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Abstract

A data warehouse is a repository (database) that integrates information extracted from
various remote sources, with the purpose of efficiently supporting decision support queries.
The information stored at the warehouse is in the form of database tables, referred to as
materialized views, derived from the data in the sources. In order to keep a materialized
view consistent with the data at sources, the view needs to be incrementally maintained.
The two important issues that arise in the design of a data warehouse are selection of views
to materialize and incremental maintenance of materialized views. This doctoral thesis
looks at these two design issues and presents comprehensive solutions to both problems.

Selection of views to materialize: We develop a theoretical framework for the
general problem of selection of views in a data warehouse. Given a set of queries to be
supported, the view selection problem is to select a set of views to materialize minimizing
the query response time given some resource constraint. For different resource constraints
and settings, we have designed approximation algorithms that provably return a set of views
having a query benefit within a constant factor of the optimal.

Incremental maintenance of general view expressions: Traditional maintenance
algorithms maintain view expressions in response to changes at the base relations by com-
puting and propagating insertions and deletions through intermediate subexpressions. In
this thesis, we have developed a change-table technique, that computes and propagates
“change-tables” through subexpressions, for incremental maintenance of general view ex-
pressions involving aggregate and outerjoin operators. We show that the presented change-

table technique outperforms the previously proposed techniques by orders of magnitude.
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Chapter 1

Introduction

In a typical organization, there is information stored in multiple, independent, and heteroge-
nous data sources. Business analysts want to run applications that ask complex queries over
these information sources to detect trends in businesses. Functioning as a “data library,” a
data warehouse makes information readily available for querying and analysis. In essence,
a data warehouse extracts, integrates, and stores “relevant” information from independent
information sources into a central database. The information is stored at the warehouse in
advance of the queries. In such a system, user queries can be answered using the information
stored at the warehouse and need not be translated and shipped to the original source(s) for
execution. Also, warehouse data is available for queries even when the original information
source(s) are inaccessible due to real-time operations or updates.

Figure 1.1 illustrates the architecture of a typical data warehouse. The bottom of the
figure depicts the multiple information sources of interest. Near the top of the figure is
the data warehouse, where data that is relevant to the queries to be supported is derived
or copied and integrated. Between the sources and the warehouse lie the source monitors
and the integrator. The monitors are responsible for automatically detecting changes in
the source data, and reporting them to the integrator. The integrator is responsible for
bringing source data into the warehouse, propagating changes in the source relations to the
warehouse, and maintaining the tables at the warehouse. Widom in [Wid95] gives a nice
overview of the technical issues that arise in the different components of a data warehouse.

The information stored at the warehouse is in the form of derived views of data from the
sources. These views stored at the warehouse are often referred to as materialized views.

Materialized views can speed up the execution of many queries. Any query whose execution
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Figure 1.1: A typical data warehouse architecture

plan can be rewritten to use a materialized view is subject to speed-up. For complex queries
involving large volumes of data, the speed-up possible using materialized views is dramatic:
from hours or days down to seconds or minutes. In fact, materialized views are regarded as
one of the primary means for managing performance in a data warehouse [Kim96].

There are several architectural issues concerned with the design of a data warehouse.
One of the most important design problems is to select an appropriate set of materialized
views to store at the data warehouse. Also, in order to keep a materialized view up to
date with the information sources, the view has to be maintained in response to changes
at the sources. As recomputing views is very expensive, we wish to maintain the view
incrementally by calculating the effects of the changes at the sources. This thesis addresses
these design issues, and presents comprehensive solutions to the design problems.

Below, we briefly discuss the problems addressed in this thesis, and present the contri-

butions the thesis makes towards solving them.
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1.1 Selection of Views to Materialize in a Data Warehouse

We are required to support a set of complex queries at the warehouse. To aid answering
the queries efficiently, we materialize a set of views that are “closely-related” to the queries
at the warehouse. We cannot materialize all possible views, as we are constrained by some
resource like disk space, computation time, or maintenance cost. Hence, we need to select an
appropriate set of views to materialize under some resource constraint. The view-selection
problem is defined as selection of views to materialize to minimize the query response time

under some resource constraint.

1.1.1 Contributions and Related Work

In the initial research done on the view-selection problem, Harinarayan, Rajaraman and
Ullman [HRU96] presented algorithms for the view-selection problem in data cubes under
a disk-space constraint. A data cube is a special purpose data warehouse, where there are
only queries with aggregates over the base relation.

In Chapter 2, we present a theoretical framework for the general problem of selection
of views in a data warehouse. We present approximation algorithms for the view-selection
problem arising in various special cases of a general data warehouse, viz. (i) OR view graphs,
where any view can be computed from any one of its related views, e.g., data cubes, and
(i) AND view graphs, where each query/view has a unique evaluation. We extend the
algorithms to the case when there is a set of indexes associated with each view. Finally, we
extend our heuristic to the most general case of AND-OR view graphs.

The work presented in [HRU96] and in Chapter 2 of this thesis has developed approx-
imation algorithms to select a set of structures that minimizes the total query response
time under a given space constraint; the constraint represents the maximum amount of disk
space that can be used to store the materialized views. In practice, the real constraining
factor may be the total maintenance cost incurred by the materialized views due to updates
at the information sources. Thus, in Chapter 3 we address the problem of selecting views
to materialize under the constraint of total maintenance cost. For the special case of “OR
view graphs,” we present an inverted-tree greedy algorithm that provably delivers a near-
optimal solution. For the general case of AND-OR view graphs, we present an A* heuristic
that delivers an optimal solution. We present a performance study of the developed al-

gorithms, which shows the inverted-tree greedy almost always returns an optimal solution
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and outperforms the A* algorithm by orders of magnitude. The resource constraint of total
materialization or computation time of the materialized views is handled in the same way
as the maintenance cost constraint.

Apart from [HRU96], other works on the view-selection problem have been as follows.
Ross, Srivastava, and Sudarshan in [RSS96], Yang, Karlapalem, and Li in [YKL97], Baralis,
Paraboschi, and Teniente in [BPT97], and Theodoratos and Sellis in [TS97] provide vari-
ous frameworks and heuristics for selection of views in order to optimize the sum of query
response time and view maintenance time without any resource constraint. The heuristics
presented in these works are either exhaustive searches or do not have any performance
guarantees on the quality of the solution delivered. In contrast, we have designed approx-
imation algorithms that deliver a provably good solution with a query benefit within a

constant factor of the optimal query benefit.

1.2 Incremental Maintenance of General View Expressions

In order to keep the views in the data warehouse upto date, it is necessary to maintain the
materialized views in response to the changes at the information sources. The views can
be either recomputed from scratch, or incrementally maintained by propagating the base
data changes onto the view. As recomputing the views can be prohibitively expensive, the
incremental maintenance of views is of significant value.

The problem of finding such changes at the views based on changes to the base rela-
tions has come to be known as the view maintenance problem and several algorithms have
been proposed over the recent years for incremental maintenance of view expressions. How-
ever, none of the proposed algorithms handle the general case view expressions involving
aggregate and outerjoin operators efficiently.

In Chapter 4, we develop a new change-table technique for incremental maintenance of
general view expressions. All the previously proposed algorithms on incremental mainte-
nance work by computing and propagating insertions and deletions at intermediate subex-
pressions. In contrast, the change-table technique computes and propagates “change-
tables.” We show that the presented change-table technique outperforms the previously

proposed techniques by orders of magnitude.
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1.3 Thesis Organization

The rest of the thesis is organized as follows. In the next chapter, we address the problem
of selecting views to materialize in a data warehouse under the constraint of disk space.
Chapter 3 looks at the view-selection problem under a maintenance-cost constraint. In
Chapter 4, we address the problem of incremental maintenance of general view expressions
and develop the framework for the change-table technique. We end with future directions

and conclusions in Chapter 5.



Chapter 2

Selection of Views to Materialize

2.1 Introduction

Decision support systems are rapidly becoming a key to gaining competitive advantage for
businesses. Business analysts running the decision support applications want to detect busi-
ness trends by mining the data stored in the information sources. Typically, the information
sources in data warehouses maintain historical information, and hence the databases tend
to be very large and grow over time. Also, decision support applications are typically in-
terested in identifying trends rather than looking at individual records in isolation. Thus,
decision-support queries make heavy use of aggregations and are very complex.

The size of the information source databases and the complexity of queries can cause
queries to take very long to complete. This delay is unacceptable in most decision support
environments, as it severely limits productivity. The usual requirement is query execution
times of a few seconds or a few minutes at the most. There are many ways to achieve such
performance goals. Query optimizers and query evaluation techniques can be enhanced to
handle aggregations better [CS94, GHQ95, YL95], and one can also use different indexing
strategies like bit-mapped indexes and join indexes [OG95].

A commonly used technique in data warehouses is to materialize (precompute) fre-
quently asked queries. The data warehouse at the Mervyn’s department-store chain, for
instance, has a total of 2400 precomputed tables to improve query performance. Picking
the right set of queries to materialize is a nontrivial task, since by materializing a query we
may be able to answer other queries quickly. For example, we may want to materialize a

query that is relatively infrequently asked if it helps us answer many other queries quickly.
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Moreover, we could also materializes other tables that are not queries but nevertheless help
in answering the queries efficiently. In this chapter, we present a framework and algorithms
that enable us to pick a good set of tables to materialize.

The problem of selecting an appropriate set of views to materialize is one of the most
important design decisions in designing a data warehouse. Given some resource constraint,
the problem is to select a set of derived views to minimize total query response time and
the cost of maintaining the selected views. We refer to this problem as the view-selection
problem. 1In this chapter, we concentrate only on disk-space as resource constraint. We
address the view-selection problem under other resource constraints in the next chapter.

In this chapter, we develop a theoretical framework for the general problem of selecting
views to materialize in a data warehouse. We present competitive polynomial-time heuristics
for selection of views to optimize total query response time, for some important special cases
of the general data warehouse scenario, viz.: (i) an OR view graph, in which any view can be
computed from any one of its related views, e.g., data cubes, and (ii) an AND view graph,
where each query/view has a unique evaluation. We extend the algorithms to the case when
there is a set of indexes associated with each view. Finally, we extend our heuristic to the
most general case of AND-OR view graphs. The work presented in this chapter appears in
[Gup97] and [GHRU97].

The rest of the chapter is organized as follows. In the next section, we develop a
theoretical framework for the view-selection problem. The problem can be easily shown to
be NP-complete even for some very simple cases. In the following two sections, we present
and analyze heuristics for two special cases, viz: i) OR view graphs in which any view can
be computed from any one of its related views, and ii) AND view graphs, where each view
has a unique evaluation. For each of these cases, we extend the algorithms to a more general
case when there are index structures associated with the views. In Section 2.5, we present
an algorithm for the general view-selection problem in a data warehouse. Finally, we end

with concluding remarks in Section 2.6.

2.2 View-Selection Problem Formulation

2.2.1 AND-OR View Graphs

In this subsection, we develop a notion of an AND-OR view graph, which is one of the

inputs to the view-selection problem. We start by defining the notions of expression DAGs
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for queries or views.

Definition 1 (Expression AND-DAG) An ezpression AND-DAG for a query or a view
V is a directed acyclic graph having the base relations as “sinks” (no outgoing edges) and
the node V' as a “source” (no incoming edges). If a node/view u has outgoing edges to
nodes v, vs,...,vs, then all of the views vy, vs,...,v; are required to compute u. This
dependence is indicated by drawing a semicircle, called an AND are, through the edges
(w,v1), (w,v3), ..., (u,vr). Such an AND arc has an operator! and a cost associated with

it, which is the cost incurred during the computation of u from vy, v, ..., vg. O

Figure 2.1: a) An expression AND-DAG, b) An expression ANDOR-DAG

An example of an expression AND-DAG is shown in Figure 2.1(a). Expression AND-
DAGs are more commonly referred to as “expression trees.” One inherent drawback of
expression AND-DAGs is that they do not depict alternative ways of evaluating a view.
The expression ANDOR-DAG, defined next, is a more general notion, which overcomes this
shortcoming. An expression ANDOR-DAG may have more than one AND arc at each node,
making it an AND/OR expression DAG.

Definition 2 (Expression ANDOR-DAG) An ezpression ANDOR-DAG for a view or
a query V is a directed acyclic graph with V' as a source and the base relations as sinks.

Each nonsink node has associated with it one or more AND arcs, each binding a subset of

!The operator associated with the AND arc is actually a k-ary function involving operations like join,
union, aggregation etc.
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its outgoing edges. As in the previous definition, each AND arc has an operator and a cost
associated with it. More than one AND arc at a node depicts multiple ways of computing

that node. O

Figure 2.1 shows an example of an expression AND-DAG as well as an expression
ANDOR-DAG. In Figure 2.1 (b), the node a can be computed either from the set of views
{b,c,d} or {d,e, f}. The view a can also be computed from the set {j, k, f}, as d can be

computed from 7 or k£ and e can be computed from k.

Definition 3 (AND-OR View Graph) A directed acyclic graph GG having the base rela-
tions as the sinks is called an AND-OR view graph for the views (or queries) Vi, Va, ..., Vi
if for each V;, there is a subgraph? & in G that is an expression ANDOR-DAG for V;. Each
node v in an AND-OR view graph has the following parameters associated with it: space
Sy, query-frequency f, (frequency of the queries on v), update-frequency g, (frequency of

updates on v), and reading-cost R, (cost incurred in reading the materialized view v). O

Note that in an AND-OR view graph, if a view v can be computed from vy, vs,..., v,
and a view u can be computed from the views v, uq, ug, ..., ux, then the view u can also be
computed from wuq, ug, ..., ug, v1,v2,..., 0.

Definition 4 (Evaluation Cost) The evaluation cost of an AND-DAG H embedded in
an AND-OR view graph G is the sum of the costs associated with the AND arcs in H, plus

the sum of the reading costs associated with the sinks/leaves of H. O

2.2.2 Constructing an AND-OR View Graph

Given a set of queries @1, @2, . . ., @ to be supported at a warehouse, we construct an AND-
OR view graph for the queries as follows. We first construct an expression ANDOR-DAG
D; for each query ); in the set. An AND-OR view graph G for the set of queries can then
be constructed by “merging” the expression ANDOR-DAGs Dy, Ds, ..., Di. Each node in
the AND-OR view graph GG will represent a view that could be selected for materialization,

2An AND-OR view graph H is called a subgraph of an AND-OR view graph G if V(H) C V(G),
E(H) C E(G), and each edge e; in H is bound with the same set of edges through an AND-arc as it is
bound through an AND-arc in G. That is, if e1,e2 € E(G), e1 € E(H), and e; and ez are bound by an
AND-arc (which may bind other edges too) in G, then e; € E(H), and e; and ez are bound with the same
AND-arc in H. For example, Figure 2.1 (a) is a subgraph of Figure 2.1 (b), but Figure 2.1 (a) without the
edge (c, h) is not.
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and these are the only views considered for materialization. The space parameter S, for a
view v can be determined by computing the expected number of tuples in the view. The
query and update frequencies are computed based on the query and update requirements
of the data warehouse.

For a query @); we construct its expression ANDOR-DAG D; to consist of alternative
“useful” ways of evaluating ); from the given base relations, in the presence of other
queries/views. Roussopoulos in [Rou82a] considers exactly this problem. The objective of
his analysis is to identify all possible (useful) ways to produce the result of a view, given

other view definitions and base relations.

2.2.3 The View-Selection Problem

Given an AND-OR view graph G and a quantity S (available space), the view-selection
problem is to select a set of views M, a subset of the nodes in G, that minimizes the total
query response time, under the constraint that the total space occupied by M is less than
S.

More formally, let Q(v, M) denote the cost of answering a query v (also a node of G)
using the set M of materialized views in the given view graph G, and UC'(v, M)? be the
maintenance cost (due to updates to base tables) for the view v in the presence of the set
of materialized views M. We will always assume that the set of sinks L is also available for
querying and maintenance purposes. Then, given an AND-OR view graph G for queries
Q@1,...,Qr and a quantity S, the view-selection problem is to select a set of views/nodes

M ={V1, Va3, ..., V,,}, that minimizes 7(G, M), where

k m

=1 i=1
under the constraint that ) 5,5, < S. Recall that S, is the space occupied by the view
v.
The view-selection problem is NP-hard even for the special case of an AND-OR graph
where each AND arc binds exactly one edge, and the update frequencies are zero. There is

a straightforward reduction from minimum set cover.

Computing Q(v,M) The cost of answering a query v in presence of a set of (material-

ized) views M, Q(v, M), in an AND-OR view graph G is actually the evaluation cost of the

3The function symbol UC denotes update cost.
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cheapest AND-DAG H, for v, such that H, is a subgraph of G and the sinks of H, belong
to the set M U L, where L is the set of sinks in G. Again, we have assumed that L, the
set of sinks in (, is available for computation as it represent the set of base tables at the
source(s). Thus, the value (v, ¢) is the cost of answering a query on v directly from the
source(s). In the special case of OR view graphs, (v, M) is the minimum query-length of
a path from v to some u € (M U L), where the query-length of a path from v to u is defined
as Ry, the reading cost of u, plus the sum of the query-costs associated with the edges on
the path.

In this chapter, we have ignored maintenance costs except in the Section 2.4.3. Hence,
we defer the discussion on maintenance cost models and how to compute UC'(v, M) until the
next chapter. The computation of @ (v, M) and UC(v, M) in OR view graphs is illustrated
further in Example 3.

2.2.4 Benefit of a Set of Selected Views

In this subsection, we define the notion of a “benefit” function, which is central to the
development of algorithms presented in this chapter. In the following two sections, we
will present approximation algorithms for some special cases of the general view-selection
problem.

Let C' be an arbitrary set of views in a view graph G. The benefit of C with respect to
M, an already selected set of views, is denoted by B(C, M) and is defined as 7(G, M) —
(G, M UC), where 7 is the function defined above. The benefit of C' per unit space with
respect to M is B(C', M)/S(C), where S(C) is the space occupied by the views in C. Also,
B(C, ¢) is called the absolute benefit of the set C.

