets can be roughly
divided into two categories i.e., datasets used for traffic scene
understanding and datasets for road/lane marking detection.
The former one usually contains several video sequences
taken by a driving car, such as the CamVid dataset [13], [14],
daimler urban segmentation dataset [15], [16], etc. Several
densely labeled frames are also included in these datasets
for scene understanding algorithms evaluation. As for the
latter category, besides the traffic scene videos, the annotated
road areas or lane markings are included for evaluation e.g.,
road/lane detection evaluation [18] and dataset for road area
estimation [19].

The proposed dataset in this paper belongs to the former
category. However, different scenarios of the same road route
are included in our dataset, which is different from existing
traffic scene related datasets.

B. Scene Understanding via Label Transfer

Scene understanding based on label transfer is the non-
parametric method such as [12], [25], [26], [27], [3], [4],
[5]. Given a test image, a set of nearest neighbors that share
similar scene configuration are retrieved using scene retrieval
techniques. Then, classification confidence maps are obtained
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Fig. 1.
varying weather and illumination conditions.

by matching the test image with the images in the nearest
neighbor set. Finally, the final semantic labels of the test
image are obtained by solving a MRF model.

In this paper, our focus is not on the state-of-the-art
traffic scene understanding methods but the application on
our proposed dataset. We have noticed that image retrieval
plays an important role in these nonparametric methods.
CNN based models have been the top performers in scene
recognition [11], [29], [32], [31]. In particular, as shown in
recent works [6], [7], [8], [9], deep CNN features learned
on a large dataset, such as ImageNet (ILSVRC) [10] and
Places [29], [30], can be used as the powerful descriptors
applicable to other datasets.

III. DATASET DESCRIPTION
A. Data Collection

A GoPro HERO3+ camera was mounted forward facing
on the car dashboard for recording videos. All six videos
share the same road route, but different time periods i.e.,
sunny day, night, snowy day, rainy night, cloudy day I and
cloudy day II. Both urban and highway traffic scenes are
included in this road route through the city center and suburb
of Philadelphia in Pennsylvania, USA. Images in our dataset
are from these six videos. More Specifically, we select one
image for each of the 226 different locations in each of the
six videos. Therefore, for each location, six different images
are included, as illustrated in Figure 1. Finally, we obtain
totally 1,356 images for 226 different locations. All images
were cropped to remove the dashboard i.e., 856 x 270 pixels.

B. Data Annotation

Most object categories were manually annotated in the
scenarios of sunny day, night, snowy day, rainy night, cloudy
day I and cloudy day II by LabelMe [1]. The remaining
objects in all these scenarios were annotated as undefined
class because of indeterminate objects or poor visibility.
More specifically, 13 object categories are included i.e., sky,
building, tree, car, road, median strip, bridge, wiper (device
that wipes rain from vehicle’s windshield), vegetation, traffic
sign, pole, traffic lights and pedestrian. Any other object
categories are classified as the 14th category: undefined. The
statistics of the annotated object categories for each scenario
are shown in Figure 2. As can be seen in Figure 2, for the

Cloudy day I

Cloudy day II

Example images from the proposed benchmark. Six traffic scene images of the same location were captured via a vehicle mounted camera under

night scenario, undefined category occupies larger percentage
comparing to other scenarios. The reason is that the visibility
of night condition is very low and categories in some images
are very difficult to be seen. Hence, the undefined class is
assigned to them. In addition, undefined class in the rainy
night scenario occupies a little larger percentage comparing
with daytime scenario but smaller percentage than night
scenario. The reason is that some categories in a few images
of the rainy night scenario is also hard to be recognized
because of the low visibility and the undefined class is
assigned to them. What is more, the visibility of the rainy
night is better than the night scenario. Therefore, more object
categories can be annotated in the rainy night condition. Note
that, to improve the annotation accuracy, images of the same
location in the other four scenarios are used as reference
guide when annotating images in the night and rainy night
scenarios.

IV. DATASET ANALYSIS

In this section, we compare our dataset with existing traffic
scene related datasets. As introduced in related work, we
divide the existing traffic scene related datasets into two
classes: datasets used for scene understanding and datasets
for road/lane marking detection.

A. Traffic Scene Understanding Datasets

The CamVid dataset [13], [14] consists of daytime and
dusk videos taken from a car driving through Cambridge
of England. A total of 701 densely labeled frames (11
class labels) are included in the dataset. The daimler urban
segmentation dataset [15], [16] consists of video sequences
recorded in urban traffic. There are 500 labeled frames (5
class labels) in this dataset. The street scenes dataset [20]
were taken from a camera at Boston of USA. Some object
categories (totally 9 classes) were manually labeled for each
image in the dataset.

