CSE 527: Introduction to Computer Vision

(Graduate Course)

Fall 2024

Basic Information:

¡¤       Lecture info: Mon/Wed 6:30pm ¨C 7:50pm, LGT ENGR LAB 102

¡¤       Instructor: Haibin Ling (haibin.ling AT stonybrook.edu), NCS 147

¡¤       Office hour: Wed 9am-11am or by appointment

¡¤       TAs:

o   Md Shahrar Fatemi (mfatemi AT cs.stonybrook.edu), office hour: Thu 4-6pm

o   Snehal Tomar (stomar AT cs.stonybrook.edu), office hour: Fri 12-2pm

o   Yufeng Wang (yufengwang AT cs.stonybrook.edu), office hour: Thu 3:30-5:30pm

¡¤       Syllabus: PDF

Useful Links:

¡¤       Main textbook: Computer Vision: Algorithms and Applications, Richard Szeliski, 2nd ed., 2022.

¡¤       Computer Vision: A Modern Approach, David Forsyth and Jean Ponce, 2nd ed., 2012.

¡¤       Multiple View Geometry in Computer Vision, Richard Hartley and Andrew Zisserman, 2nd ed., 2004.

¡¤       Pattern Recognition and Machine Learning, Christopher M. Bishop, 2006.

¡¤       Monocular Model-Based 3D Tracking of Rigid Objects: A Survey, Vincent Lepetit, Pascal Fua, 2005.

Course Schedule (tentative, will be actively updated during semester)

Date

Topics

Materials

Week 1

8/26

8/28

¡¤       Introduction

o   Topics, history, applications, related fields

o   Course logistics

¡¤       Image Formation

o   Geometric primitives and transformations

¡¤       Szeliski 1.1, 1.2

¡¤       Szeliski 2.1, 2.2, 2.2, 2.3

 

Week 2

9/4

¡¤       Review of math and coding (by Yufeng Wang)

o   Basic math concept review

o   Tutorial to Google Colab  

Week 3

9/9

9/11

¡¤       Image Formation

o   Photometric image formation

o   Anatomy of cameras

¡¤       Guest lecture (9/11) by Prof. Chenyu You

o   Robust Machine Learning for Biomedical Data: Efficiency, Reliability, and Generalizability

¡¤       Szeliski 2.2, 2.3

¡¤        

Week 4

9/16

9/18

¡¤       Image Processing

o   Linear filtering: separable filtering

o   Non-linear filtering, bilateral filtering

o   Fourier transforms

o   Image pyramid

o   Geometric transform

¡¤       Model Fitting and Optimization

o   Line fitting, robust fitting

o   Hough transform

o   RANSAC

¡¤       Szeliski 3.2, 3.3, 3.4, 3.5, 3.6

¡¤       Szeliski 4.1

¡¤       Szeliski 7.4, 8.1

 

9/22

¡¤       Homework 1 Due (11:59pm EST)

 

Week 5

9/23

9/25

¡¤       Machine Learning

o   Supervised learning

o   Unsupervised learning

¡¤       Recognition

o   Instance recognition

o   Image classification (traditional methods)

¡¤       Szeliski 5.1, 5.2

¡¤       Szeliski 6.1, 6.2

Week 6

9/30

10/2

¡¤       Deep Learning

o   Deep neural networks

o   Convolutional neural networks

o   Architecture

o   Applications

¡¤       Szeliski 5.3, 5.4, 5.5, 6.2

¡¤       Deep Learning, Goodfellow et al., 2016.

¡¤       Deep Learning Tutorial, Stanford

Week 7

10/7

10/9

¡¤       Deep Learning Practice

o   Training

o   Data augmentation

¡¤       Image classification

o   Vision Transformer

¡¤       Szeliski 5.5, 6.3

¡¤       End-to-End Object Detection with Transformers, Carion, et al., ECCV 2020

Week 8

10/16

¡¤       Detection

o   Traditional solutions

o   Deep learning solutions

 

10/20

Homework 2 Due (11:59pm EST)

 

Week 9

10/21

10/23

¡¤       Midterm (10/21)

 

¡¤       Semantic Segmentation

o   Segmentation

¡¤       Szeliski 6.3, 6.4

¡¤       Segment Anything, Kirillov et al., 2023

 

Week 10

10/28

11/30

¡¤       Semantic Segmentation

o   Segmentation

o   Semantic segmentation

¡¤       Szeliski 6.3, 6.4

¡¤       Segment Anything, Kirillov et al., 2023

Week 11

11/4

11/6

¡¤       Feature detection and matching

o   Points and patches

o   Edges and contours

¡¤       Szeliski 7.1, 7.2, 7.5

Week 12

11/11

11/13

 

¡¤       Image alignment and stitching

o   Pairwise alignment

o   Image stitching

o   Global alignment

¡¤       Motion estimation and tracking

o   Translational alignment

o   Optical flow

o   Object tracking

¡¤       Szeliski 8.1, 8.2, 8.3

¡¤       Szeliski 9.1, 9.3, 9.4

 

11/17

Homework 3 Due (11:59pm EST)

 

Week 13

11/18

11/20

¡¤       Motion estimation and tracking

o   Object tracking

¡¤       Szeliski 9.1, 9.3, 9.4

Week 14

11/25

¡¤       Depth estimation

o   Epipolar geometry

o   Correspondences

o   Local and global methods

o   Deep learning solution

¡¤       Szeliski 12.1, 12.2, 12.3, 12.4, 12.5, 12.6

 

Week 15

12/2

12/4

¡¤       Structure from motion and SLAM

o   Camera pose estimation

o   Two-frame structure from motion

o   Multi-frame structure from motion

o   Simultaneous localization & mapping (SLAM)

¡¤       Final review (12/6)

¡¤       Szeliski 11.1, 11.2, 11.3, 11.4, 11.5

 

12/8

Homework 4 Due (11:59pm EST)

 

Week 16

12/9

¡¤       Advanced topic

o   Computer vision for Science

 

12/11

Final Exam, 8:30-11:00pm LGT ENGR LAB 102