Monotonicity Property

The benefit function B is said to satisfy the monotonicity property for M with respect to
sets (of views) Oy, 0y, ...,0p if B(O1UO;...UO,,, M) < Y '=7" B(O;, M)A

The monotonicity property of the benefit function is important for the greedy heuristics
to deliver competitive (within a constant factor of optimal) solutions. For a given instance
of AND-OR view graph, if the optimal solution O can be partitioned into disjoint subsets

of views O1,0g,...,0,, such that the benefit function satisfies the monotonicity property

*Considering m = 2 is sufficient, but we state it for general m so that its application is direct.
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w.r.t. 01,03, ...,0y, then we guide the greedy heuristic to select, at each stage, an optimal
set (of views) of type that includes O; for all i < m. Such a greedy heuristic is guaranteed

to deliver a solution whose benefit is at least 63% of the optimal benefit, as we show later.

2.3 OR View Graphs

In this section, we consider a special case of the view-selection problem for AND-OR view
graphs. We restrict our attention to those AND-OR view graphs in which each AND arc
binds exactly one edge. For such restricted AND-OR view graphs, we can remove AND
arcs altogether, and associate the costs and the operators with the corresponding edges in
the graph. We call such a AND-OR view graph G an OR view graph, where a node can be

computed from any one of its children.

2.3.1 Motivation

The OR view graphs arise in many useful practical applications when computation of a view
depends on only one other view. A simple application is when all the views and queries
involved are aggregate queries over the base data. Data cubes is another example of OR

view graphs.

Data Cubes In a data cube users can view the data as multidimensional data. Data
cubes are databases where a critical value, e.g., sales, is organized by several dimensions,
for example, sales of automobiles organized by model, color, day of sale, place of sale, age of
purchaser and so on. The metric of interest is called the measure attribute, which is sales in
the above example. Queries in such a system are of the OLAP (On line Analytic Processing)
type, usually asking for a breakdown of sales by some of the dimensions. Therefore, we
can associate an aggregate view, called a cube, V,, with each subset o of the dimensions. A
view V, is essentially a result of a “Select o, Sum(sales); group by o” SQL query over the
base table. Hence, an aggregate view V,, can be computed from a view Vg iff o C 3.

In a data cube, the AND-OR view graph is an OR view graph, as for each view there
are zero or more ways to construct it from other views, but each way involves only one other
view. Data cubes being a special case of OR view graphs, all the results developed in this
section apply to data cubes. As OLAP databases have very few or no updates at the base

table, we assume that there are no maintenance costs at the materialized views throughout
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this section.

2.3.2 Selection of Views in an OR View Graph

In this subsection, we present heuristics for solving the view-selection problem in OR view

graphs without maintenance costs.

Problem: Given an OR view graph G without updates and a quantity S , find a set of
views M that minimizes the quantity 7(G, M), under the constraint that the total space

occupied by the views in M is at most S.

Greedy Algorithm

We present a simple greedy heuristic for selecting views. At each stage, we select a view
which has the maximum benefit per unit space at that stage. The greedy heuristic is

presented below as Algorithm 1.

Algorithm 1 Greedy Algorithm

Given: GG, an AND-OR view graph, and S, the space constraint.
BEGIN
M = ¢; /* M = set of structures selected so far. */
while (S(M) < 5)
Let C be the view which has the maximum benefit per unit space
with respect to M.
M=MUC;
end while;
return M;

END. <

The running time of the greedy algorithm is O(kn?), where n is the number of nodes in the

graph and k is the number of stages used by the algorithm.

Observation 1 In an OR view graph without updates, the benefit function B satisfies the

monotonicity property for any M with respect to arbitrary set of views O1,049,...,0,.
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Theorem 1 For an OR view graph G without updates and a quantity S, the greedy algo-
rithm produces a solution M that uses at most S + r units of space, where r is the size of
the largest view in G. Also, the absolute benefit of M is at least (1 —1/€) times the optimal

benefit achievable using as much space as that used by M.

Proof: It is easy to see that the space used by the greedy algorithm solution, S(M), is at
most S + r units. Let £ = S(M). Let the optimal solution using & units of space be O and
the absolute benefit of O be B.

Consider a stage at which the greedy algorithm has already chosen a set G; occupying [
units of space with “incremental” benefits ay, aq, ..., a;. Incremental benefit a; is defined as
the increase in benefit of M, when the i** unit of space is added to M. Thus, the absolute
benefit of G} is Zi»:l a;. Surely the absolute benefit of the set OUG] is at least B. Therefore,
the benefit of the set O with respect to G, B(O,G)), is at least B — St ;.

Let O = {O4,03,...,0,,}. By the monotonicity property of the benefit function for the
views O;’s, B(O,G)) < Y, B(O;,Gp). Now, we show by contradiction that there exists
a view O; in O such that B(O;,G1)/|0;| > B(O,G))/k. Let us assume that there is no
such view O; in O. Then, B(O;,G)) < (B(O,G))/k) * |O;| for every view O; € O. Thus,
20,e0 B(O;,G1) < (B(O,G1)/k)*X.0,c0 |0il = B(O, G1), which violates the monotonicity
property of the benefit function for the views O; € O. Therefore, there exists a view O; in
O such that B(O;,G})/|0i] > B(O,G1)/k > (B - YL, a;)/k.

The benefit per unit space with respect to GG; of the view C selected by the algorithm
is at least that of O;, which is at least B(O,G)/k = (B — Y_\_, a;)/k, as shown above.
Distributing the benefit of C' over each of its unit spaces equally (for the purpose of analysis),
we get ajy; > (B — Y0 a;)/k, for 0 < j < S(C). As the above analysis is true for each
view C' selected at any stage, we have

7—1
ngaj+2ai for 0 < j<k.
i=1
Multiplying the j** equation by (kk;l)k_j and adding all the equations, we get
A/B>1- (5% >1-1/e, where A = Sk | a; is the absolute benefit of M. x

Feige in [Fei96] showed that the minimum set-cover problem cannot be approximated
within a factor of (1—o0(1)) Inn, where n is the number of elements, using a polynomial time
algorithm unless P = N P. There is a very natural reduction of the minimum set-cover

problem to our problem of view selection in OR view graphs. The reduction shows that no
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polynomial time algorithm for the view-selection problem in OR view graphs can guarantee

a solution of better than 63% for all inputs unless P = NP [Che96].

Greedy-Interchange Algorithm

We present another heuristic called the “greedy-interchange” algorithm, which starts with
the solution produced by the greedy algorithm (Algorithm 1) and then improves the solu-
tion by interchanging a view already selected with some view not selected.® It iteratively
performs such interchanging until the solution cannot be improved any further by an inter-

change. We present the Greedy Interchange Algorithm below as Algorithm 2.

Algorithm 2 Greedy-Interchange Algorithm

Given: GG, an AND-OR view graph, and S, the space constraint.
Assume that all views occupy the same amount of space.
BEGIN
Run the greedy algorithm and let M be the solution returned.
repeat
Let (C1,C3) be a pair of views such that C; € M and Cy ¢ M and the
absolute benefit of (M — C}) U} is greater than that of M.
M= (M - Cy)UCy;
until (no such pair (Cq,C}) exists);
return M;

END. <

Unfortunately, not much can be proved about the competitiveness of the solution pro-
duced by the greedy-interchange algorithm except that it is obviously at least as good as
the greedy algorithm. Moreover, the running time of the greedy-interchange algorithm is
unbounded. We believe that the greedy-interchange algorithm in practice would perform
much better than the greedy algorithm.

Cornuejols et al. in [CFN77] show for their similar facility location problem through
extensive experiments that in most cases the running time of greedy-interchange is a little
less than 1.5 times the running time of the greedy algorithm, and that it returns a much

better solution than that returned by the greedy algorithm.

SWhen views occupy different amounts of space, more than one view may have to be added/removed.



CHAPTER 2. SELECTION OF VIEWS TO MATERIALIZE 16

2.3.3 OR View Graph with Indexes

In this section, we generalize the view-selection problem in an OR view graph by introducing
indexes for each node/view. As in the original OR view graph, a node can be computed
from any one of its children, but in the presence of indexes the cost of computation depends
upon the index being used to execute the operation. As indexes are built upon their
corresponding views, an index can be materialized only if its corresponding view has already
been materialized. Thus, selecting an index without its view does not have any benefit, and
the benefit of an index actually increases with the materialization of its view. Hence, the
benefit function may not satisfy the monotonicity property for arbitrary sets of views and
indexes. We use the term structure to denote a view or an index. We assume that if an
index is not materialized, then it is never “computed” while answering user queries.

In most commercial systems today, the views that are to be precomputed are selected
first, followed by the selection of the appropriate indexes on them. A trial-and-error ap-
proach is used to divide the space available between the summary tables and the indexes.
This two-step process can perform very poorly. Since both views and indexes consume the
same resource - space - their selection should be done together for the most efficient use of
resouces. In this section, we present a family of algorithms of increasing time complexities,
and prove strong performance bounds for them.

We need to introduce a slightly different cost model for the OR view graphs with indexes.
In an OR view graph with indexes, there may be multiple edges from a node u to v, possibly
one for each index of v. Instead of associating a cost with the edges, we associate a label
(2,t;) with each edge from w to v. The label ¢;(i > 0) can be thought of as the cost incurred
in computing u from v using its i** index. When i = 0, is the cost in computing u from

v without any of its indexes.

Problem: Given a quantity .S and an OR view graph G with indexes. Associated with
each edge is a label (4,%;),7 > 0 as described above. Assume that there are no updates.
Find a set of structures M that minimizes the quantity 7(G, M), under the constraint

that the total space occupied by the structures in M is at most S.

The r-Greedy Algorithm

The r-greedy algorithm executes in a number of stages. Lets consider a stage when the set

of structures M has already been selected for materialization. At this stage, the r-greedy
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algorithm considers for selection all sets of at most r structures that consist either of
e A view and some of its indexes, or

e A single index whose view has already been selected in one of the previous stages.

Among all the considered sets, the set that has the maximum benefit per unit space with
respect to M is finally selected for materialization at this stage. The r-greedy algorithm
has a good performance guarantee when each structure occupies the same amount of space.

Algorithm 3 shows the r-greedy algorithm.

Algorithm 3 r-Greedy Algorithm

Given: GG, an AND-OR view graph, and S, the space.
BEGIN
M = ¢; /* M = set of structures selected so far. */
while (S(M) < 5)
Look at all sets of one of the following forms:
o {vi,lij, Lij,, ..., i, }, such that v; g M, I;;, ¢ M for 1 <[ <p,and 0 <p <,
or
e {I;;}, such that v; is in M, and [;; ¢ M.
Among these sets, let C' be the set that has the maximum benefit per unit space
with respect to M.
M=MUC;
end while;

return M;

END. <

Suppose there are v views and each view has at most 7 indexes. Then at each stage, the
r-greedy algorithm must consider and calculate the benefit of at most vi + ,U<7“i1) possible
sets. Hence an upper bound on the running time of the algorithm is O(km"), where m is the
number of structures in the given AND-OR view graph and k is the number of structures

selected by the algorithm, which is S in the worst case.

EXAMPLE 1 We illustrate the working of the r-greedy algorithm through a simple ex-
ample.
Consider the OR view graph shown in Figure 2.2. For illustration, we assume that the

only candidate views for materialization are the nodes at the bottom, and the only queries
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to be supported are the nodes on the top. The queries have uniform query frequencies. We
assume that the default cost of answering a query is 100 units, using the base relations (not
shown in the figure). We have assigned a space cost of 1 unit to each of the indexes and
views. Let the value of S be 7 units.

Let us see how the r-greedy algorithm works on the example for different values of r.

1. 1-greedy: Initially, the absolute benefit of every index is zero. Absolute benefits of
the views in order of their subscripts are viz. 0, 0, 4, 6, and 7. Hence, at the first
stage the 1-greedy algorithm selects V5. Except for the indexes of Vj, the benefits of
all views and indexes with respect to M = {V5} remain the same as their absolute
benefits. The benefit of each index of V5 with respect to M becomes 7. Hence, the 1-
greedy algorithm choses one by one all the indexes of V5 in the later stages, followed by
V3 and Vy. Thus, the solution returned by 1-greedy is {Vs, Is1, I52, I5 3, I5 4, V3, Va},
with an absolute benefit of 45.

2. 2-greedy: In the first stage, the 2-greedy algorithm selects C' = {V;, I 1} which has
an absolute benefit of 10 x 9 = 90. The benefit of {V;, I ;} for any ¢ < 8 with respect
to C'is 40 (i.e., 20 per unit space). Hence, {Vy, 41}, whose benefit with respect to C'
is 42 (i.e., 21 per unit space), gets selected in the second stage. In the later stages, the
other indexes of V, get selected one by one. Thus, the solution returned by 2-greedy
is {Vi, I .1, Va, Is1, 142, 14,3, 14,4} with an absolute benefit of 195.

3. 3-greedy: Asin the 2-greedy case, the first stage of the 3-greedy algorithm selects C' =
{V1, 111}, with the absolute benefit of 90. The second stage may select {V5, I5 1, 52},
having a benefit of 80 with respect to C' (i.e., 26.7 per unit space), as the benefit of V3
with any two of its indexes is also 80 with respect to C' (i.e., 26.7 per unit space). The
structures selected in the later stages are I3 3, and I34. Thus, the solution returned

by 3-greedy is {V1, 11,1, V3, I31, 132, I33, I3 4}, which has an absolute benefit of 224.

4. Optimal Solution: It is not difficult to see that the optimal solution for the given

example is {V3, I31, [22, [2.3, [2.4, I2 5, I2 6}, having an absolute benefit of 300.
O

Theorem 2 In the case when each structure occupies a unit of space, the r-greedy algorithm

produces a solution M that uses at most S+ r — 1 units of space. Also, the absolute benefit
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of M is at least (1 — 1/6(’"_1)/”) times the optimal benefit achievable using as much space

as that used by M.

Proof: It is easy to see that the solution M produced by the r-greedy algorithm has at
most S + r — 1 structures. Let k = |M]|. Let the optimal solution containing k structures
be O and the absolute benefit of O be B.

Consider a stage at which the r-greedy algorithm has already chosen a set (G; having
[ structures with incremental benefits aq, a9, as,...,a;. The absolute benefit of G is thus
Zi»:l a;. Surely the absolute benefit of the set O U (| is at least B. Therefore, the benefit
of the set O with respect to Gy, B(O,GY), is at least B — S>4_, a;.

Without loss of generality, we can assume that the optimal set O doesn’t contain any
index whose corresponding view is not in O. Hence, if O contains m views, it can be
split into m disjoint sets O1,03,...,0,, such that each O; consists of a view and its
indexes in O. Then, by the monotonicity property of the benefit function for the sets O;’s,
B(O,G)) <Y, B(O;,Gh). Asin Theorem 1, it is easy to show by contradiction that there
exists an O; such that B(O;,G1)/|0;] > B(O,G))/k (else B(O,Gp) > >, B(O;, GY)).

Now, consider the best r-subset (a set having at most r structures) O, of such an

O;. Tts benefit per unit space with respect to Gy is at least (“=1)(:21)(B(0:, G1)/|0:)),

r

which happens when |O;| = k, the benefit of the view in O; is zero, and the rest of the

benefit is equally divided among the k — 1 indexes. Let, & = (=1)(:&;). As O, (or its

best subset) is also considered for selection at this stage of the r-greedy algorithm, the

benefit per unit space with respect to G of the set C' selected by the algorithm is at least
K B(O;,G) /|0 > K'(B(O,Gy)/k) > k(B — Y\, a;)/k. Note that O. may contain some
structures from Gy, but the argument still holds. Distributing the benefit of C over each
of its structures equally (for the purpose of analysis), we get a;4; > k(B — Zi»:l a;)/k, for
0 < j <|C|. As the above analysis is true for each set C' selected at any stage, we have

_k’ ZaZ for 0 <j<k.

Let k" = k/E'. Multiplying the j** equation by ( 1)%=J and adding all the equations,

we get A/B>1-— (k/];—,_,l)k, where A = Y- | a; is the absolute benefit of M. This implies

A/B>1— (EZL)FHF > 1 1/ek > 1 - 1/e=1/r, .

We have come up with instances of the problem for which the r-greedy algorithm per-

forms as bad as the worst case bound of 1 — 1/e(r=1/,
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Inner-Level Greedy Algorithm

The inner-level greedy algorithm works in stages. At each stage, it selects a subset €', which
consists of either a view and some of its indexes selected in a greedy manner, or a single
index whose view has already been selected in one of the previous stages.

Each stage can be thought of as consisting of two phases. In the first phase, for each
view v; we construct a set I(G; which initially contains only the view. Then, one by one
its indexes are added to IG; in the order of their incremental benefits until the benefit per
unit space of IG; with respect to M, the set of structures selected till this stage, reaches
its maximum. That I'G; having the maximum benefit per unit space with respect to M is
chosen as C'. In the second phase, an index whose benefit per unit space is the maximum
with respect to M is selected. The benefit per unit space of the selected index is compared

with that of €', and the better one is selected for addition to M. See Algorithm 4.

Algorithm 4 Inner-Level Greedy Algorithm

Given: (G, a view graph with indexes, and S, the space constraint.

BEGIN
M = ¢; /*x M = Set of structures selected so far x/
while (S(M) < 5)
C = ¢; /* Set of structures to be selected */
for each view v; in M
I1G = {v;};
/* IG = Set of v; and some of its indexes selected in a greedy manner. */
while (S(IG) < 9) /* Construct IG */
Let ;. be the index of v; whose benefit per unit space w.r.t. (M U IG) is
maximum.
1G=1GU I

end while;
if (B(IG,M)/S(IG) > B(C,M)/|C|)or C' = ¢
C = IG;
end for;
for each index I;; such that its view v; € M

if B(I,;, M)/S(I;;) > B(C, M)/S(C)
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C=A{1l};
end for;
M =MUC;
end while;

return M;

END. <

The running time of the inner-level greedy algorithm is O(k*m?), where m is the total
number of structures in the given OR view graph and £ is the maximum number of structures

that can fit in S units of space, which in the worst case is S.

EXAMPLE 2 We illustrate the working of the inner-level greedy algorithm for the exam-
ple in Figure 2.2.

