CSE 327: Fundamentals of Computer Vision

(Undergraduate Course)

Fall 2024

Basic Information:

¡¤       Lecture info: Mon/Wed 3:30pm ¨C 4:50pm, Frey Hall 205

¡¤       Instructor: Haibin Ling (haibin.ling AT stonybrook.edu), NCS 147

¡¤       Office hour: Wed 9:30am-11:30am or by appointment

¡¤       TAs:

o   Ming Lin, ming.lin@stonybrook.edu, office hour: Mon 9:30-11:30am 

o   Shivasankaran Vanaja Pandi, shivasankaran.vanajapandi@stonybrook.edu, office hour: Tue 9-11am

o   Naman Joshi, namjoshi@cs.stonybrook.edu, office hour: Thu 12-2pm

o   Rushil Nilesh Shah, rushshah@cs.stonybrook.edu, office hour: Mon 3-5pm

¡¤       Syllabus: PDF

Useful Links:

¡¤       Main textbook: Computer Vision: Algorithms and Applications, Richard Szeliski, 2nd ed., 2022.

¡¤       Computer Vision: A Modern Approach, David Forsyth and Jean Ponce, 2nd ed., 2012.

¡¤       Multiple View Geometry in Computer Vision, Richard Hartley and Andrew Zisserman, 2nd ed., 2004.

¡¤       Pattern Recognition and Machine Learning, Christopher M. Bishop, 2006.

¡¤       Monocular Model-Based 3D Tracking of Rigid Objects: A Survey, Vincent Lepetit, Pascal Fua, 2005.

 

Course Schedule (tentative, will be actively updated during semester)

Date

Topics

Materials

Week 1

8/26

8/28

¡¤       Introduction

o   Topics, history, applications, related fields

o   Course logistics

¡¤       Image Formation

o   Camera anatomy

o   Anatomy of cameras

¡¤       Szeliski 1.1, 1.2

¡¤       Szeliski 2.1, 2.2, 2.2, 2.3

Week 2

9/4

¡¤       Review of math and coding (by Kalyan Garigapati)

o   Basic math concept review

o   Tutorial to Google Colab  

Week 3

9/9

9/11

¡¤       Image Formation

o   Photometric image formation

¡¤       Image Processing

o   Point operations

o   Filters, convolution

o   Fourier transformation

¡¤       Quiz 1 (9/11)

¡¤       Szeliski 2.1, 2.2, 2.2, 2.3

¡¤       Szeliski 3.1-3.4

 

Week 4

9/16

9/18

¡¤       Image Processing

o   Image smoothing

o   Image pyramid

o   Geometric transform

o   Image gradient

o   Points, corners, edges

o   Scale and orientation

¡¤       Szeliski 3.4, 3.5, 3.6

¡¤       Szeliski 7.1, 7.2, 7.4, 7.4

 

 

Week 5

9/23

9/25

¡¤       Model Fitting and Optimization

o   Line fitting, robust fitting

o   Hough transform

o   RANSAC

¡¤       Szeliski 4.1, 4.2

¡¤       Szeliski 7.4, 8.1

9/29

¡¤       Homework 1 Due (11:59pm EST)

 

Week 6

9/30

10/2

¡¤       Machine Learning Concepts

o   Supervised learning

o   Unsupervised learning

¡¤       Quiz 2 (10/2)

Week 7

10/7

10/9

¡¤       Elements of perspective geometry

o   Homogeneous coordinates

o   Camera geometry transformations

o   Epipolar geometry

¡¤       Midterm review

¡¤       Szeliski 5.5, 6.3

Week 8

10/16

¡¤       Stereo

o   Stereo viewing

 

10/20

Homework 2 Due (11:59pm EST)

 

Week 9

10/21

10/23

¡¤       Midterm (10/21)

¡¤       Stereo

o   Stereo reconstruction

¡¤       Szeliski 12.1, 12.2, 12.3, 12.4, 12.5, 12.6

¡¤        

Week 10

10/28

11/30

¡¤       Motion estimation and tracking

o   Translational alignment

o   Optical flow

¡¤       Szeliski 9.1, 9.3

 

Week 11

11/4

11/6

¡¤       Recognition

o   Instance recognition

o   Image classification (traditional methods)

¡¤       Deep Learning

o   Deep neural networks

o   Convolutional neural networks

o   Architecture

o   Applications

¡¤       Szeliski 5.3, 5.4, 5.5, 6.2

¡¤       Deep Learning, Goodfellow et al., 2016.

¡¤       Deep Learning Tutorial, Stanford

 

11/10

Homework 3 Due (11:59pm EST)

 

Week 12

11/11

11/13

 

¡¤       Deep Learning Practice

o   Training

o   Data augmentation

¡¤       Quiz 3 (11/13)

¡¤       Szeliski 8.1, 8.2, 8.3

¡¤        

Week 13

11/18

11/20

¡¤       Detection and segmentation

o   Traditional solution

o   Deep learning solutions

o   Semantic segmentation

¡¤       Szeliski 6.3, 6.4

¡¤       End-to-End Object Detection with Transformers, Carion, et al., 2020

¡¤       Segment Anything, Kirillov et al., 2023

11/24

Homework 4 Due (11:59pm EST)

 

Week 14

11/25

¡¤       Vision Transformer

o   Transformer

o   Transformer in computer vision

 

¡¤       Szeliski 5.5

 

Week 15

12/2

12/4

¡¤       Video analytics

o   Video object tracking

o   Activity understanding

¡¤       Quiz 4 (12/4)

¡¤       Final review

¡¤       Szeliski 9.4

 

Week 16

12/9

¡¤       Advanced topic

o   Computer Vision for Science (tentative)

 

12/12

Homework 5 Due (11:59pm EST)

 

12/16

Final Exam, 5:30-8:00pm, Frey Hall 205