CSE 527: Introduction to Computer
Vision
(Graduate
Course)
Fall
2024
Basic
Information:
¡¤ Lecture info: Mon/Wed 6:30pm ¨C 7:50pm, LGT ENGR LAB 102
¡¤ Instructor: Haibin Ling (haibin.ling AT stonybrook.edu), NCS 147
¡¤ Office hour: Wed 9am-11am or by appointment
¡¤ TAs:
o Md Shahrar Fatemi (mfatemi AT cs.stonybrook.edu), office hour: Thu 4-6pm
o Snehal Tomar (stomar AT cs.stonybrook.edu), office hour: Fri 12-2pm
o Yufeng Wang (yufengwang AT cs.stonybrook.edu), office hour: Thu 3:30-5:30pm
¡¤ Syllabus: PDF
Useful
Links:
¡¤ Main textbook: Computer Vision: Algorithms and Applications, Richard Szeliski, 2nd ed., 2022.
¡¤ Computer Vision: A Modern Approach, David Forsyth and Jean Ponce, 2nd ed., 2012.
¡¤ Multiple View Geometry in Computer Vision, Richard Hartley and Andrew Zisserman, 2nd ed., 2004.
¡¤ Pattern Recognition and Machine Learning, Christopher M. Bishop, 2006.
¡¤ Monocular Model-Based 3D Tracking of Rigid Objects: A Survey, Vincent Lepetit, Pascal Fua, 2005.
Course
Schedule (tentative, will be actively updated during semester)
Date |
Topics |
Materials |
Week 1 8/26 8/28 |
¡¤ Introduction o Topics, history, applications, related fields o Course logistics ¡¤ Image
Formation o Geometric primitives and transformations |
¡¤ Szeliski 1.1, 1.2 ¡¤ Szeliski 2.1, 2.2, 2.2, 2.3 |
Week 2 9/4 |
¡¤ Review
of math and coding (by Yufeng Wang) o Basic math concept review o Tutorial to Google Colab |
|
Week 3 9/9 9/11 |
¡¤ Image
Formation o Photometric image formation o Anatomy of cameras ¡¤ Guest
lecture (9/11) by Prof. Chenyu You o Robust Machine Learning for Biomedical Data: Efficiency, Reliability, and Generalizability |
¡¤ Szeliski 2.2, 2.3 ¡¤
|
Week 4 9/16 9/18 |
¡¤ Image
Processing o Linear filtering: separable filtering o Non-linear filtering, bilateral filtering o Fourier transforms o Image pyramid o Geometric transform ¡¤ Model
Fitting and Optimization o Line fitting, robust fitting o Hough transform o RANSAC |
¡¤ Szeliski 3.2, 3.3, 3.4, 3.5, 3.6 ¡¤ Szeliski 4.1 ¡¤ Szeliski 7.4, 8.1 |
9/22 |
¡¤ Homework 1 Due (11:59pm EST) |
|
Week 5 9/23 9/25 |
¡¤ Machine
Learning o Supervised learning o Unsupervised learning ¡¤ Recognition o Instance recognition o Image classification (traditional methods) |
¡¤ Szeliski 5.1, 5.2 ¡¤ Szeliski 6.1, 6.2 |
Week 6 9/30 10/2 |
¡¤ Deep
Learning o Deep neural networks o Convolutional neural networks o Architecture o Applications |
¡¤ Szeliski 5.3, 5.4, 5.5, 6.2 ¡¤ Deep Learning, Goodfellow et al., 2016. ¡¤ Deep Learning Tutorial, Stanford |
Week 7 10/7 10/9 |
¡¤ Deep
Learning Practice o Training o Data
augmentation ¡¤ Image
classification o Vision Transformer |
¡¤ Szeliski 5.5, 6.3 ¡¤ End-to-End Object Detection with Transformers, Carion, et al., ECCV 2020 |
Week 8 10/16 |
¡¤ Detection o Traditional solutions o Deep learning solutions |
|
10/20 |
Homework 2 Due (11:59pm EST) |
|
Week 9 10/21 10/23 |
¡¤
Midterm (10/21) ¡¤ Semantic
Segmentation o Segmentation |
¡¤ Szeliski 6.3, 6.4 ¡¤ Segment Anything, Kirillov et al., 2023 |
Week 10 10/28 11/30 |
¡¤ Semantic
Segmentation o Segmentation o Semantic segmentation |
¡¤ Szeliski 6.3, 6.4 ¡¤ Segment Anything, Kirillov et al., 2023 |
Week 11 11/4 11/6 |
¡¤ Feature
detection and matching o Points
and patches o Edges
and contours |
¡¤ Szeliski 7.1, 7.2, 7.5 |
Week 12 11/11 11/13 |
¡¤ Image
alignment and stitching o Pairwise alignment o Image stitching o Global alignment ¡¤ Motion
estimation and tracking o Translational alignment o Optical flow o Object tracking |
¡¤ Szeliski 8.1, 8.2, 8.3 ¡¤ Szeliski 9.1, 9.3, 9.4 |
11/17 |
Homework 3 Due (11:59pm EST) |
|
Week 13 11/18 11/20 |
¡¤ Motion
estimation and tracking o Object tracking |
¡¤ Szeliski 9.1, 9.3, 9.4 |
Week 14 11/25 |
¡¤ Depth
estimation o Epipolar geometry o Correspondences o Local and global methods o Deep learning solution |
¡¤ Szeliski 12.1, 12.2, 12.3, 12.4, 12.5, 12.6 |
Week 15 12/2 12/4 |
¡¤ Structure
from motion and SLAM o Camera pose estimation o Two-frame structure from motion o Multi-frame structure from motion o Simultaneous localization & mapping (SLAM) ¡¤ Final review (12/6) |
¡¤ Szeliski 11.1, 11.2, 11.3, 11.4, 11.5 |
12/8 |
Homework 4 Due (11:59pm EST) |
|
Week 16 12/9 |
¡¤ Advanced
topic o Computer vision for Science |
|
12/11 |
Final Exam, 8:30-11:00pm LGT ENGR LAB 102 |
|