As the absolute benefit per unit space of V, with at most six of its indexes is 300/7,
less than 43, the algorithm selects {V4, I1 1}, whose absolute benefit is 90 (i.e., 45 per unit
space) in the first stage. In the next stage, the algorithm selects V3 and six of its indexes
with an “incremental” benefit of 240 (i.e., 34.3 per unit space). Thus, the solution returned
by the inner-level greedy is {Vi, I1 1, Vo, 121, I2,2, 12,3, I2,4, 12,5, 2 6} with an absolute benefit
of 330. Note that the size of the solution returned is 9 units, slightly more than the given
space limit. The optimal solution using 9 units of space is V5 with its eight indexes, having

an optimal benefit of 400. a

Observation 2 In an OR view graph with indexes and without updates, the benefit function
B satisfies the monotonicity property for any M with respect to arbitrary sets of structures

01,049, ...,0,,, where each O; consists of a view and some of its indezes.

Theorem 3 For an OR view graph with indexes and a given quantity S, the inner-level
greedy algorithm (Algorithm 4) produces a solution M that uses at most 25 units of space.
Also, the absolute benefit of M is at least (1 — 1/e%%3) = 0.467 of the optimal benefit
achievable using as much space as that used by M, assuming that no structure occupies

more than S units of space.

Proof: It is easy to see that S(M) < 2S. Let k = |M]|. Let the optimal solution be O,
such that S(O) = k and the absolute benefit of O be B.
Consider a stage at which the inner-level greedy algorithm has already chosen a set G

occupying [ units of space with incremental benefits a1, as, ¢s.....a;. The absolute benefit of
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the set OUG] is at least B. Therefore, the benefit of the set O with respect to G, B(O, G),
is at least B — Yo, a;.

If O contains m views, it can be split into m disjoint sets Oy, O, ..., O, such that each
O; consists of a view V; and its indexes in O. By the monotonicity property of the benefit
function w.r.t. the sets Oq,...,0,, B(O,G;) < 3", B(O;,G}). Now, it is easy to show
by contradiction that there exists at least one O; such that B(O;,G;)/S(0;) > B(O,G))/k
(else B(O,Gy) > Yo%, B(O;,Gh)).

In this paragraph, we show that the benefit per unit space of the set C, selected by the
inner-level greedy algorithm at this stage, is at least 0.63 times B(O;, G)/S(0O;). Without
loss of generality, we assume that the view V; in O; has not been selected.® Consider the
greedy solution G of the indexes of V; of space S(O;) — S(Vi), when G;UV; has already been
selected. The benefit of G is at least 63% of the optimal, from the result of Theorem 1.
Hence,

B(G,G1U{V;}) > 0.63B(O; — {V;},G U {V.}),
as O; — {V;} is also a solution (possibly non-optimal). Now,
B(Gu{V;},G)) = B(Vi,Gi)+ B(G,GiU{V;})
> B(Vi,Gi) +0.63B(0; — {Vi}, G1U{Vi})
> 0.63B(OZ', Gz)

As the inner-level greedy algorithm, while selecting indexes greedily, stops when the benefit
per unit space of C becomes maximum, the benefit per unit space of C' is at least that of

G U{V;}. Therefore,

B(C,G))/|C] = B(GU{Vi},Gi)/S(0))
> 0.63B(OZ',G1)/S(OZ’)
> 0.63B(O,G))/k
> 0.63(B— : a;)/k.

=1

Let k' = 0.63. Distributing the benefit of C' over each of its unit spaces equally (for the
purposes of analysis), we get ajy; > k(B — i, a;)/k, for 0 < j < S(C). As the above

analysis is true for each set C' selected at any stage, we have

SIf the view V; € O; has already been selected, then C is at least as good as O;’s best index not yet
selected. In that case, the benefit per unit space of C is obviously at least B(O;, G1)/S(0;).
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kool _
Bgyaj—l—zai for 0 < 5 <k.
=1

Let k" = k/K'. Multiplying the j** equation by (k,];;l)k_j and adding all the equations,
we get A/B > 1— (kl;cﬁl)k >1- (kl;cﬁl)k”kl >1-1/e"%3 where A = 3% | a; is the absolute
benefit of M. -

2.4 AND View Graph

In this section, we consider another special case of the view-selection problem in AND-OR
view graphs. Here, we assume that each AND arc binds all the outgoing edges from a
node. This case depicts the simplied scenario where each view has a unique way of being
computed. We call such a graph G an AND view graph, where a node is computed from all
of its children. As before, each AND arc has an operator and a cost associated with it. An
AND view graph for a set of queries is just a “merging” of the expression AND-DAGs of the
queries. The proofs of the theorems in this section are similar to that of the corresponding

theorems in Section 2.3.

2.4.1 Motivation

The general view-selection problem can be approximated by this simplified problem of
selecting views in an AND view graph. Given a set of queries supported at the warehouse,
instead of constructing an AND-OR view graph as in Section 2.2.2, we could run a multiple
query optimizer [Sel88, CM82] to generate a global plan, which is essentially an AND view
graph for the queries. Such a global plan takes advantage of the common subexpressions
among the queries. Figure 2.4.1 shows an example of an AND view graph, a global plan,

for the queries R XS XT and R XS XU.

2.4.2 View Selection in an AND View Graph

In this subsection, we show that the greedy algorithm can also be applied to solve the view-
selection problem in AND view graphs without maintenance costs. In the later subsection,

we extend it to a special case of AND view graphs with maintenance costs.
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Figure 2.3: (a) An AND view graph, (b) An AND-OR view graph, for the queries R X S X T’
and R X S XU

Problem: Given an AND view graph G and a quantity S, find a set of views M that
minimizes the quantity 7(G, M), under the constraint that the total space occupied by the

views in M is at most S. Assume that there are no updates.

Observation 3 In an AND view graph without updates, the benefit function B satisfies the

monotonicity property for any M with respect to arbitrary sets of views O1,03,...,Op,.

Using the above observation, the proof of the following theorem is same as that of

Theorem 1.

Theorem 4 For an AND view graph G without updates and a given quantity S, the greedy
algorithm produces a solution M that uses at most S+r units of space, where r is the size of
the largest view in G. Also, the absolute benefit of M is at least (1 —1/€) times the optimal

benefit achievable using as much space as that used by M. -

2.4.3 Incorporating Maintenance Costs

Unfortunately, the benefit function may not satisfy the monotonicity property when there

are maintenance costs. To illustrate the nonmonotonicity of the benefit function, consider
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a view (1 that helps in maintaining another view 5. Then, the benefit of C7 U Cy might
be more than the sum of their benefits individually.

We show that when the update frequency at any node/view is less than its query fre-
quency, i.e., when the number of times a view is updated (number of batch updates) is less
than than the number of times it is queried, the benefit function does satisfy the monotonic-
ity property with respect to single views. Thus, for this special case of AND view graph,
the solution returned by the greedy algorithm is guaranteed to have a benefit of at least

63% of the optimum benefit.

Lemma 1 In an AND view graph, B(v,¢) > B(v, M) for any view v and a set of views
M, if the update frequency g, at any view z is less than its query frequency f,.

Proof: Let A be the set of ancestors of v, including v, in the AND view graph G. Let
My = MNA. Let Ap be the set of those ancestors of v which do not have any descendants
in the set M4. For any z € A, we have Q(z,¢) — Q(z,v) = Q(v,¢). Therefore,

B(U7¢) = Zfr(Q(‘rvgb)_Q(*r?U))_ngC(v?v)

r€A

= Z fIQ(Uv ¢) - gUUC(U, U) as T € A.

r€A

Now consider B(v, M). When M has already been materialized, v reduces then query costs
of only the nodes in Ap. Also, materialization of v also helps in reducing the maintenance

costs of nodes in M 4. Therefore,

Bw,M) = Y [u(Qla, M) - Q(z, MU {v})) - ,UC(v, MU {v})

rE€Ap
+ Y 9.(UC(x,M) - UC(z, M U{v}))
rEM 4

Now  Q(v,¢) > Qv,M)>UC(z,M)—-UC(z, MU {v}) for any z € My,
and  Q(v,M) = Q(z,M)—-Q(z,MU{v}) for any z € Ap.
Thus, B(o,M) < Y £Q(o,M) - gUCw M+ Y 0.Q(0,9)

r€Ap rEM 4

< D Qv M) — g, UC(o, M)+ Y foQ(v,9) as gz < fo.

IEAD l?EMA



CHAPTER 2. SELECTION OF VIEWS TO MATERIALIZE 27

B(v,¢) — B(v, M)

v

v

v

v

v

Z sz(U, ¢) - QUUC(Uv U)

z€A
—ZfI (v, M)+ g,UC(v, M) — Zfa:
zE€EApD zEM 4
Efx@(v7¢)_ Z me(U7M)_ Z er(’U
€A rE€Ap r€EM 4

-9, (UC(v,v) = UC(v, M))
Z fa:Q('U7¢)+ Z sz(U7¢)_ Z f$Q v, M
rE€Ap TEM 4 rEAp
- Z f=Qv,¢) — g,(UC(v,v) — UC (v, M)), as Ap N My = ¢.
TEM 4

> Qv 8) = Qv, M) — g,(UC(v,v) — UC(v, M))

IEAD

fv(Q(Uv ¢) - Q(Uv M)) - fv(UC(Uv U) - UC(”? M))

Now, let C'asp be the cost of materialization all descendants of v that are in M. Then,

Qv,¢)—Q(v,M)=Cnyp > UC(v,v) = UC(v, M).

Therefore, we get B(v, ¢) — B(v, M) > 0. -

Lemma 2 Inan AND view graph, the benefit function B satisfies the monotonicity property

for any M with respect to sets consisting of single views, if the update frequency g, at any

view v is less than its query frequency f,.

Proof: Consider views Vi, V5, ..., V,, and a set of views M. Also, for simplicity, let M; =
MU{Vy,Vy, ..., Vi} for 1 <7 < m. Note that Lemma 1 implies that B(v, L) > B(v, LUM)

for any view v and sets of views L and M. Therefore, we have

B(Vi, M) > B(Vi, M;) for 1 < i < m.

Also, by definition of the benefit function, we have

B({V1,Va, ..., ]

/m}7M) =

B({Vi}, M)+ B({V2}, Mq) + B({Vs}, M3) + ...+ B{{Vin }, My).

Using the above two equations, we get

B{{V1,Va,..., Vi, }, M) < BUVi}, M)+ B{Ve}, M)+ B{V3}, M)+ ...+ B{Vin}, M),
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which proves the monotonicity of the benefit function for an arbitrary M with respect to

arbitrary views Vi, Vo, ..., V. "

Using the above Lemma 2, we can prove the following theorem. The proof is similar to

that of Theorem 1.

Theorem 5 Consider an AND view graph G with updates, where for any view the update
frequency is less than its query frequency. For such a graph G, the greedy algorithm produces
a solution M whose absolute benefit is at least (1 —1/e) times the optimal benefit achievable

using as much space as that used by M. "

2.4.4 AND View Graph With Indexes

As in the case of OR view graphs, we generalize the view-selection problem in AND view
graphs by introducing indexes for each node/view. As in the original AND view graph, a
node can be computed from all of its children, but in the presence of indexes the cost of
computation depends upon the indexes being used to execute the operation.

We need to introduce a slightly different cost model for the AND view graphs with
indexes. In an AND view graph with indexes, instead of associating costs with the arcs, we
associate a label (i,¢;) with each edge from u to v. The cost #; (i > 0)7 can be thought of
as the cost incurred in accessing the relation (as many times as required to compute u) at
v using its i index. In addition, we have a k-ary monotonically increasing cost function
associated with every arc that binds k edges.

Consider a node u that has k outgoing edges to nodes vy, vs, . .., vy and let the k-ary cost
function associated with the arc binding all these outgoing edges be f. Then, the cost of
computing u from all its children vy, vy, ..., vy using their 7y, i, .. .,i};h indexes respectively
is f(ti,, tiyy -+, ti,), where there is an edge from u to v;, for 0 < j < k, with a label (i;,;,).
We omit the proofs of the theorems in this subsection, as they are similar to the proofs in

Section 2.3.3.

Problem: Given a quantity S and an AND view graph G with indexes, find a set of
structures M that minimizes the quantity 7(G, M), under the constraint that the total
space occupied by the structures (views and indexes) in M is at most S. Assume that there

are no updates.

"When i = 0, to is the cost in accessing v without any of its indexes.
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Observation 4 In an AND view graph with indezes and without updates, the benefit func-
tion B satisfies the monotonicity property for any M with respect to disjoint sets of struc-

tures O1,...,0Opn, where each O; consists of a view and some of its indexes.

Theorem 6 For an AND graph, when each structure occupies unit space, the r-greedy
algorithm produces a solution M that uses at most S 4+ r — 1 units of space. Also, the
absolute benefit of M is at least (1 — 1/e"=/") times the optimal benefit achievable using

as much space as that used by M. "

Theorem 7 Foran AND graph, the inner-level greedy algorithm produces a solution M that
uses at most 25 units of space. Also, the absolute benefit of M is at least (1—1/e%3) = 0.467
of the optimal benefit achievable using as much space as that used by M, assuming that no

structure occupies more than S units of space. "

2.5 View Selection in AND-OR View Graphs

In this section, we try to generalize our results developed in the previous sections to the
view-selection problem in general AND-OR view graphs. Unfortunately, we couldn’t devise
a polynomial time algorithm for the general AND-OR view graphs that delivers a com-
petitive solution. Instead, we present here an AO-greedy algorithm (a modification of the
greedy heuristic) that could take exponential time in the worst case, but has a performance
guarantee of 63%. We show that the AO-greedy algorithm developed here runs in polyno-
mial time when the view graph is an OR view graph. We also present a multi-level greedy
algorithm which is a generalization of the inner-level greedy algrorithm (Algorithm 4).
We give a different formulation of the view-selection problem in AND-OR graphs, for

the sake of simplifying the presentation. First, we define the notion of query-view graphs.

Definition 5 (Query-View Graph) A query-view graph G is a bipartite graph (QUC(, F),
where () is the set of queries to be supported at the warehouse and ( is a subset of the
power set of V| the set of views. An edge (¢,0) is in F iff the query ¢ can be answered
using the views in the set o, and the cost associated with the edge is the cost incurred in

answering ¢ using 0.8 There is also a frequency f, associated with each query ¢ € Q. We

8 A query-view graph can be looked upon as an OR graph, as a query ¢ € Q can be computed by any of
the set of views o where (g,0) € E.
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assume that there is a set p € ¢ (the set of base tables) such that (¢, p) € F for all ¢ € Q.
O

Note that an arbitrary AND-OR view graph can be converted into an equivalent query-

view graph. We now formulate the view-selection problem in a query-view graph.

Problem (View Selection in Query-View Graphs): Given a quantity S and a query-

view graph G = (CUQ, F), select a set of views M C V that minimizes the total query
response time,? under the constraint that the total space occupied by the views in M is at

most S.

2.5.1 AO-Greedy Algorithm for Query-View Graphs

We define an intersection graph I'; of ¢ as a graph having ¢ and D as its set of vertices and
edges respectively, such that an edge («, ) € D if and only if the sets of views o and 3
intersect.

The AO-greedy algorithm works in stages as follows. At each stage, the algorithm picks
a connected subgraph H of F; whose corresponding set of views Vi (union of the sets of
views corresponding to the vertices of H) offers the maximum benefit per unit space at that
stage. The set of views Vi is then added to M, the set of views already selected in previous
stages. The algorithm halts and returns M when the space occupied by M exceeds S.

To improve the running time, after the selection at each stage, we can change the set ¢
by removing the selected views V from each element (a set of views) in ¢. Graph Fy, for

the next stage, is then reconstructed from the new (.

Lemma 3 An optimal solution O of the view-selection problem in query-view graph G =
(CUQ, E) can be partitioned into (disjoint) sets of views O1,Oq, ..., Oy, such that each O;
corresponds to a connected subgraph in F¢, as defined above, and B(O, M) < 3", B(O;, M).

Proof: We start by showing that there exists a subset I' of ¢ such that O = (J,cr o, if O
is an optimal set.

Let I' be a maximal subset of  such that for every ¢ € I'; ¢ C O. Consider an arbitrary
view v € O. As O is optimal, v helps answer some query, else it could be removed from O.

Thus, for some o, C O, v € 0, € ¢, implying that o, € I'. Thus, v € O implies v € J,er 0

?Though we ignore maintenance costs, it can be incorporated by adding additional nodes in .
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for an arbitrary v. Therefore, O C (J,cr 0. Also, by definition of I', it is obvious that
Usero € O. Hence, O = {J,¢ro.

Now, consider the intersection graph Fr of I'. The intersection graph It is only an
induced subgraph of the intersection graph F¢ on the nodes in I'. Consider the connected
components of FT which partition the set of nodes I' into I'1, 'z, ..., I',. Let Oy = U, ¢r, 0.
Now O;’s also form a partition of O, because there are no edges in Iy between the nodes of I';
and I'; for any 7 and j. It is easy to see that for the above O;’s, B(O, M) < 3"~ B(O;, M),

because exactly one materialized node in ¢ is used to answer any query ¢ in @. -

Theorem 8 For a query-view graph without updates and a quantity S, the AO-greedy algo-
rithm produces a solution M that uses at most 25 units of space. Also, the absolute benefit
of M is at least (1 — 1/e) times the optimal benefit achievable using as much space as that

used by M. -

Proof: It is easy to see that the space used by the greedy algorithm solution, S(M), is at
most 25 units. Let k = S(M). Let the optimal solution using & units of space be O and
the absolute benefit of O be B.

Consider a stage at which the greedy algorithm has already chosen a set (G} occupy-
ing [ units of space with incremental benefits a1, aq,...,a;. Thus, the absolute benefit of
G is 25:1 a;. Surely the absolute benefit of the set O U G is at least B. Therefore,
the benefit of the set O with respect to Gy, B(O,G)), is at least B — Zi»:l a;. Due to
Lemma 3, the optimal set O can be partitioned into disjoint sets O1,0s,...,0,,, such
that B(O,G;) < 327, B(O;,G)). Now, as O;’s are disjoint, it is easy to show by contra-
diction that there exists at least one O; such that B(O;,G;)/S(0;) > B(O,G)/k (else
B(O,G)) > Y, B(O;,GY)).