Our dataset also consists of video sequences taken from
a car. However, as can be seen in Figure 1, six different
scenarios of the same location are included in our dataset
i.e., different sequences of the same road route not just
several different sequences. There are 1,356 labeled traffic
scene images (13 class labels) in our dataset. We mainly
focus on understanding one scenario of the traffic scene by
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Statistics for the annotation results of our proposed traffic scene dataset with 13 object categories (sky, building, tree, car, road, median strip,

bridge, wiper, vegetation, traffic sign, pole, traffic lights and pedestrian). Any other things are annotated as undefined.

Sunny day

Daytime after raining

Fig. 3. Example images from [19]. There are only two different scenarios
in this dataset i.e., sunny day and daytime after raining. Unlike it, more
challenging scenarios are included in our dataset.

transferring information from other scenarios of the same
road route.

B. Road/Lane Marking Detection Datasets

There are also datasets for performance evaluation of
road marking extraction algorithms [17], road/lane detection
evaluation [18] and dataset for road area estimation [19].
Images of the dataset introduced in [19] look similar to ours,
but only have two different scenarios of the same road route,
i.e., sunny day and daytime after raining, as illustrated in
Figure 3. Our dataset includes more challenging scenarios
of the same road route. In addition, our focus is on scene
understanding not road area estimation e.g., most objects
being annotated for each image in our dataset not just road
area. For comparison, the basic statistics of these traffic scene
related datasets are concluded in Table 1.

V. BENCHMARK EVALUATION

We intend to understand the traffic scene by transfer i.e.,
understanding one scenario via label transfer from the other
scenarios. Given one test image, we first need to find similar
images as nearest neighbor set whose labels would be trans-
ferred to the test image. Then, the dense correspondences
should be established between the test image and images in
the nearest neighbor set. Our focus is on the cross-weather
traffic scene understanding. Scenarios of cloudy day I and
cloudy day II are integrated into one weather condition i.e.,
cloudy in the evaluation, even though the illumination is
different between them. Therefore, five different scenarios
(sunny day, snowy day, cloudy day, night and rainy night)
are used in the evaluation.

A. Evaluation Metrics

For evaluation, we use the average pixel-wise and per-class
recognition rate, which are commonly used as measures for
scene understanding system [3], [4], [5].

B. Scene Retrieval

Given an image I, scene retrieval is to retrieve a set of
traffic scene images in an archived dataset that are visually
similar to I. Denoting the resulting image set by R, it is
created according to a similarity measure m([, I;) between
query image I and the database images I; and retrieve top-
N most similar images R = {I},I3,...,I}}. Here, given an
image in one scenario, we intend to find the other images
of the same location. However, as can be seen in Figure
1, images of the same location undergo drastic changes
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Table 1. Statistics of the traffic scene related datasets

Datasets Intention Original data Number of labeled images (number of classes)
Ours scene understanding video sequences of the same road route 1,356 (13 classes)
[13], [14] scene understanding video sequences captured through a city 701 (11 classes)
[15], [16] scene understanding video sequences recorded in urban traffic 500 (5 classes)
[20] scene understanding images taken in a city 3,547 (9 classes)
[17] road marking extraction evaluation images taken in various sites 116 (2 classes)
[18] road/lane detection evaluation video sequences captured through a city 289 (2 classes)
[19] road area estimation images taken in the same road route 1,005 (1 classes)
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Original image [12] [4] Human annotation

Sky - Building - Road Median Strip
-Car - Tree -Traffic Sign - Undefined

Fig. 4. Some representative scene understanding results of the highway (I).
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Original image [12] Human annotation

Sky - Building - Road Median Strip
- Car - Traffic Sign Vegetation - Undefined

Fig. 5. Some representative scene understanding results of the highway (II).
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Human annotation

Sky - Building - Tree - Road - Car
Median Strip - Traffic Sign - Pole - Undefined

Fig. 6.

in appearance due to illumination, rain, snow, etc. Hence,
robust feature representation will be helpful for comput-
ing the similarity measure. Deep CNN features learned on
a large dataset can be used as the powerful descriptors
applicable to other datasets. In this paper, all the traffic
scene image representations transfer from the model pre-
trained on the large dataset. Specifically, all the traffic scene
image representations transfer from the output of the last
convolutional layer of AlexNet [11] pre-trained on ILSVRC-
2012. Therefore, given a test image in one scenario, the
similarity between the test image and the database images
is computed respectively in the deep feature space.

C. Label Transfer

Our aim is to transfer the labels of the retrieved similar
images to the input image. It is important to find the dense
correspondences between them. As shown in [2], [12], SIFT
flow is able to establish semantically meaningful corre-
spondences between two images by matching local SIFT
representations. In order to reduce the computational burden
for large amount of pixel-level inferences. An alternative
strategy, as explored in [27], [3], [4], [5], is to work on
superpixels. In this paper, representative systems of the two
kinds of methods are validated on our dataset i.e., SIFT
flow [2] and superpixel matching [4].

After similar images are retrieved and the dense corre-
spondences between them are available. The labels of the
retrieved similar images can be transferred to the input image
by using the dense correspondences.