The benefit per unit space with respect to G of the set C selected at this stage by the
AO-Greedy algorithm is at least that of O;, which is at least B(O,G))/k = (B—=Y"}_, a;)/k,
as shown above. Distributing the benefit of C' over each of its unit spaces equally (for the
purpose of analysis), we get ajy; > (B — Y2t a;)/k, for 0 < j < S(C). As the above
analysis is true for each set C' selected at any stage, we have

-1

ngaj+2ai for 0 < j<k.

=1

Multiplying the j** equation by (kk;l)k_j and adding all the equations, we get
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A/B>1— (51)% > 1 - 1/e, where A = 3%, a; is the absolute benefit of M. x

The equivalent query-view graph G' = ((UQ, E') of an OR view graph is such that each
element o € ¢ consists of exactly one view and hence I has zero edges. Ior such a graph
G, the AO-greedy algorithm behaves exactly as the greedy algorithm (Algorithm 1), taking

polynomial time for OR view graphs.

2.5.2 Multi-Level Greedy Algorithm

In this section, we generalize the inner-level greedy algorithm (Algorithm 4) to multiple
levels of greedy selection in query-view graphs. We try to modify the AO-greedy algorithm
for query-view graphs in an attempt to improve its running time at the expense of its
performance guarantee.

Consider a query-view graph G = (@ U ¢, F) and the intersection graph F¢ of ¢. Let
F¢ have [ > 1 connected components and the let Gy,Go,...,G; where G; = (Q U (;, )
be the corresponding query-view subgraphs of G. The multi-level inner greedy algorithm
works in stages. At each stage, it searches for a set of views W; in each G, such that the
benefit per unit space of W; is maximum. Each set W, is computed by using the recursive
function InnerGreedy on (;. Among all W;’s, the set W; that has the maximum benefit per
unit space is added to the solution M being maintained. The solution M is returned when
the total space constraint has been consumed.

The recursive function InnerGreedy works as follows. Let the input be the set of nodes
I'. Let us assume that there is a view v where v € ¢ for each node ¢ in I'. If no such
v exists, then the InnerGreedy function does an exhaustive search (or run the AO-greedy
algorithm) and return a set of views that has the optimal benefit per unit space. If v exists,
let I'y,Tg,...,T';;, be the sets corresponding to the connected components of the resulting
intersection graph. The set of views U, that has to be returned by the InnerGreedy function,
is selected in the following greedy manner. Initially the set U contains only v. Then, at
each stage, we search recursively in each I'; for a set of views .J; that has the maximum
benefit per unit space. The set J; that has the maximum benefit per unit space is added
to the set U being maintained. We continue adding views to U until the total benefit per
unit space of U cannot be further improved. At that point, the set U is returned.

The multi-level (r-level) greedy algorithm and the InnerGreedy function is shown below

as Algorithm 5.
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Algorithm 5  Multi-level (r-level) Greedy Algorithm

Given: A query-view graph G = (Q U (, F) and the space constraint S.
BEGIN
M = ¢; /* M = set of structures selected so far. */
while (S(M) < 5)
Let G'1,Ga, ..., Gy be the connected components of the intersection graph I and
let (1,...,(n be the corresponding subsets of (.
For each ¢« < m, W; = InnerGreedy(r, (;, M);
Let W be the W; that has the maximum benefit per unit space;
M=MUW;
Reduce ¢ by removing the views in W from each of its elements;

end while;

return M;
END.
Function InnerGreedy (r, I, M) /* Returns a set of views U that has the best
benefit per unit space. The main inputs G and S are globally defined. */
BEGIN

If r =0, pick U by doing exhaustive search;
Let FT be the intersection graph of .
Let v be such that forall o € I', v € 0.
If no such v exists, pick U by doing exhaustive search.
Let I'y,...,I',, be the corresponding subsets of '
obtained after removing the view v from each element.
P=0; U={v}h
while (S(U) < 5)
For each ¢, let J; = InnerGreedy(r — 1, [';, (M U U));
Let J be the J; with the maximum benefit per unit space.
if (BOUUJ,M)/S(UUJ) < B(UM)/B(U))
return U;
U=UuUlJ,
end while;
return U.

END. <
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Lemma 4 The InnerGreedy function with the first parameter value equal to r delivers a
solution U whose benefit per unit space is at least g(r) of the optimal benefit per unit space

achievable. The function g(r) is defined recursively as g(r) =1 —1/e90=1, and g(0) = 1.

Proof: We prove this lemma by induction. The base case for r = 0 is obvious. Assume
that the value of the first parameter to the InnerGreedy function is r.

Without loss of generality, we assume that the input parameter M to InnerGreedy is ¢.
Consider a set of views O’ in I' that has the optimal benefit per unit space. It is obvious
that O’ contains the view v that is in all elements of I'. Let O’ — {v} = O.

Consider a stage at which the InnerGreedy algorithm has already chosen a set Gi; (apart
from v) occupying / units of space with incremental benefits aq, ag, as.....a; with respect to
v. Let G} = G1U{v}, also the value of U (see Algorithm 5) at this stage. The benefit of the
set O UG with respect to {v} is at least that of O with respect to v, i.e., B(OUG, {v}) >
B(O,{v}). Also, BOUG, {v}) = B(O,GY) 4+ Y_\_, a;. Therefore, the benefit of the set O
with respect to G¥, B(O,GY), is at least B(O, {v}) — 2\, a;.

As I' consists of m connected components 'y, ..., [, after deleting v, the set O can be
split into m disjoint sets O1, Og, ..., O, such that each O; belongs to [';. By the monotonic-
ity property of the benefit function w.r.t. the sets Oq,...,0,,, B(O,GY) < Y%, B(O;,GY).
Now, it is easy to show by contradiction that there exists at least one O; such that
B(0,G})/S(0:) = B(0,G})/S(0) (else B(O,GY) > I, B(O:,GY).

Now, by inductive hypothesis, the benefit per unit space of the set .J, selected by the
InnerGreedy algorithm at this stage, is at least g(r — 1) times B(O;,G})/S(0;), as the
InnerGreedy function when called with the first parameter equal to r — 1 returns a solution
that is within g(r — 1) of the optimal. Thus, B(J,G}) > g(r — 1)B(O;,G})/S(O;) >
g(r = )B(O,G})/S(0) 2 g(r — 1)(B(O, {v}) - T_y 4 /S(0).

Let us assume, that the InnerGreedy Algorithm continues to select views (apart from v)
till it has exhausted S(O) space, and the final set of views selected is . Using tech-
niques similar to the proof of Theorem 3, it is easy to show that B(G,{v}) = (1 —
1/e90=D)B(0, {v}) = ¢(r) B(O, {v}), as k' = g(r — 1) here. Thus, we have

B(GU{v},¢) = B(v,¢)+ B(G,{v})
B(v,¢) +9(r)B(O, {v})
g(r)B(0', ¢)

v

v
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Thus, the benefit per unit space of G U {v} is at least g(r)B(0’,¢)/S(0'), as G and O
occupy the same space. But, the InnerGreedy algorithm actually stops when the benefit of
U per unit space reaches the maximum. Therefore, the benefit per unit space of U is at

least equal to the benefit per unit space of GG, which is g(r) times the optimal. "

Theorem 9 For a query-view graph G and a given quantity S, the r-level greedy algorithm
delivers a solution M that uses alt most 25 units of space. Also, the benefit of M is at
least g(r + 1) times the optimal benefit achievable using as much space as that used by M,

assuming that no view occupies more than S units of space.

Proof: It is easy to see that S(M) < 2S. Let k = |M]|. Let the optimal solution be O,
such that S(O) = k and the absolute benefit of O be B.

Consider a stage at which the multi-level greedy algorithm has already chosen a set G
occupying [ units of space with incremental benefits a1, as, as.....a;. The absolute benefit of
the set OUG] is at least B. Therefore, the benefit of the set O with respect to G, B(O, G),
is at least B — Yo, a;.

As ( consists of m connected components (q,...,(n, the set O can be split into m
disjoint sets Oy, Og, ..., O, such that each O; belongs to (;. By the monotonicity property
of the benefit function w.r.t. the sets Oq,...,0,, B(O,G)) < 37, B(O;,G)). Now, it is
easy to show by contradiction that there exists at least one O; such that B(O;,G;)/S(0;) >
B(O,G))/k (else B(O,G)) > Y ity B(O;,G)).

Using Lemma 4, we know that the benefit per unit space of the set W; is at least g(r)
times B(O;,G1)/S(O;). Thus, the benefit per unit space of the set W, selected by the inner-
level greedy algorithm at this stage, is at least g(r) times B(O;, G1)/S(0;) > B(O,Gp)/k >
(B —Y!_,a;)/k. Let k' = g(r). Distributing the benefit of W over each of its unit spaces
equally (for the purposes of analysis), we get a;4; > k'(B — St a;)/k, for 0 < j < S(W).
As the above analysis is true for each set W selected at any stage, we have

ool _
Bgyajﬁ—z:ai for 0 < j<k.
=1

Let k" = k/E'. Multiplying the j** equation by (k'];ﬁl)k_j and adding all the equations,
we get A/B>1-— (kllgﬁl)k >1- (k/];—,_,l)k”kl >1-1/e?0) = g(r41), where A =% | a; is
the absolute benefit of M. -

For a given instance one could estimate the value of r such that at the r* level the

graphs F; are small constant-size graphs. The last level would then take only a constant
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amount of time. The r-level greedy algorithm takes O((kn)?") time, excluding the time
taken at the final level, where k is the maximum number of views that can fit in S units of
space. Also, the values of the function g(r) for increasing values of r are 1, 0.63, 0.46, 0.37,
0.31, 0.26, 0.23 and so on.

The equivalent query-view graph G = (( U @, F) of an OR view graph with indexes
is such that each element o € ( consists of a single view and one of its indexes. For such
a query-view graph G, the 1-level greedy algorithm behaves exactly the same as the inner-
level greedy algorithm (Algorithm 4)on OR view graphs with indexes. The 2-level greedy
algorithm is very well suited for the case of OR graph with index, where even the indexes
are indexed. So, r — level greedy algorithm is well suited for OR or AND view graphs with

r — level indexing schemes.

2.6 Concluding Remarks

In this chapter, we have developed a theoretical framework for the general problem of
selection of views in a data warehouse. We have presented competitive polynomial-time
heuristics that deliver a solution within a 0.63 factor of the optimal for some important
special cases of the general problem in a data warehouse viz. OR view graphs and AND
view graphs. For both these special cases, we have extended the results to graphs with
indexes associated with each view. Finally, we extended our heuristic to the most general
case of AND-OR view graphs.

In this chapter, we looked at various cases of the view-selection problem under the disk
space constraint. In the next chapter, we address the view-selection problem in a data
warehouse when the constraint is that of the total maintenance cost of the materialized

views.



Chapter 3

Selection of Views Under a

Maintenance Cost Constraint

3.1 Introduction

As described in the previous chapters, a data warehouse stores materialized views derived
from one or more sources for the purpose of efficiently implementing decision-support or
OLAP queries. The selection of which views to materialize is one of the most important
decisions in the design of a data warehouse. Chapter 2 presented a theoretical formulation of
the general “view-selection” problem in a data warehouse. Given some resource constraint
and a query load to be supported at the warehouse, the view-selection problem, as defined
in Chapter 2, is to select a set of derived views to materialize, under a given resource
constraint, that will minimize the sum of total query response time and maintenance time
of the selected views. We have presented near-optimal polynomial-time greedy algorithms
for some special cases of the general problem where the resource constraint is disk space.
In this chapter, we consider the view-selection problem of selecting views to materialize
in order to optimize the total query response time, under the constraint that the selected
set of views incur less than a given amount of total maintenance time. Hereafter, we will
refer to this problem as the maintenance-cost view-selection problem. The maintenance-
cost view-selection problem is much more difficult than the view-selection problem with a
disk-space constraint, because the maintenance cost of a view v depends on the set of other
materialized views. For the special case of “OR view graphs,” we present a competitive

greedy algorithm that provably delivers a near-optimal solution. We prove that the query

37
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benefit of the solution delivered by the proposed greedy heuristic is within 63% of that
of the optimal solution. The OR view graphs, which are view graphs where exactly one
view is used to derive another view, arise in many important practical applications. A very
important application is that of OLAP warehouses called data cubes, where the candidate
views for precomputation (materialization) form an “OR boolean lattice.” For the general
maintenance-cost view-selection problem that arises in a data warehouse, i.e., for the general
case of AND-OR view graphs, we present an A* heuristic that delivers an optimal solution.
We implemented our algorithms and a performance study of the algorithms shows that the
proposed greedy algorithm for OR, view graphs almost always delivers an optimal solution.

The rest of the chapter is organized as follows. The rest of this section gives a brief
summary of the related work. In Section 3.2, we present the motivation for the maintenance-
cost view-selection problem and the main contributions of this chapter. We define the
maintenance-cost view-selection problem formally in Section 3.3. In Section 3.4, we present
an approximation greedy algorithm for the maintenance-cost view-selection problem in OR
view graphs. Section 6 presents an A* heuristic that delivers an optimal set of views for the
maintenance-cost view-selection problem in general AND-OR view graphs. We present our

experimental results in Section 3.6. Finally, we give some concluding remarks in Section 3.7.

3.1.1 Related Work

Recently, there has been a lot of interest on the problem of selecting views to materialize
in a data warehouse. Harinarayan, Rajaraman and Ullman [HRU96] provide algorithms to
select views to materialize in order to minimize the total query response time, for the case of
data cubes. The view graphs that arise in data cubes are special cases of OR view graphs.
In the previous chapter, we developed a theoretical formulation of the general view-selection
problem in a data warehouse and generalized the results in [HRU96] to (i) OR view graphs,
(i) AND view graphs, (iii) OR view graphs with indexes, (iv) AND view graphs with
indexes, and some other special cases of AND-OR view graphs. All of the above mentioned
work presents approximation algorithms to select a set of structures that minimizes the total
query response time under a given space constraint; the constraint represents the maximum
amount of disk space that can be used to store the materialized views.

Ours is the first work to address the problem of selecting views to materialize in a
data warehouse under the constraint of a given amount of total view maintenance time.

We present a nonexhaustive approximation algorithm that provably returns a near-optimal
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solution for the special case of OR view graphs.

3.2 Motivation and Contributions

In this section, we briefly present the motivation behind the maintenance-cost view-selection
problem and the contributions made by the thesis. Most of the previous work done
([HRU96], Chapter 2) on designing approximation algorithms for the view-selection problem
suffers from one drawback. The designed algorithms apply only to the case of a disk-space
constraint.

Though the previous work has offered significant insight into the nature of the view-
selection problem, the constraint considered therein makes the results less applicable in
practice because disk-space is very cheap in real life. In practice, the real constraining
factor that prevents us from materializing everything at the warehouse is the maintenance
time incurred in keeping the materialized views up to date at the warehouse. Usually,
changes to the source data are queued and propagated periodically to the warehouse views
in a large batch update transaction. The update transaction is usually done overnight, so
that the warehouse is available for querying and analysis during the day time. Hence, there
is a constraint on the time that can be allotted to the maintenance of materialized views.

In this chapter, we consider the maintenance-cost view-selection problem which is to
select a set of views to materialize in order to minimize the query response time under
a constraint of maintenance time. We do not make any assumptions about the query or
the maintenance cost models. It is easy to see that the view-selection problem under a
disk-space constraint is only a special case of the maintenance-time view-selection problem,
when maintenance cost of each view remains a constant, i.e., the cost of maintaining a view
is independent of the set of other materialized views. Thus, the maintenance-cost view-
selection problem is trivially NP-hard, since the space-constraint view-selection problem is
NP-hard, as mentioned in Section 2.2.3.

Now, we explain the main differences between the view-selection problem under the space
constraint and the maintenance-cost view-selection problem, which make the maintenance-
cost view-selection optimization problem more difficult. In the case of the view-selection
problem with space constraint, as the query benefit of a view never increases with mate-
rialization of other views, the query-benefit per unit space of a nonselected view always

decreases monotonically with the selection of other views. This property is formally defined
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in the previous chapter as the monotonicity property of the benefit function and is stated

here in a slight different form for sake of clarity.

Definition 6 ((Monotonicity Property)) A benefit function B, which is used to prior-
itize views for selection, is said to satisfy the monotonicity property for a set of views M
with respect to distinct views V; and V5 if B({V3, V,}, M) is less than (or equal to) either
B({Vi}, M) or B({V,}, M). O

In the case of the view-selection problem under space constraint, the query-benefit per unit
space function satisfies the above defined monotonicity property for all sets M and views
V1 and V5. However, for the maintenance-cost view-selection problem, the maintenance
cost of a view can decrease with the selection of other views for materialization, and hence
the query-benefit per unit of maintenance-cost of a view can actually increase. Thus, the
total maintenance cost of two “dependent” views may be much less than the sum of the
maintenance costs of the individual views, causing the query-benefit per unit maintenance-
cost of two dependent views to be sometimes much greater than the query-benefit per unit
maintenance-cost of either of the individual views. The above described nonmonotonic
behavior of the query-benefit function makes the maintenance-problem view-selection prob-
lem intractable. The nonmonotonic behavior of the query-benefit per unit maintenance-
cost function is illustrated in Example 4 in Section 3.4, where it is shown that the sim-
ple greedy approaches presented in previous works for the space-constraint view-selection
problem could deliver an arbitrarily bad solution when applied to the maintenance-cost

view-selection problem.

Contributions In this chapter, we have identified the maintenance-cost view-selection

problem and the difficulty it presents. We develop a couple of algorithms to solve the
maintenance-cost view-selection problem within the framework of general query and main-
tenance cost models. For the maintenance-cost view-selection problem in general OR view
graphs, we present a greedy heuristic that selects a set of views at each stage of the algo-
rithm. We prove that the proposed greedy algorithm delivers a near-optimal solution. The
OR view graphs, where exactly one view is used to compute another view, arise in many
important practical applications. A very important application is that of OLAP warehouses
called data cubes, where the candidate views for precomputation (materialization) form an

“OR boolean lattice.” We also present an A* heuristic for the general case of AND-OR
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graphs. Performance studies indicate that the proposed greedy heuristic almost always re-
turns an optimal solution for OR view graphs. The maintenance-cost view-selection was
one of the open problems mentioned in [Gup97]. By designing an approximate algorithm for

the problem, this chapter essentially answers one of the open questions raised in [Gup97].

3.3 The Maintenance-Cost View-Selection Problem

In this section, we present a formal definition of the maintenance-cost view-selection prob-
lem, which is to select a set of views in order to minimize the total query response time
under a given maintenance-cost constraint.

Given an AND-OR view graph GG and a quantity S (available maintenance time), the
maintenance-cost view-selection problem is to select a set of views M, a subset of the nodes
in G, that minimizes the total query response time such that the total maintenance time of
the set M is less than S.

Let (v, M) denote the cost of answering a query v (also a node of () in the presence
of a set M of materialized views. As defined in the previous chapter, let UC(v, M) is the
cost of maintaining a materialized view v in presence of a set M of materialized views.
The maintenance-cost view-selection problem is formally formulated as follows. Given an
AND-OR view graph G and a quantity S, the maintenance-cost view-selection problem is

to select a set of views/nodes M, that minimizes 7(G, M), where

T(G7M) = Z va(U7M)7
veV(G)
under the constraint that U(M) < S, where U(M), the total maintenance time, is defined
as

UM) = gUC(v,M).
veM

The view-selection problem under a disk-space constraint can be easily shown to be
NP-hard, as there is a straightforward reduction [Gup97] from the minimum set cover
problem.  Thus, the maintenance-cost view-selection problem, which is a more general

problem as discussed in Section 3.2, is trivially NP-hard.
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3.3.1 Incorporating Maintenance Costs in View Graphs

We need to incorporate maintenance costs in the definition of AND-OR view graphs, so
that the input to the view-selection maintenance-cost problem is complete. So, with each
AND-OR graph defined there is a maintenance-cost function UC' associated with it. The
function UC' is such that for a view v and a set of views M, UC(v, M) gives the cost of
maintaining v in presence of the set M of materialized views. We assume that the set L of
base relations in GG is always available. In this thesis, we do not discuss various maintenance
cost models possible for an AND-OR view graph, and hence we assume that the function

UC is given as part of an input with the AND-OR graph.

Maintenance Costs in OR View Graphs In case of OR view graphs, instead of the
maintenance cost function UC for the graph, there is a maintenance-cost value associated
with each edge (u,v), which is the maintenance cost incurred in maintaining u using the
materialized view v. Figure 3.1 shows an example of an OR view graph G with the associated
maintenance-costs. For the special case of OR view graphs, UC (v, M) is computed from the
maintenance costs associated with the edges in the graph as follows. The quantity UC' (v, M)
is defined as the minimum maintenance-length of a path from v to some v € (M UL) —{v},
where the maintenance-length of a path is defined as the sum of the maintenance-costs
associated with the edges on the path.! The above characterization of UC(v, M) in OR
view graphs is without any loss of generality of a maintenance-cost model, because in OR
view graphs a view u uses at most one view to help maintain itself.

In the following example, we illustrate how to compute @ (v, M) and UC(v, M) on OR

view graphs.

EXAMPLE 3 Consider the OR view graph G of Figure 3.1. In the given OR view graph
G, the maintenance-costs and query-costs associated with each edge is zero, except for the
maintenance-cost of 4 associated with the edges (Vi, B) and (Va, B). Also, all query and
update frequencies are uniformly 1. The label associated with each of the nodes in G is the
reading-cost of the node. Also, the set of sinks L = {B}.

In the OR view graph G, Q(V;, ¢) = 12 for all ¢ < 5, because as the query-costs are all

zero, the minimum query-length of a path from V; to B is just the reading-cost of B. Note

"Note that the maintenance-length doesn’t include the reading cost of the destination as in the query-
length of a path.
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8 10
v, 7 \\ / Maintenance-cost of edges (V1, B) and (V5 , B) = 4.

V2 S 11  All other maintenance and query costs are 0
All query and update frequencies= 1
L abels associated with nodes are their
d 12 reading-costs.

Figure 3.1: G: An OR view graph

that Q(B, ¢) = 12. Also, as the minimum maintenance-length of a path from a view V; to

Bis 4, UC(V,,¢) =4 for all i < 5. O

Knapsack Effect We simplify the view-selection problem as in Chapter 2 by allowing

that a solution may consume “slightly” more than the given amount of constraint. This
assumption is made to ignore the knapsack component of the view-selection problem. How-
ever, when proving performance guarantee of a given algorithm, we compare the solution
delivered by the algorithm with an optimal solution that consumes the same amount of

resource as that consumed by the delivered solution.

3.4 Inverted-Tree Greedy Algorithm

In this section, we present a competitive greedy algorithm called the Inverted-Tree Greedy
Algorithm which delivers a near-optimal solution for the maintenance-cost view-selection
problem in OR view graphs.

In the context of the view-selection problem, a greedy algorithm was originally proposed
in [HRU96] for selection of views in data cubes under a disk-space constraint. In Chapter 2,
we generalized the results to some special cases of AND-OR view graphs, but still for the
constraint of disk space. The greedy algorithms proposed in the context of view-selection
work in stages. At each stage, the algorithm picks the “most beneficial” view. The algorithm
continues to pick views until the set of selected views take up the given resource constraint.

One of the key notions required in designing a greedy algorithm for selection of views is the
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notion of the “most beneficial” view.

In the greedy heuristics proposed in Chapter 2 for selection of views to materialize
under a space constraint, views are selected in order of their “query benefits” per unit space
consumed. We now define a similar notion of benefit for the maintenance-cost view-selection

problem addressed in this chapter.

Most Beneficial View

Consider an OR view graph G. At a stage, when a set of views M has already been
selected for materialization, the query benefit B(C, M) associated with a set of views C' with
respect to M is defined as 7(G, M) — (G, MUC'). We define the effective maintenance-cost
FEU(C, M) of C with respect to M as U(M UC') — U(M).? Based on these two notions, we
define the view that has the most query-benefit per unit effective maintenance-cost with
respect to M as the most beneficial view for greedy selection at the stage when the set M
has already been selected for materialization.

We illustrate through an example that a simple greedy algorithm, that at each stage

selects the most beneficial view, as defined above, could deliver an arbitrarily bad solution.

EXAMPLE 4 Consider the OR view graph G shown in Figure 3.1. We assume that
the base relation B is materialized and we consider the case when the maintenance-cost
constraint is 4 units.

We first compute the query benefit of V; at the initial stage when only the base relation
B is available (materialized). Recall from Example 3 that Q(V;,¢) = 12 for all ¢+ < 5 and
Q(B,¢) = 12. Thus, 7(G,¢) = 12 x 6 = 72, as all the query frequencies are 1. Also,
Q(V1,{V1}) = 7, as the reading-cost of Vi is 7, Q(V;,{V1}) = 12 for i = 2,3,4,5, and
Q(B,{V1}) = 12. Thus, 7(G,{V1}) = 12 x 54+ 7 = 67 and thus, the initial query benefit of
Vi is 72 — 67 = 5. Similarly, the initial query benefits of each of the views V5, V3, V4, and
Vs can be computed to be 4.

Also, U({V;}) = UC(V;,{V;}) = 4 as the minimum maintenance-length of a path from
any V; to B is 4. Thus, the solution returned by the simple greedy algorithm, that picks
the most beneficial view, as defined above, at each stage, is {V;}.

It is easy to see that the optimal solution is {V5, V3, V4, V5} with a query benefit of
11 and a total maintenance time of 4. To demonstrate the nonmonotonic behavior of

the benefit function, observe that the query-benefits per unit maintenance-cost of sets

2The effective maintenance-cost may be negative. The results in this chapter hold nevertheless.
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Figure 3.2: An OR view graph, H, for which simple greedy performs arbitrarily bad

{Va},{Va},{Vs, V5} are 1, 1, and 7/4 respectively. This nonmonotonic behavior is the rea-
son why the simple greedy algorithm that selects views on the basis of their query-benefits
per unit maintenance-cost can deliver an arbitrarily bad solution.

Figure 3.2 shows an extended example where the optimal solution can be made to
have an arbitrarily high query benefit, while keeping the simple greedy solution unchanged.
Initially, the query benefit of any odd numbered V; is 12 -3 = 9, while the query benefit
of any even numbered V; is 0. Also, the maintenance cost of any V; is 4. Hence, the
simple greedy algorithm starts by selecting {V;}. As the maintenance cost constraint is 4
units, the solution returned by the simple greedy algorithm is {V;}. The optimal solution
is {Vo, V3, ..., V3, } with a huge query benefit, but a maintenance cost of only 4. O

The above example shows that an appropriate definition of benefit is not enough to
guarantee a good solution, and that selecting the most beneficial view at each stage can
lead to a very bad greedy strategy.

Note that the nodes in the OR view graphs G and H, presented in Figure 3.1 and
Figure 3.2 respectively, can be easily mapped into real queries involving aggregations over

the base data B. The query-costs associated with the edges in G and H depict the linear
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cost model, where the cost of answering a query on v using its descendant u is directly
proportional to the size of the view u, which in our model of OR view graphs is represented
by the reading-cost of u. Notice that the minimum query-length of a path from u to v in
G or H is R,, the reading-cost of v. As zero maintenance-costs in the OR view graphs G
and H can be replaced by extremely small quantities, the OR view graphs G and H depict
the plausible scenario when the cost of maintaining a view u from a materialized view v is
negligible in comparison to the maintenance cost incurred in maintaining a view u directly

from the base data B.

Definition 7 (Inverted Tree Set) A set of nodes R is defined to be an inverted tree set
in a directed graph G if there is a subgraph (not necessarily induced) T in the transitive
closure of (G such that the set of vertices of Tg is R, and the inverse graph® of Tj is a tree.?

In the OR view graph G of Figure 3.1, any subset of {V3, V3, Vy, V5} that includes V;
forms an inverted tree set. Note that {V4, V5} is forms an inverted tree set. The T graph
corresponding to the inverted tree set R = {V3, V3, V5} has the edges (Vz, Vs) and (V3, Vs)
only. |

The motivation for the inverted tree set comes from the following observation, which
we prove in Lemma 5. In an OR view graph, an arbitrary set O (in particular an optimal
solution O), can be partitioned into inverted tree sets such that the effective maintenance-
cost of O with respect to an already materialized set M is greater than the sum of effective-
costs of inverted tree sets with respect to M.

Based on the notion of an inverted tree set, we develop a greedy heuristic called the
Inverted-Tree Greedy Algorithm which, at each stage, considers all inverted tree sets in the
given view graph and selects the inverted tree set that has the most query-benefit per unit

effective maintenance-cost.

Algorithm 6 Inverted-Tree Greedy Algorithm

Given: An OR view graph (G), and a total view maintenance time constraint S
BEGIN
M = ¢; Be = 0;

repeat

3The inverse of a directed graph is the graph with its edges reversed.
YA tree is a connected graph in which each vertex except the root has exactly one incoming edge.
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for each inverted tree set of views T in G such that TN M = ¢
if (FU(T,M)<S)and (B(T,M)/EU(T,M) > B¢)
Be = B(T,M)/EU(T,M);

c=1T;
end if;
end for;
M=MUuU C;
until (U(M) > S);
return M;
END. <&

We prove in Theorem 10 that the Inverted-tree greedy algorithm is guaranteed to deliver
a near-optimal solution. In Section 3.6, we present experimental results that indicate that
in practice, the Inverted-tree greedy algorithm almost always returns an optimal solution.

We now define a notion of update graphs which is used to prove Lemma 5.

Definition 8 (Update Graph) Given an OR view graph GG and a set of nodes/views O in
G'. An update graph of O in G is denoted by Ug and is a subgraph of G such that V(Ug) =
O, and E(U§) = {(v,u) | w,v € O and v(€ O) is such that UC(u, {v}) < UC(u,{w}) for
all w € O}. We drop the superscript G of Ug, whenever evident from context. a

It is easy to see that an update graph is an embedded forest in G. An update graph of O
is useful in determining the flow of changes when maintaining the set of views O. An edge
(v,u) in an update graph Up signifies that the view u uses the view v (or tables computed
for maintenance of v) to incrementally maintain itself, when the set O is materialized.
Figure 3.3 shows the update graph of {Vj, V5, V5} in the OR view graph G of our running

example in Figure 3.1.

Lemma 5 For a given set of views M, a set of views O in an OR view graph G can be

partitioned into inverted tree sets O1,Oq, ..., O, such that Y 7~ EU(O;, M) < EU(O, M).

Proof: Consider the update graph Up of O in GG. By definition, Uy is a forest consisting
of m trees, say, Uy, ..., U, for some m < |O|. Let, O; = V(U,), for i < m.

An edge (y,z) in the update graph Up implies the presence of an edge (z,y) in the
transitive closure of G. Thus, an embedded tree U; in the update graph Up is an embedded
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Ve,
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1 V 2
Figure 3.3: The update-graph for {V, V5, V3, Vs} in G

tree in the transitive closure of the inverse graph of G. Hence, the set of vertices O; is an
inverted tree set in G.

For a set of views (', we use UC(C, M) to denote the maintenance cost of the set C'
w.rt. M, ie, UC(C,M) = 3, cc g, UC(v, M UC), where UC (v, M) for a view v is the
maintenance cost of v in presence of M as defined in Section 2.2.3. Also, let Rd(M,C) =
UM)-UC(M,C),i.e., the reduction in the maintenance time of M due to the set of views
C. Now, the effective maintenance-cost of a set O; with respect to a set M, KU (O;, M),

can be written as

EU(Oy, M) = (UC(0;, M)+ UC(M,0;)) — U(M)
= UC(O0:, M) — (U(M) —UC(M,0;))
= UC(0;, M) - Rd(M,0;)

As no view in a set O; uses a view in a different set O; for its maintenance,

UC(O,M) = i UC(0;, M).

=1
Also, as any view uses at most one view to help maintain itself, the reduction in the
maintenance cost of M due to the set O is less than the sum of the reductions due to the

sets O1,...,0p, i.e.,

Rd(M,0) <Y Rd(M,0;).
i=1
Therefore, we have

EUO,M) = UC(O,M)—- Rd(M,0O)
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Theorem 10 Given an OR view graph G and a total maintenance-time constraint S. The
Inverted-tree greedy algorithm (Algorithm 6) returns a solution M such that U(M) < 25
and M has a query benefit of at least (1 — 1/e) = 63% of that of an optimal solution that
has a maintenance cost of at most U(M ), under the assumption that the optimal solution

doesn’t have an inverted tree set O; such that U(O;) > S.

Proof: It is easy to see that the maintenance cost of the solution returned by the Inverted-
tree greedy algorithm is at most 25 units. Let O be a solution having U(M) = k units of
total maintenance time, with an optimal query benefit of B.

Consider a stage when the Inverted-tree greedy algorithm has already chosen a set M
having a total maintenance time of [ units with incremental per unit query benefits of
ay,az,...,a;. Thus, the absolute query benefit of M, B(M, ¢), is Zi’:1 a;. Trivially, the
query benefit of the set O U M is at least B. Therefore, the query benefit B(O, M) of the
set O with respect to M is at least B — Y'_; a;.

By Lemma 5, the set O can be partitioned into inverted tree sets Oy, Og,...,O,, such
that >, FU(O;, M) < FU(O,M). Also, by monotonicity of the query benefit function,
B(O,M) < >, B(O;,M). Now, it is easy to show by contradiction that there is an
inverted tree set view O; such that B(O;, M)/EU(O;, M) > B(O,M)/EU(O, M), i.e., the
query-benefit per unit of effective maintenance-cost of O; is at least that of O at this stage
(else B(O, M) > Y%, B(O;, M)).

As FU(O;, M) < U(0;) < S, O; is also considered for selection by the Inverted-tree
greedy at this stage. Thus, the query benefit per unit of effective maintenance-cost of the
set C selected by the Inverted-tree algorithm is at least the query-benefit per unit effective
maintenance-cost of O; at this stage. Now as FU(O, M) < k, we have

B(C, M)/EU(C,M) > B(O;, M)/EU(O;, M)

B(O, M)/EU(O, M)
B(O, M) /k

v

v
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> (B—Zai)/k

=1
Distributing the benefit of C' over each of its unit spaces equally (for the purpose of analysis),
we get arr; > (B — Y\, a;)/k, for 0 < j < EU(C,M). As the above analysis is true for
each set (' selected at any stage, we have

-1

BS’“M"FZ‘% for 0 <5 <k.

i=1
Multiplying the j** equation by (kk;l)k_j and adding all the equations, we get A/B >
1— (51 >1—1/e, where A = Sk L a; = B(M, ¢), the (absolute) query benefit of M. g

The simplifying assumption made in the above algorithm is almost always true, because
U(M) is not expected to be much higher than S. The following theorem proves a simi-
lar performance guarantee on the solution returned by the Inverted-tree greedy algorithm

without the assumption used in Theorem 10.

Theorem 11 Given an OR view graph GG and a total maintenance-time constraint S. The
Inverted-tree greedy algorithm (Algorithm 6) returns a solution M such that U(M) < 2S5
and B(M, ¢)/U(M) > 0.5B(0, ¢)/S, where O is an optimal solution such that U(O) < S.

Proof: Let £k = U(O) = S and k' = U(M) > k. We use the same notations as in

Theorem 10. Now, using the arguments similar to that in Theorem 10, we get

7—1

B < ]mj—l—z:ai7 for 0 <5<k, and
=1
k

B < kaj—}—zai, for k<j<k.
=1

Multiplying the j** equation by (kk;l)k_j and adding the first £ equations, we get

(Zk:ai)/B >1- (k;—l)’“ >1—1/e.

i=1
Substituting the above in the rest of the equations, we get a; > (1/e)B/k for k < j < k'.
ThUS, B(Maqb):Zf;l a; 2 (k//k)(B/2)7aS k/SQk |



CHAPTER 3. SELECTION UNDER A MAINTENANCE COST CONST. 51

Dependence of Query and Update Frequencies Note that we have not made any

assumptions about the independence of query frequencies and update frequencies of views.
In fact, the query frequency of a view may decrease with the materialization of other views.
It can be shown that the above performance guarantees hold even when the query frequency
of a view decreases with the materialization of other views.

In Section 3.6, we present experimental results that indicate that the Inverted-tree
greedy algorithm almost always returns an optimal solution. We end this section with time

complexity analysis of the Inverted-tree greedy heuristic.