D. Results

To make full use of traffic scene images in our dataset,
cross-validation method is applied for all the experiments

Some representative scene understanding results of the urban traffic.

in this paper. Specifically, for the five scenarios of our
dataset, images in one scenario are taken as test set and
images in another four scenarios as training set. We retrieve
N = 4 images for each test image. The average per-class
and per-pixel rates for each scenario are shown in Table 2
and Table 3. Note that Sunny Day in the Table means this
scenario is taken as test set and other four scenarios are
taken as training set, and vice versa. We intend to verify the
performance of traffic scene understanding via label transfer.
It would be meaningful to compute the recognition rates for
categories which are jointly owned by different scenarios of
the road route. For example, as can be seen in Figure 2,
the wiper class is only included in snowy day and wiper
in this scenario may not find labels to be transferred in
other scenarios. Hence, the recognition rates of 11 classes
owned by all scenarios are reported in Table 2 and Table 3
i.e., the recognition rates for pedestrian and wiper not being
included. A major challenge for traffic scene understanding
is induced by the non-uniform statistics of object categories
in the scene. Specifically, "stuff” classes, such as Sky, Road,
Building, Tree, etc, occupy a large percentage of the image
pixels, which have no consistent shape but consistent tex-
ture. Whereas, “’thing” categories which are characterized by
overall shape constitute the minority of all image pixels e.g.,
Car, Traffic Lights and Traffic Sign. As can be seen in Table
2, for the daytime scenario i.e., sunny day, snowy day and
cloudy day, both stuff categories (Sky, Building, Tree, Road
and Vegetation) and thing classes (Median Strip, Bridge,
Traffic Sign, Pole and Traffic Lights) have good recognition
performance. However, for the rainy night scenario, both the
average per-class and per-pixel recognition rates are lower
with respect to the daytime scenario. The main reason is
that the visibility of night scenario is very low and the



Table 2. Recognition results on our dataset (%) [12]

Sky Building Tree Road Car Median Strip Bridge Vegetation Traffic Sign Pole Traffic Lights | Per-class Per-pixel
Sunny Day | 98.6 93.1 922 847 385 88.3 97.6 80.5 94.7 82.9 78.3 84.5 93.0
Snowy Day | 96.3 92.1 90.6 83.1 373 82.1 96.5 78.2 91.9 79.2 75.5 82.1 90.0
Rainy Night | 95.7 83.7 128 783 47.6 76.0 84.0 20.5 85.8 54.6 75.8 65.0 83.6
Night 95.4 87.7 77.8 78.8 44.0 81.9 92.1 88.9 85.4 57.2 80.4 79.1 88.8
Cloudy Day | 92.8 92.0 932 826 449 75.2 95.9 74.2 88.3 78.9 75.7 81.2 89.3

Table 3. Recognition results on our dataset (%) [4]

Sky Building Tree Road Car Median Strip Bridge Vegetation Traffic Sign Pole Traffic Lights | Per-class Per-pixel
Sunny Day | 98.2 85.5 90.8 74.1 33.0 72.5 92.7 51.6 81.7 19.2 233 65.7 89.4
Snowy Day | 97.3 86.7 85.0 732 405 62.6 88.1 44.5 76.1 14.6 19.7 62.6 85.2
Rainy Night | 93.4 60.7 81 393 378 333 74.0 11.2 46.2 9.5 21.7 39.6 73.1
Night 88.5 63.6 29.0 451 315 56.9 82.8 54.0 54.3 5.8 35.5 49.7 74.5
Cloudy Day | 95.3 90.2 90.3 802 478 75.3 96.1 32.7 79.4 17.0 47.5 68.3 90.1

undefined class is assigned to many objects. Hence, there
are not enough labels to be transferred in this scenario. More
specifically, given a test image in the rainy night scenario,
it is more easier to find the similar image in the night
scenario comparing with daytime scenario. However, there is
not enough label information to be transferred from the night
scenario. Unlike the rainy night scenario, the night scenario
has good recognition performance. The reason is that many
undefined categories are included in the night scenario and
less instances are counted in computing the recognition rate.

The similar situation can be found in Table 3. Note
that, the recognition rates in Table 3 are lower than Table
2. The main reason is that appearances of traffic scene
images in our dataset undergo large changes and it is hard
for superpixel segmentation [28]. Hence, superpixels tend
to fragment objects specifically for the thing classes. For
example, as can be seen in Table 3, the recognition rates of
pole and traffic lights have a sharp decline with respect to
rates in Table 2. We present some qualitative results of the
two baseline methods for each scenario in Figure 4-6.

VI. CONCLUSIONS

In this paper we proposed a benchmark for cross-weather
traffic scene understanding. Our dataset includes six different
weather/illumination scenarios for each of 226 locations. In
addition, we ran two popular scene understanding algorithms
on the dataset and provided baseline results. The proposed
benchmark is expected to help future studies on traffic scene
understanding as well related problems such as cross-weather
image matching and image retrieval.
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