Time Complexity Let G be an OR view graph of size n and A, be the number of

ancestors of a node v € V(G). The number of inverted tree sets in G that are formed by
a node v € V(@) as its root is 247, because any set of ancestors of v (which become a set
of descendants in the inverse graph) form an inverted tree with v and any inverted tree set
that has v as its root is formed from v and a subset of its ancestors. Therefore, the total
number of inverted tree sets in an OR view graph G and also, the total time complexity of
a stage of the Inverted-tree greedy algorithm is Zvev(G)(QA”), which is in the worst case
exponential in n.

We note that for the special case of an OR view graph being a balanced binary tree,
each stage of the Inverted-tree greedy algorithm runs in polynomial time O(n?), where n
is the number of nodes in the graph. The number of inverted tree sets, T'(h), in a general
balanced tree of height A can be computed as follows. Let T(h) be the total number of
inverted trees in a balanced tree of height i with a branching factor of r > 1. To derive a
recursive function for T'(h), let us consider a tree G of height h. Let R be the root of G.
Now, the number of inverted trees in G not containing the node R is rT'(h — 1), as any such
inverted tree in (G is an inverted tree in one of the r subtrees of R. Also, the number of
inverted trees in G containing R is also rT'(h — 1), as any such inverted tree in G is formed
by attaching R to an inverted tree in one of R’s subtrees. There is one more inverted tree
in GG that contains the node R only. Thus, T'(h) = rT(h—1)4rT(h—1)41 is the recursive
function for number of inverted trees in a balanced tree of branching factor r. The recursive
function for r > 1 gives T'(h) = ((2r)" — 1)/(r — 1) = O(n?).

The worst-case time complexity of the Inverted-tree greedy algorithm for general OR
view graphs is exponential in the size of a given graph. However, as discussed in Section 3.6,

our experiments show that the Inverted-tree greedy approach takes substantially less time
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than the A* algorithm presented in the next section, especially for sparse graphs. Also, the
space requirements of the Inverted-tree greedy algorithm is polynomial in the size of graph

while that of the A* heuristic is exponential in the size of the input graph.

3.5 A* Heuristic

In this section, we present an A* heuristic that, given an AND-OR view graph and a
quantity S, deliver a set of views M that has an optimal query response time such that the
total maintenance cost of M is less than S. Recollect that an A* algorithm [Nil80] searches
for an optimal solution in a search graph where each node represents a candidate solution.
Roussopoulos in [Rou82b] also demonstrated the use of A* heuristics for selection of indexes
in relational databases.

Let G be an AND-OR view graph instance and S be the total maintenance-time con-
straint. We first number the set of views (nodes) N of the graph in an inverse topological
order <wy,vy,...,v,> so that all the edges (v;,v;) in G are such that ¢ > j. We use this
order of views to define a binary tree T of candidate feasible solutions, which is the search
tree used by the A* algorithm to search for an optimal solution. Each node z in T has a
label <N, M,>, where N, = {vy,vq,...,vq} is a set of views that have been considered for
possible materialization at z and M;(C N), is the set of views chosen for materialization at
xz. The root of T has the label <¢, ¢>, signifying an empty solution. Each node x with a
label <N, M,> has two successor nodes [(z) and r(z) with the labels <N, U{vg41}, My>
and <NpU{vgy1}, MzU{vg41}> respectively. The successor r(z) exists only if M, U{vgq1}
has a total maintenance cost of less than S, the given cost constraint.

The Algorithm 7 shown below depicts the A* heuristic for the maintenance-cost view-
selection problem in general AND-OR graphs.

We define two functions® g : V(Tg) — R, and h : V(Tg) — R, where R is the set of
real numbers. For a node z € V (1), with a label <N, M,>, the value g(z) is the total
query cost of the queries on N, using the selected views in M. That is,

9o = > fuQ(vi, M,).
v; €Ny
The number h(z) is an estimated lower bound on h*(z) which is defined as the remaining

query cost of an optimal solution corresponding to some descendant of z in Tg. In other

5The function g is not to be confused with the update frequency g. associated with each view in a view
graph.
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words, h(z) is a lower bound estimation of h*(z) = 7(G, M,) —g(z), where M, is an optimal

solution corresponding to some descendant y of z in Tg.

Algorithm 7 A* Heuristic

Input: GG, an AND-OR view graph, and S, the maintenance-cost constraint.
Output: A set of views M selected for materialization.
BEGIN
Create a tree T having just the root A. The label associated with A is <¢, ¢>.
Create a priority queue (heap) L = <A>.
repeat
Remove z from L, where z has the lowest g(z) 4 h(z) value in L.
Let the label of z be <N, M,>, where N, = {vy,vy,...,v4} for some d < n.
if (d = n) return M,.
Add a successor of z, I(z), with a label <N, U {v441}, My> to the list L.
if (U(M,;) < S)
Add to L a successor of z, r(z), with a label <N, U {vg41}, Mz U{vg41}>.
until ( L is empty);
return NULL;
END. &

We now show how to compute the value A(z), a lower bound for h*(z), for a node z
in the binary tree Tz. Let N = V(G) be the set of all views/nodes in GG. Given a node
x, we need to estimate the optimal query cost of the remaining queries in N — N,. Let
s(v) = g,UC(v, N), the minimum maintenance time a view v can have in presence of other
materialized views. Also, if a node v € V() is not selected for materialization, queries on
v have a minimum query cost of p(v) = f,Q(v, N — {v}). Hence, for each view v that is
not selected in an optimal solution M, containing M, the remaining query cost accrues by
at least p(v). Thus, we fill up the remaining maintenance time available S — U(M,) with
views in N — N, in the order of their p(v)/s(v) values. The sum of the f,Q(v, N — {v})
values for the views left out will give a lower bound on h*(z), the optimal query cost of
the remaining queries. In order to nullify the knapsack effect as mentioned in Section 3.3,
we start by leaving out the view w that has the highest f,Q(v,N — p{v}) value. The
algorithm is presented in Algorithm 8. We prove in Theorem 12 that h(z), as computed by
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the Algorithm 8, is indeed a lower bound of A*(z).

Algorithm 8 Computing A

Input: An AND-OR view graph (), a maintenance-time constraint .S, and
a node z with a label <N, M,> in the search tree Tg.

N ={v1,vs,...,v,} is the set of all views/nodes in G.
Output: The value h(z).
BEGIN

Let N, = {vy,ve,...,v4} and N, = N — N, = {vgg1,...,0,}.

For each view v € N/, define a profit p(v) = f,Q(v, N — {v}) and space s(v)
is g,U(v, N), the minimum possible maintenance cost of v.

S, =0;

Let w be the view that has the highest profit in N_.

Py =p(w); Ny =N, —{w};

xr

repeat
Let v be the view with the highest value of p(v)/s(v) in N..
Sz = Sz + s(v);
Py =Py +p(v);
Nz = N —{v};
until ( S, > S — U(M,));
h(z) = 0;
for v e N,

h(z) = h(z) + p(v);
return h(z);

END. <&
Theorem 12 The A* algorithm (Algorithm 7) returns an optimal solution.

Proof: If an A* heuristic expands nodes in the increasing order of their g(z) + h(z) values,
it is known ([Nil80]) that the first leaf node found by the algorithm corresponds to an
optimal solution. Thus, we only need to show that h(z) is indeed a lower bound of A*(z),
i.e., h(z) < h*(z) for all z € V(Tg).

Consider an optimal feasible solution M, corresponding to a node y that is a descendant

of z in Tg. Each view v ¢ M, adds at least p(v) = f,Q (v, N — {v}) units to the remaining
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query cost. So, h*(z), the remaining query cost of the optimal solution M,, is at least
2 ove(N—(MyuN,)) P(V) = Loe(N-N,) P(V) = Zve(nt,—N,) P(v) = Po+h(z) = X oe(a,-n,) P(V),
where h(z) = 2, env-n,) P(v) — P, as computed by Algorithm 8. We will show that
Py >3 e(m,~n,) P(v), which will imply that A*(z) is at least h(z).

To prove the above claim, note that U(M,) < S+ UC(v, M) for some v € (M, — M,).
As, U(My) > U(Mz)+3ue(m,—m,)(s(w)), where s(u) is the minimum possible maintenance
cost of u, we get 3 cm,—nr,)(8(vw) < S+ UC(v, M) — U(M;). As v € M, — M, and
UC(v,My) > s(v), we have 3, car,—m,)—{u)(5(w)) < S — U(M;). Note that Py, as
computed by the Algorithm 8, is such that P, — p(w) is more than the maximum profit that
can be fit in the knapsack of size S — U(M;). Thus, Pp — p(w) > 3=,c((m,—-No)—{o}) P(4),
which implies that Py > 37, ¢, -n,) P(u)- x

The above theorem guarantees the correctness of A* heuristic. Better lower bounds yield
A* heuristics that will have better performances in terms of the number of nodes explored
in Tz. In the worst case, the A* heuristic can take exponential time in the number of nodes
in the view graph. There are no better bounds known for the A* algorithm in terms of the

function h(z) used.

3.6 Experimental Results

We ran some experiments to determine the quality of the solution delivered and the time
taken in practice by the Inverted-tree Greedy algorithm for OR view graphs. We im-
plemented both the algorithms, Inverted-tree Greedy and A* heuristic, and ran them on
random instances of OR view graphs that are balanced trees and directed acyclic graphs
with varying edge-densities. A random directed acyclic is generated by tossing a biased
coin to decide whether an edge exists between a pair of nodes. The random bias gives the
edge-density of the generated graph. For each randomly generated instance of a view graph,
we labeled the nodes with random query and update frequencies. We ran experiments on
random OR view graphs of size upto 25 nodes, as it was impossible to run A* heuristic on
any larger graphs because of memory space constraints.

We start by describing the cost model we used for the purposes of our experiments.

Cost Model For the purposes of experimentation, we assumed that each view is an ag-

gregate view defined over the base data. Hence, we assume a linear query cost model,
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wherein the cost of answering a query u from its descendant v in a view graph is propor-
tional to |v|, the size of v. The experimental results are independent of the proportionality
factor(s). The linear cost model is a very reasonable assumption, as shown in [HRU96,
GHRU97], when each view in the OR graph is an aggregate view.

For the purposes of computing maintenance costs, we assume the following model for
cost of maintaining a view u in presence of a descendant v. The changes to u, Awu, can
be computed from changes to v, Av, in time proportional to |Av|, and the view u can be
refreshed using Aw in time proportional to |Au|. Thus, the total maintenance time incurred
in maintaining u using its materialized descendant v is proportional to (|Au| + |[Av|). For
sake of simplicity, we further assume that (|Au|+ |Awv|) is proportional to (|u| + |v|) as is
likely to be the case when updates are insertion generating (as defined in [MQM97]), or
when the updates are update generating but uniformly spread across the domain.

Also, as we are considering aggregate views, we assigned random sizes to each view/node
in the view graph in such a way that the size of a view u was less than the size of each of

its descendants.

Observations We made the following observations. The Inverted-tree Greedy Algorithm
(Algorithm 6) returned an optimal solution as computed by the A* heuristic for almost
all (96%) view graph instances. In other cases, the solution returned by the Inverted-tree
greedy algorithm had a query benefit of around 95% of the optimal query benefit, as shown
in Figure 3.4.

For balanced trees and sparse graphs having edge density less than 40%, the Inverted-
tree greedy took substantially less time (a factor of 10 to 500) than that taken by the A*
heuristic. With the increase in the edge density, the benefit of Inverted-tree greedy over
the A* heuristic reduces and for very dense graphs, A* may actually perform marginally
better than the Inverted-tree greedy. One should observe that OR view graphs that are
expected to arise in practice would be very sparse. For example, the the OR view graph

corresponding to a data cube having n dimensions has 211:(7)22) — 37 edges and 2

vertices. Thus, the edge density is approximately (0.75)", for a given n.

The comparison of the time taken by the Inverted-tree greedy and the A* heuristic is
briefly presented in Figures 3.5-3.6. In all the plots shown in Figures 3.5-3.6, the different
view graph instance s of the maintenance-cost view-selection problem are plotted on the

r-axis. A view graph instance G is represented in terms of N, the number of nodes in G,
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Figure 3.4: Quality of the Inverted-tree greedy solutions

and S, the maintenance-time constraint. The view graph instances are arranged in the
lexicographic order of (N, S), i.e., all the view graphs with smallest N are listed first, in
order of their constraint S values. In all the graph plots, the number N varies from 10 to
25, and S varies from the time required to maintain the smallest view to the time required
to maintain all views in a given view graph. The breaks in the graph plots depict a change
in the value of V.

In Figures 3.5-3.6, for the case of balanced trees and view graphs with an edge-density
of 10%, we have plotted times taken by the Inverted-tree greedy as well as the A* heuristic.
One can see that the time taken by A* heuristic is 100 to 500 times the time taken by the
Inverted-tree greedy. For other graphs instances of edge densities 15%, 25%, and 40%, we
have plotted the performance ratio (the ratio of the time taken by the A* heuristic to the
time taken by the Inverted-tree Greedy.) We also ran experiments on random graphs with
number of edges linear in the number of nodes. Figure 3.6 shows the performance ratio
obtained for random graphs having 2n edges, where n is the number of nodes in the graph.

For a particular value of IV, the time taken by the A* heuristic first increases and then
decreases, with increase in S, the maintenance-time constraint. The initial increase is due
to the increase in the number of feasible solutions, and hence the number of nodes in the
solution-tree Ti. With increase in S, the value h(z) gets closer and closer to h*(z). This
offsets the previous effect of increase in the number of feasible solutions, after a certain

value of S, causing a sudden decrease in the time taken by the A* heuristic. In the extreme
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Figure 3.5: Experimental results. The z-axis shows the view graph instances in lexico-
graphic order of their (N, S) values, where N is the number of nodes in the graph and S is
the maintenance-time constraint.
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case, when almost every view is eventually selected for materialization, one can see that
h(z) is is very close to 0, yielding an efficient heuristic.

As the space requirement of an A* heuristic grows exponentially in the size of the input
graph, we could not run A* heuristic for NV larger than around 25 because of memory-space
limitations. Note that, in contrast, the Inverted-Tree Greedy heuristic takes only quadratic

O(n?) space, where n is the number of views in an OR view graph.

3.7 Concluding Remarks

The view-selection problem in a data warehouse is to select a set of views to materialize so
as to optimize the total query response time, under some resource constraint such as total
space and/or the total maintenance time of the materialized views. In the previous chapter,
we addressed the view selection problem under a disk-space constraint. In practice, the real
constraining factor is the total maintenance time. So, in this chapter, we have considered
the maintenance-cost view-selection problem where the constraint is of total maintenance
time.

We designed an Inverted-tree Greedy approximation for the special case of OR view
graphs. We also designed an A* heuristic that delivers an optimal solution. We carried
out some preliminary experiments to measure the performance of the two algorithms. The

results were very encouraging for the Inverted-tree greedy algorithm.



Chapter 4

Incremental Maintenance of Views

4.1 Introduction

In a data warehouse, views are computed and stored in the database to allow efficient
querying and analysis of the data. These views stored at the data warehouse are known
as materialized views. In order to keep the views in the data warehouse upto date, it is
necessary to maintain the materialized views in response to the changes at the sources. The
view can be either recomputed from scratch, or incrementally maintained by propagating
the base data changes onto the view so that the view reflects the changes. Incrementally
maintaining a view can be significantly cheaper than recomputing the view from scratch,
especially if the size of the view is large compared to the size of the changes [BM90, MQM97,
CKL*97].

The problem of finding such changes at the views based on changes to the base relations
has come to be known as the view maintenance problem and has been studied extensively.
Several algorithms have been proposed over the recent years [BLT86, BCL89, CW91, QW91,
GMS93, GL95, Qua97, MQMI97, GJMI7] for incremental maintenance of view expressions.
The previously proposed algorithms on incremental maintenance suffer from the following

shortcomings:

e None of the earlier work handles the case of general view expressions involving ag-
gregate and outerjoin operators. Quass in [Qua97] is the only work that attempts to
maintain general view expressions involving aggregate operators, but the expressions

obtained are very inefficient and complicated. Gupta et al. in [GJM97] show how to

60
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maintain a simple outerjoin view, but do not address general expressions involving
outerjoin operators. In recent work done concurrently with ours, Griffin and Kumar
[GK98] derives expressions for propagating insertions and deletions through outerjoin

operators.

e To date, most of the incremental maintenance approaches compute and propagate
insertions and deletions at each node in a view expression tree, which could be very

inefficient in cases involving aggregations or outerjoins.

In this chapter, we develop a change-table technique for incrementally maintaining gen-
eral view expressions involving relational and aggregate operators. Instead of computing
insertions and deletions, the change-table technique developed here computes and propa-
gates “change-tables.” We show that the developed change-table technique outperforms the
previously proposed techniques by orders of magnitude. The developed framework easily ex-
tends to efficiently maintaining view expressions containing outerjoin operators. Moreover,
the framework also yields an approach to allow propagation of certain kinds of deletions

and updates directly in a very efficient manner.

Chapter Organization In the rest of this section, we present some basic notation used

throughout this chapter. Section 4.2 presents a motivating example that illustrates the
idea behind this chapter and contrasts previous techniques with the change-table technique
presented in this chapter. In Section 4.3, we briefly describe how our work fits in the
previous frameworks of incremental view maintenance algorithms. In Section 4.4, we define
the refresh operator used to apply the changes represented in a change table and briefly
outline its implementation. In the following section, we discuss propagation of change
tables that originate at an aggregate operator. In Section 4.6, we discuss propagation of
change tables that originate at an outerjoin node. In Section 4.6, we extend our techniques
to propagating certain kinds of deletions and updates directly and more efficiently. We
discuss the optimality of our techniques under some reasonable cost model in Section 4.8.
A brief survey of related work is presented in Section 4.9. Finally, we present our concluding

remarks in Section 4.10.
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4.1.1 Notation

We consider only bag semantics in this chapter, i.e., all the relational operators used are
duplicate-preserving. We use W to denote bag union, = to denote bag minus, VF to
denote deletions from a bag-algebra expression I/, AE to denote insertions into F, o, to
denote selection on condition ¢, [14 to denote duplicate-preserving projection on a set of
attributes A, 7 to denote the generalized projection operator (note that we use slightly
different symbols for duplicate-preserving projection (II) and for generalized projection (77)
operators), x to denote cross-product, X to denote natural join, and X and [QJ to denote
join and full outerjoin operations with the join condition J. The symbols 89 and £ are
used for left and right outerjoin respectively. Also, Attrs(.J) denotes the set of attributes
used in a predicate J or a relation .J.

The only operators that may require explanation are the outerjoin and generalized
projection operators. The (full) outerjoin differs from an ordinary join by including in
the result any “dangling”! tuple of either relation after “padding” it with NULL’s in those
attributes that belong to the other relation. For example, R(A, B) [QR.B:S.B S(B,C) will
include a tuple (@,b,NULL,NULL), if (a,b) € R and (b,c) ¢ S for any ¢. One variant of
the outerjoin operator is a left (right) outerjoin, where the dangling tuples of only the
left (right) operand relation are padded with NULL’s and included in the result. Hence, in
the above example, (a,b, NULL, NULL) would be included in R éoq] S, but not in R &4, S.
The generalized projection operator introduced in [GHQ95] is used to represent the groupby
operation of SQL algebraically. For example, we could use the following expression to define

the SISales view (V) of Example 5.

Vi= ﬂ-storeID,itemID,SumSISales:sum(price),NumSISales:uount(*) (Udate>1/1/95(sales))

For a set of attributes G, we use the notation =g to represent the predicate
Nyec(LHS.g= RHS.g)

in a join condition, where LHS and RHS are the left and right operand relations of the
join operator. For example, when J is (=g A p), the expression R X;S denotes a join
operation with the join condition (A,cq(R.g = S.g) A p), for a predicate p and a set of
attributes G in R and S.

"Dangling tuples are the ones that fail to join with any tuple from the other relation.
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4.2 Motivating Example and Previous Approaches

EXAMPLE 5 Consider the classic example of a warehouse containing information about
stores, items, and day-to-day sales. The warehouse stores the information in three base
relations viz. stores, items, and sales defined by their schemas as follows.

stores(storelD, city, state)

InfoStores(state, area, population)

items(itemlD, category, cost)

sales(storelD, itemID, date, price)

For each store location, the relation stores contains the storelD, the city, and the state
in which the store is located. The relation InfoStores contains more information about
each state. For each item, the relation items contains its itemlD, its category, and its
purchase price (cost). An item has a unique cost, but can belong to multiple categories,
e.g., a whitening toothpaste could belong to dental care, cosmetics, and hygiene categories.?
The relation sales contains detailed information about sales transactions. For each item
sold, the relation sales contains a tuple storing the storelD of the selling store, itemID of
the item sold, date of sale, and the sale price.

Let us consider the following views SISales, CitySales, CategorySales, SSInfo, and
SSFullInfo defined over the base relations. The view SISales computes for each storelD
and itemID the total price of items sold after 1/1/95. The view SISales is an intermediate
table used to define the views CitySales and CategorySales. The view CitySales stores,
for each city, the total number and dollar value of sales of all the stores in the city. The view
CategorySales stores the total sale for each category of items. All the above described views
consider only those sales that occur after 1/1/95. The view SSInfo stores the full outerjoin
of the base relations sales and stores, retaining stores that have had no sales due to some
reasons and also retaining those sales whose corresponding storelD is missing from the table
stores, because, maybe, the table stores has not been updated yet. We define another
view SSFullInfo as the outerjoin view of SSInfo and InfoStores. The views CitySales,
CategorySales, and SSFullInfo are the only views that are stored (materialized) at the
data warehouse and this is represented below by the keyword “MATERIALIZED”? in the
SQL definitions of the views. We wish to maintain these materialized views in response to

changes at the base relations.

2Note that items is denormalized with a functional dependency from itemID to cost.

3The keyword “MATERIALIZED?” is not supported by SQL, but has been introduced in this chapter.
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CREATE VIEW SISales AS

SELECT storelD, itemID, sum(price) AS SumSISales, count(x) AS NumSISales
FROM sales

WHERE date > 1/1/95

GROUP BY storelD, itemlID;

CREATE MATERIALIZED VIEW CitySales AS

SELECT city, sum(SumSISales) AS SumCiSales, sum(NumSISales) AS NumCiSales
FROM SISales, stores

WHERE SISales.storelD = stores.storelD

GROUP BY city;

CREATE MATERIALIZED VIEW CategorySales AS

SELECT category, sum(SumSISales) AS SumCaSales, sum(NumSISales) AS NumCaSales
FROM SISales, items

WHERE SISales.itemID = items.itemID

GROUP BY category;

CREATE VIEW SSInfo AS

SELECT x

FROM sales FULL OUTERJOIN stores
WHERE sales.storelD = stores.storelD;

CREATE MATERIALIZED VIEW SSFulllInfo AS
SELECT x

FROM SSInfo FULL OUTERJOIN InfoStores
WHERE SSInfo.state = InfoStores.state;

Consider the database sizes shown in Table 4.1. We assume that the base relation sales has
one billion sales transactions, and the base relations stores, InfoStores, and items have
1,000, 100, and 10,000 tuples respectively. We illustrate the various maintenance approaches
for the case when 10,000 tuples are inserted into the base relation sales. Table 4.1 shows
the number of tuples changed in the views, as a result of the insertion of 10,000 tuples into
sales. The table also shows the number of tuple accesses (reads and writes) incurred by

different maintenance techniques to update the materialized views.
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Summary Table Number of Changes Tuple Reads and Writes
Tuples (No. of Tuples) | Previous Work | Our Work |
sales 1,000,000,000 10,000
stores 1,000 -
InfoStores 100 -
items 10,000 -
Vi = SISales 1,000,000 600 610,000 ([Qua97]) 10,000
V, = CitySales 100 10 1,020 ([Qua97]) 1,020
V3 = CategorySales 1,000 1,000 12,000 ([Qua97]) 12,000
| Total for Vi, V5, Vs | | I 623,020 [Qua97] | 23,020 ||
V4 = SSInfo 1,000,000,010 10,000 2,000,000,020 [GIMIT] 11,000
11,000 [GK98]
Vs = SSFulllnfo 1,000,000,020 10,000 || 10,100 [GIMIT7]/[GL95] 20,100
1,000,020,110 [GK98]
| Total for V4 and V5 || | | 1,000,031,110 [GK98] [ 31,100 ||

Table 4.1: Benefits of propagating change tables (Materialized views are V3, V3, and V).

Cost Model We have used the simple model of counting tuple accesses for sake of con-
venience as orders of magnitude improvement in number of tuples computed and accessed
translates directly into significant improvement in number of disk accesses. Also, the model
of counting only the tuple reads and writes is implicitly assuming that all the required in-
dexes are available to both techniques thereby a tuple read/write taking only a unit amount
of time. In Section 4.8, we show that the change-table technique developed in this chapter
is superior than previous techniques under a data warehouse cost model.

We use the names Vi, Vy, Vs, V), Vi for the views SISales, CitySales, CategorySales,
SSInfo, and SSFulllInfo respectively. We assume that the relations stores, InfoStores,
and items are small enough to fit in main-memory.

Previous Techniques

Of the previous approaches, only [Qua97] provides techniques to maintain general view
expressions involving aggregate operators. Prior works in [GMS93], [GL95], and [MQM97]
consider aggregates, but in a very limited fashion. Gupta et al. in [GMS93] consider view
expressions involving aggregates, but their maintenance expressions assume that the in-
termediate aggregate subexpressions are materialized. Modifying the techniques presented
in [GMS93] to accommodate nonmaterialized aggregate subexpressions yields an approach
that is conceptually similar to that of [Qua97]. The works of [GL95] and [MQM97] are

restricted to views that have at most one aggregate operator as the last operator in the
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view expression.? Also, group-by attributes are not allowed in [GL95], and [MQM97] main-
tains views on star schemas only. Thus, for the case of general view expressions involving
aggregate operators, we can compare our techniques with that of [Qua97] only.

Quass in [Qua97] extends the techniques in [GL95] by including aggregate operators.
[Qua97] computes maintenance expressions for general views by recursively computing in-
sertions and deletions for each of the subexpressions in the view expression in response to
changes at the base relations. In our example, the insertions to sales, Asales, result in
insertions (AV;) and deletions (VV}) to the view V; = SISales, which is an aggregate view
over the base relation sales. The expressions that compute AV; and VVj, as derived in
[Qua97], are quite complex and are shown in Figure 4.1). As V; is not materialized, the
maintenance expressions for V; essentially recompute the aggregate values of the affected
tuples in V; from the base relation sales. Using the propagation equations from [Qua97],
one can propagate AVy and VV) upwards to obtain expressions for VVy, AV,, VVs, and
AV3 as shown in Figure 4.1).

For our purposes, its not important to understand the maintenance expressions given in
Figure 4.1, and they are given here primarily to show their complexity. We have used ™ to
denote a natural join operation, Mg to denote an equi-join operation on a set of attributes
(G, D< to denote an anti-semijoin operation, and 77 4 to denote the generalized projection
symbol, which represents the groupby operation of SQL as described in Section 4.1. Also,
l.a and r.a refer to the attribute a of the left and right operands respectively.

Computing Tuple Accesses As V] is not materialized, computing tuples of AV) re-

quires that for each tuple in 7T;117(5(cssales)7 we must look up all tuples of sales that have
the same storelID and itemID values. Given the database sizes of Table 4.1, assume that
each tuple of V; is derived from 1,000 tuples of sales on an average. Thus, computing 600
tuples of AV requires 600,000 tuple accesses. We need 11,000 accesses to read the base
relations stores and items into main-memory. Even assuming that rest of the computation
can be done in main memory, the total number of tuples accesses to refresh the views V5
and V3 is 10,000+ 600,000+ 11,000+ 2, 020, where 2,020 tuple accesses are due to the final

tuple updates in V5 and V3. Note that each update requires a read and a write access.

*In some cases, view expressions can be rewritten so that aggregation is the last operator, but the
rewritten query has worse query performance.
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Let Ay = {storelD,itemID, SumSISales, NumSISales}
Let Ay ;ns = {storelD,itemlD, price, count = 1}
Let Ay g = {storelD,itemlID, price = —price, count = —1}
Let A; 5 = {storelD,itemID, SumSISales = sum(price), NumSISales = sum(_count)}
dsales = lla,,,. (0 (dates1/1/05)(Dsales)) W Tla, ., (0 (dates1/1/05)(Vsales))
Vi) = Tlajeea, (Ta, ;(9sales) Mgorerpitemin V1)
AW) =

H{(r.a—l—l.a)|aeA1}( Ur.NumSISales—I—l.NumSISales>0(7TA175 (58&165) NstoreID,itemID "/1))
W Ol NumSISales>0 (T4, ;(0sales) P<siorelD itemiD V1)

Let Ay = {city, SumCiSales, NumCiSales}
Let Agns = {city, SumSISales, NumSISales}
Let Ay g = {city, SumSISales = —SumSISales, NumSISales = —Num§SISales}
Let Ay 5 = {city, SumCiSales = sum(SumSISales), NumCiSales = sum(NumSISales) }
oy = Mla,,, (AVi M stores) W Ila,,, (VV) M stores)
V(Va) = TLajeea,( Ta,;(02) Mstorernitemin Va)
AVa) = Tl(ratla)acas}( Or.NumCiSalestl. NumCiSales>0 (T A, 5 (82) Weiny V2))
W 01 NumCiSales>0 (T4, ;5(02) D<city V)
Let A3 = {category,SumCaSales, NumCaSales}
Let As;ns = {category, SumSISales, NumSISales}
Let A3 4 = {category, SumSISales = —SumSISales, NumSISales = —NumSISales}
Let As5 = {category, SumCaSales = sum(SumSISales), NumCaSales = sum(NumSISales) }
63 = Ila,,, . (AVI Mitems) W Il4, ., (VVi X items)
V(Va) = Mzqjaea,( Ta,;5(3) MstorelD itemin Va)
A(V3) = (ratia)acas)( Or.NumCaSales+1.NumCaSales>0 (T 45 5 (03) Meategory V3))

W Ol .NumCaSales>0 (7TA375(53) Vcategory VS)

Figure 4.1: Maintenance expressions derived using techniques in [Qua97].
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Our Techniques

The approach proposed in this chapter is the following. Instead of computing and prop-
agating insertions and deletions beyond an aggregate node V7, we compute and propagate
a change table for Vi. A change table is a general form of summary-delta tables introduced
in [MQMO97]. We show that propagation of change tables yields very efficient and simple
maintenance expressions for general view expressions involving aggregate and outerjoin op-
erators. The change table cannot be simply inserted or deleted from the materialized view.
Rather, the change table must be applied to the materialized view using a special “refresh”
operator. In Section 4.4, we define a refresh operator that is used to refresh a view using
its change table. The symbol I_Ig is used to denote the refresh operator, where 8 and U
are its parameters specifying join conditions and update functions respectively. Also, the
change table of a view V' is denoted by OV.

For our example, we start with computing the change table OV} that summarizes the
net changes to Vj. For this first level of aggregates, the expression that computes OV; is
similar to that derived in [MQM97]. The change table OV; is computed from the insertions
and deletions into sales by using the same generalized projection (aggregation) as that
used for defining V;. More precisely, OV} =
T storeID,itemID,Sum SISales=sum (price),NumSISales=sum (_count) (ILstoreID price, count=1(0¢(Lsales))

W storelD, price= —price, _count= —1(04(Vsales))), where ¢ is (date > 1/1/95)

Figure 4.2 presents an instance of the base relation sales and the table Asales, which
is the set of insertions into sales. For the given tables, Figure 4.2 also shows the computed
table OV;. Next we propagate the change table OV; upwards to derive expressions for the
change tables OV, and OV3.

ov; = ﬂ-city,SumCiSaleszsum(SumSISales),NumCiSales:sum(NumSISales)(D‘/l X stores)

D‘/S = 7Tcmfegory,SumC’aSales:sum(SumSISales),NumC’rJ,Sales:sum(Nu'mSISales)(D‘/l X items)

Figure 4.2 shows the change table OV3 for the given instance of the base table items. The
change table OV; can be computed similarly. The new propagated change tables are then
used to refresh their respective materialized views V5 and V3 using the refresh equations
below (disregard # and U for now). The details of the refresh equations are given in

Example 7. Note that, as V7 is not materialized, it does not need to be refreshed.

Vy =V, Ug? OVy, and Vi = Vs LUg® OV;
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Insertions into sales (Asales)

SiorelD  itemID Tt price storelD  itemID date price
— NY1 I1 1/4/95 70
NY1 I1 1/3/95 110 o -
. . . NY1 I1 1/5/95 50
NY2 12 7/3/95 200 . .
: : : NY2 12 7/3/95 50
NY2 12 3/1/95 280 .
SJ1 I1 1/1/95 100 NY3 13 171792100
MA1 14 7/3/95 50
stores Table items Table
storelD city state | itemID category cost
NY1 New York NY i C1 50
SJ1 San Jose CA 1 2 50
NY3 Buffalo NY 12 3 30
MAI1 Boston MA 12 C1 30
SISales Change Table (OV7)
storeID itemID SumSISales NumSISales
NY1 I1 120 2
NY2 12 50 1
CategorySales (V3) View CategorySales Change Table (OV3)
category SumCaSales NumCaSales category SumCaSales NumCaSales
C1 690 4 Cl1 170 3
C2 210 2 uy 2 120 9
C3 480 2 C3 50 1

Refreshed CategorySales (V3) View

NumCaSales

category  SumCaSales
C1 860
C2 330
C3 530

7
4
3

Figure 4.2: Computing change tables and refreshing the CategorySales (V3) View
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InfoStores View
state Area Population
(in thousand sq. miles) (in millions)
NY 100 25
CA 150 35
SSFullInfo (V5) View
storelD  itemID date price  st.storelD st.city st.state IS.state IS.area IS.pop
NY1 It 1/3/95 110 NY1 New York NY NY 100 25
NY2 12 7/3/95 200 NULL NULL NULL  NULL  NULL  NULL
NY2 12 3/1/95 280 NULL NULL NULL ~ NULL  NULL  NULL
SJ1 In 1/1/95 100 SJ1 San Jose CA CA 150 35
NULL NULL NULL NULL NY3 Buffalo NY NY 100 25
NULL NULL NULL NULL MAI1 Boston MA NULL NULL NULL
SSFulllnfo Change Table (OVs = (Vsales 4 stores) 4% InfoStores)
storelD  itemID date price  st.storelD st.city st.state IS.state IS.area IS.pop
NY1 It 1/4/95 70 NY1 New York NY NY 100 25
NY1 It 1/5/95 50 NY1 New York NY NY 100 25
NY2 12 7/3/95 50 NULL NULL NULL ~ NULL  NULL  NULL
NY3 I3 1/1/92 100 NY3 Buffalo NY NY 100 25
MA1 14 7/3/95 50 MA1 Boston MA NULL NULL NULL
Refreshed SSFullInfo (V)

storelD  itemID date price  st.storelD st.city st.state IS.state IS.area IS.pop
NY1 11 1/3/95 110 NY1 New York NY NY 100 25
NY2 12 7/3/95 200 NULL NULL NULL ~ NULL  NULL  NULL
NY2 12 3/1/95 280 NULL NULL NULL ~ NULL  NULL  NULL
SJ1 I 1/1/95 100 SJ1 San Jose CA CA 150 35
NY3 I3 1/1/92 100 NY3 Buffalo NY NY 100 25
NY1 It 1/4/95 70 NY1 New York NY NY 100 25
NY1 It 1/5/95 50 NY1 New York NY NY 100 25
NY2 12 7/3/95 50 NULL NULL NULL  NULL  NULL  NULL
MA1 14 7/3/95 50 MA1 Boston MA NULL NULL NULL

Figure 4.3: Refreshing the outerjoin view expression SSFullInfo (V3)
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We illustrate the refresh operation by showing how the CategorySales view (V3) is re-
freshed. Figure 4.2 shows the materialized table V5 = CategorySales for the given instance
of base tables. For each tuple ovs in OV3, we look for a match in V3 using the join con-
dition Vj.category = OVj.category (specified in #3). The tuple avs = <C1,170,3> in OV3
matches with the tuple vs = <C1,690,4> of V3. The tuple <C1,170,3> in OV35 means that
three more sales totaling $170 have occurred for category C1. The total number of sales
for C1 is now 7 for a total amount of $860. To reflect the change, the tuple v is updated to
<C1,860,7> by adding together the corresponding aggregated attributes (specified in the
Us parameter of the refresh operator).

To compute the number of tuple accesses in Table 4.1, note that most of the computation
is done in computing OV7, which requires 10,000 tuple accesses to read Asales. Given the
small sizes of OV;, items, and stores, the rest of the computation can be done in main
memory, and hence the total number of tuples accesses is 10,000 (to read Asales) +
11,000 (to read items and sales) + 2,020 (to refresh V; and V3) = 23,020, showing that
our technique is very efficient in comparison to previous approaches.

Outerjoins

The change-table technique can also be used for maintenance of view expressions involv-
ing outerjoin operators. Quterjoin views are supported by SQL and are commonly used in
practice, such as for data integration [GJM96]. We illustrate our technique for maintaining
outerjoin views by deriving maintenance expressions for outerjoin views V4 and V5. The net
changes to V4, in response to insertions Asales into sales, can be succinctly summarized
in a change table OV,. The change table OV, is computed and then propagated up as

follows.

av, = Asales % stores

sales.storelD=stores.storelD

avs = DV;;é% InfoStores

stores.state=InfoStores.state

Vs = Vsl OVs

Recall that {4 denotes the left-outerjoin operator. Figure 4.3 shows the materialized
view V5 and the change tables OV, and OV for the database instance of Figure 4.2. The
refresh of Vs proceeds as follows. Each tuple in OV5 is matched with tuples in V5 that have
the same stores and InfoStores attributes, but have all NULL’s in the attributes of sales.
This join condition used for matching is specified in 5. In our example of Figure 4.3, one

of the matching pairs is (gvs, vs), where ovs = <NY3, 13, 1/1/92, 100, NY3, Buffalo, NY,
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NY, 100, 25> € OVs and vs = <NULL, NULL, NULL, NULL, NY3, Buffalo, NY, NY, 100, 25>
€ V5. The match results in an update of vs to ovs, according to the update specifications in
Us. Similarly, the other matching pair <NULL, NULL, NULL,NULL, MA1, Boston, MA, NULL,
NULL, NULL> € Vs, and <MAI, 14, 7/3/95, 50, MA1, Boston, MA, NULL, NULL, NULL>
€ OVs is handled. The remaining unmatched tuples in OVy are inserted into the view V.
The refreshed view V5 is shown in Figure 4.3.

Given the small sizes of stores, InfoStores, Vsales, and OVy, the number of tuple
accesses required to compute the change tables and refresh V; is 10,000 (to read Asales)
+ 1,000 (to read stores) + 100 (to read InfoStores) + 20,000 (to refresh Vj).

Ours is the first work to address maintenance of general view expressions involving
outerjoin operators. Recently, in work done concurrently with ours, [GK98] also reports
an algorithm to handle view expressions involving outerjoins, extending previous work on
maintenance of outerjoin views in [GJM97]. [GK98] uses insertion and deletion sets to prop-
agate changes through outerjoin operators. Thus, insertions in sales result in insertions
and deletions at SSInfo, which in turn result in insertions and deletions at SSFullInfo.
However, according to the change propagation equations in [GK98], in order to compute the
insertions and deletions at SSFulllInfo, we have to compute the intermediate view SSInfo,

thereby incurring more than a billion tuple accesses. a

4.3 The Change-Table Technique for View Maintenance

In this section, we explain the framework developed in [QW91, GL95] for deriving incre-
mental view maintenance expressions and relate it to the change-table technique developed
in this chapter.

Let a database contain a set of relations R = {Ry, Ry,..., R,}. A change transaction
t is defined to contain for each relation R; the expression R; « ( R, = VR;) W AR,
where V R; is the set of tuples to be deleted from R;, and AR; is the set of tuples to be
inserted into R;. Let V be a bag-algebra expression defined on a subset of the relations in
R. The refresh-expression New(V,t)" is used to compute the new value of V. Griffin and
Libkin in [GL95] define the expression New(V,t) to be:

New(V, 1) = (V = V(V,)) & AV, 1).

°[GL95] uses the notation pre(t, V) instead.
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So, deriving view maintenance expressions for a view V entails deriving two functions V(V/, t)

and A(V,t) such that for any transaction ¢, the view V' can be maintained by evaluating
(V = V(V,t)) W A(V, ).

In order to derive V(V,t) and A(V,t), [GLI5] gives change propagation equations that show
how deletions and insertions are propagated up through each of the relational operators.
The work of [GL95] was extended to include aggregate operators by Quass in [Qua97].
The change-table technique presented in this chapter can be thought of as introducing
a new definition for New(V,¢). We define the expression New(V,t) for view expressions

involving aggregates and outerjoins as
New(V, ) = (V Ug O(V, 1)),

where O(V,t) is called the change table, I_Ig is the refresh operator used to apply the
net changes in a change table to its view, and (,U) are the parameters of the refresh
operator. The parameter 8 specifies the join conditions on the basis of which the tuples
from the change table and the view are matched, and U specifies the functions that are
used to update the matched tuples in V.

The new definition of New(V,t) is motivated from the following observation. In the
case of general view expressions involving aggregate operators, it is usually more efficient to
propagate the change tables beyond an aggregate operator, instead of propagating insertions
and deletions. Propagation of a change table is particularly efficient when the change table
depends only on the changes to the base relation (self-maintainability [GJM96]), while
the insertions and deletions depend on the old value of the view. As we showed in the
motivating example, if the aggregate node is not materialized, the computation of insertions
and deletions could be very expensive.

The new definition of New(V,¢) means that we need to define a general refresh operator,
and derive change propagation equations for propagating change tables through various
relational, aggregate and outerjoin operators, to obtain a complete technique for efficient
incremental maintenance of general view expressions. In the following section, we present a
formal definition of the refresh operator. In later sections, we derive change propagation

equations for general view expressions involving aggregate and outerjoin operators.
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4.4 The refresh Operator

In this section, we give a formal treatment of the refresh operator. Given a materialized
table V' and its change table OV, refresh applies the changes represented in a change table.
The binary refresh operator is a generalization of the refresh algorithm used in [MQM97]
and can be implemented using the modify operation discussed in [QM97].

We denote the refresh operator by I_Ig,]7 where 6 is a pair of two mutually exclusive join
conditions and U is a list of update function specifications. The refresh operator takes
two operands, a view V' to be updated, and a corresponding change table (denoted by OV').

Let V and OV be views with the same attribute names. The subscript 8 associated with
the operator is a pair of join conditions J; and J3. The update list U is a specification
of how the attributes are updated. In an expression V I_Ig,] avV, each tuple ov of OV is
checked for possible matches (due to J1 or J3) with tuples in V. If a match is found due
to the join condition Jy, then the corresponding matching tuple v of V is changed using
the specifications in the update list U (as described in the next paragraph). If the match
is due to Jo, the tuple v of V is deleted. The unmatched tuples in OV are inserted into V.
The matching done is one-to-one in the sense that a tuple ov € OV matches with at most
one tuple in V and vice-versa. If ov finds more than one match in V, then an arbitrary
matching tuple from V is picked.

The tuple v of V matching with the tuple ov of OV due to join condition [ is updated
as follows. Let U = <(Bu, f1), (B2, f2), ..., (B, fr)>, where By,..., By are attributes of
V and fi,..., fy are binary functions. For each pair (B;, f;) in U, the B; attribute of v is
changed to f;(v(B;),ov(B;)), where v(X) and ov(X) denote the values of the X attribute

of v and ow respectively.

EXAMPLE 6 Consider the view CategorySales (V3) defined in Example 5. The table
CategorySales as defined in Example 5 computes the total sales for each category. In
this example, we illustrate the refresh operation by applying the changes summarized in a
change table OCategorySales to its view CategorySales using the refresh operator.
For this example, we consider the instance of the base table shown in Figure 4.2. The
figure also shows the materialized table CategorySales for the given instance. In re-
sponse to the insertion of the table Asales into the base table sales, the change table

OCategorySales can be computed and is shown in the figure. The view CategorySales
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is refreshed using the expression CategorySales I_Igf’ OCategorySales, where the param-
eters, 3 = (J1,J2) and Us, of the refresh operator are defined as follows.
e Jiis
(Zcategory A ((CategorySales.NumCaSales +(OCategorySales).NumCaSales) # 0))
e Jyis
(Zcategory A ((CategorySales.NumCaSales +(OCategorySales).NumCaSales) = 0))
e Us = <(SumCaSales, f), (NumCaSales, f)>, where f(z,y) = z + y for any z,y.

Note that =.4¢c40ry represents the predicate
(CategorySales.category = (OCategorySales).category)

here. Now, we try to run the refresh operation on the view CategorySales and its change
table OCategorySales of Figure 4.2.

The first tuple ovs = <C1,170,3> of OCategorySales matches with the tuple vz =
<(C1,690,4> in CategorySales using the join condition J;. The match results in update
of the tuple <C1,690,4> in CategorySales according to the specifications in the update
list Us. The attribute SumCaSales of the tuple vs is changed to ovs(SumCaSales) +
vs(SumCaSales) = 170 4+ 690 = 860 and the attribute NumCaSales is changed to 4 + 3 =
7. Similarly, the tuple <C2,210,2> € CategorySales matches with the tuple <C2,120,2> of
OCategorySales and is updated to <(C2,330,4>. The tuple <C3,480,2> of CategorySales
is also updated to <(C3,530,3> accordingly.

To illustrate deletion from the view CategorySales, let us assume that the change table
OCategorySales contains a tuple b = <C2,-210,-2> as a result of a deletion of a couple
of tuples from the sales table. The tuple b = <C2,-210,-2> will match with the tuple
v =<C2,210,2> in V3 due to the join condition [J3, and the match will result in deletion

of v from CategorySales. O

Implementation of the refresh operator One simple way to implement the refresh

operator is to use a nested loop algorithm, with the change table as the outer table, and
the materialized view table as the inner table. The algorithm is shown in Algorithm 9.
The nested loop algorithm is just one possible way to implement the refresh operator. In
fact, Quass and Mumick [QM97] show that the refresh operation can be implemented more
efficiently by using existing outerjoin methods inside the DBMS. [QM97] defines a modify

operator using a pair of join conditions and a series of condition-action lists. [QM97]
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shows that the modify operator can be easily implemented in a DBMS through slight

modifications of existing physical query operators for outerjoins, such as hash outerjoin,

sort-merge outerjoin, and nested-loop outerjoin. Cost-based optimization can be used to

select the method most suitable for a given evaluation. [QM97] shows that doing the refresh

operation using the modify operator is significantly faster than iterative algorithms. [QM97]

also gives a performance analysis of several different physical implementations of the modify

operator. The implementation techniques of the modify operator can also be used for the

refresh operator used in this chapter for applying change tables.

Algorithm 9 Refresh Algorithm
Input
Table V(A1, Az, ..., A,).
Change Table OV (Aq, Az, ..., A,).
8= (T1,72),U = <(Aiy, 1), (Aig, fa)s s (Aiy, fi)>
Output
Refreshed table V =V I_Ig av.
Method
DECLARE cursor_box CURSOR FOR
SELECT Ay, Ag,..., A, FROM OV;
OPEN cursor_box;
LOOP
FETCH cursor_box INTO :0aq, :gag, ..., 0ay;
UNTIL not-found
DECLARE cursor_view CURSOR FOR
SELECT Ay, Ay, ..., A, FROM V
WHERE (J1(A4, Ag, ..., Ay, 001, :0ag, .. .,:0a,) OR
J2(A1, ..., Ay, 0aq, ..., :0a,)) AND (NOT changed);
OPEN cursor_view;
LOOP
FETCH cursor_view INTO :aq,:as, ..., ay,;
UNTIL not-found
IF not-found
INSERT INTO V VALUES (:0a4, :0ag, . . ., :0a,);
ELSE-IF J3(:a1,:az, ..., ay,, 0a1,:0ag, . .., 0a,)

%
%0
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DELETE FROM V WHERE CURRENT OF cursor_view;
break;
ELSE
UPDATE V SET update attributes =
function of update attributes from cursor_box and cursor_view;
Mark the tuple at the CURRENT OF cursor_view as changed.
break;
ENDIF
ENDLOOP
CLOSE cursor_view;
ENDLOOP
CLOSE cursor_box; &

4.5 Propagating Change Tables Generated at Aggregate
Nodes

In this section, we show how to generate a change table at an aggregate node, and de-
rive change-propagation equations used to propagate these change tables through various

operators. We start with a few definitions.

Definition 9 (Aggregate-change table) A change table for a view expression involving
aggregates is defined as an aggregate-change table® if the change table either originated at
an aggregate operator or is a result of propagation of a change table that originated at an

aggregate node, using the propagation equations we will present in Table 4.2. a

For example, the change tables, OSISales, OCitySales, and OCategorySales, computed
for the views SISales, CitySales, and CategorySales respectively in Example 5 are

aggregate-change tables.

Definition 10 (Distributive functions) An (aggregate) function is defined as distributive
if it can be computed by partitioning the input parameters into disjoint sets of parameters,

aggregating each set individually, then further aggregating the (partial) results from each

®The notions of aggregate-change table and outerjoin-change table (introduced later in Section 4.6) have
been defined only for simplying the presentation of the material in this chapter.
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set into the final result. For eg., sum, max, and min are distributive aggregate functions,

while average is not. O

Definition 11 (Self-maintainable aggregates) An aggregate function is defined to be
self-maintainable with respect to a change transaction ¢ if the new value of the function can
be computed solely from the old value of the function and the change transaction ¢ to the
base data. For eg., sum is self-maintainable with respect to insertions as well as deletions.
The aggregate functions min, max are self-maintainable with respect to insertions but not

with respect to deletions. O

The notions of aggregate-change table and outerjoin-change table (introduced later in
Section 4.6) have been defined only for simplying the presentation of the material in this
chapter. We will show that a restricted definition of the general refresh operator is suf-
ficient to refresh a view using its aggregate-change table. The restricted form yields very
simple change-propagation equations for propagation of aggregate-change tables through
various operators.

We use the notation Attrs(y) to represent the set of attributes referenced in . Thus,
Attrs(U) refers to the set of attributes specified in the update list U and Attrs(#) represents
Attrs(J1) U Attrs(J2), where J1 and J; are the join conditions in 6 = (71, J2).

4.5.1 Generating the Aggregate-Change Table at an Aggregate Node

Consider a view V defined as an aggregation over a select-project-join (SPJ) expression. In
this section, we give a brief description of how an aggregate-change table is generated at
V in response to the insertions and deletions at the base tables. The method is similar to
that of generating a “summary-delta table” for a “summary table” [MQM97].

For the case when a view V is defined as an aggregation over an SPJ expression, the
insertions and deletions to the base tables can be propagated to V as a single aggregate-
change table, which we denote by OV. Without loss of generality, let us assume V to be
7TG7B:J:(A)(R), where R is the SPJ subview, GG is the set of group-by attributes, f is an
aggregate function, and A is an attribute of R. In the case of self-maintainable aggregate
functions, the aggregate-change table OV can be computed from the insertions and deletions
into R by using the same generalized projection as that used for defining the view V. More

precisely, OV can be computed as

av = ﬂ-G,f(A),Count:sum(_count) (HG,A,_coum‘ZI (AR) W HG,A:N(A),_coum‘:—l (VR))7
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where the function N is suitably defined depending on the aggregate function f. For
example, in the case of a sum aggregate and the count aggregate, the function N negates
the attribute value passed.

If the aggregate function f is self-maintainable (i.e., the new value can be computed
from the old value of the function and the changes to the base data), then the special form
of refresh operator defined in the next subsection is sufficient to apply the change table
OV to the view V. For the case of aggregate functions that are not self-maintainable, we
need more complex functions in the update list U of the refresh operator. For example, to
handle deletions from a subview of a simple MIN/MAX aggregate view, the update function
needs to compute the new MIN/MAX value, if needed, by accessing the base relations (see
[IMQM97] for details). The change propagation equations and other formalisms presented
in this chapter are independent of the complexity and input parameters of update functions
used in the update list U of refresh.

In a general view expression tree V, an aggregate-change table is generated at the first
aggregate-node, and then propagated upwards through various operators to V. In the next
subsections, we define a restricted form of refresh operator used to apply aggregate-change
tables, and then derive change propagation equations for propagating aggregate-change

tables.

4.5.2 Refresh Operator for Applying Aggregate-Change Tables

In this section, we define the characteristics of the “aggregate-refresh” operator that is
used to apply an aggregate-change table to its view. The “aggregate-refresh” operator is a
special case of the generic refresh operator defined in Section 4.4. In the next subsection,
we derive simple change propagation equations using these special characteristics.

Recall that the expression used to refresh a view V using its change table OV is:
V =V U] OV, where § = (J1,J2) and U is the update list. In the case of an
aggregate-refresh operator used to apply aggregate-change tables, J1 is (=¢ A —p)
and J2is (=g A p), for some predicate p and a set of attributes G common to both V' and
OV. As defined before, the notation =g here represents the predicate /\geG(V-g = 0OV.g),
as V and OV are the left and right operands of the join operator. Also, the set of attributes
G is disjoint from the set of attributes, Attrs(U), that are being updated. The predicate p
specifies when the matching tuple in V is to be deleted, i.e., when the value of the attribute

that stores the number of deriving base tuples becomes zero. The above characteristics
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are summarized in the definition of an aggregate-refresh operator below.

Definition 12 (Aggregate-refresh Operator) A refresh operator UY, where 6 =
(J1,J2), is said to be an aggregate-refresh operator if, for some predicate p and a
set, of attributes G common to both the view and its aggregate-change table,
(1) The join conditions J1 and J3 can be represented as:
o J1: (¢ A —p)
e J32: (=¢ A p),and
(2) G NAttrs(U) = ¢. ]

The characteristics of the aggregate-refresh operator are used to derive simple change

propagation equations for propagating aggregate-change tables.

4.5.3 Propagating Aggregate-Change Tables

For the purposes of change propagation equations shown in Table 4.2, we assume that an
aggregate-change table has been generated (as shown in Section 4.5.1) at the first aggregate
operator in a view expression, in response to insertions and/or deletions at a base relation.”
Table 4.2 gives change propagation equations for propagating (already generated) aggregate-
change tables through relational, aggregate and outerjoin operators. In Theorem 13, we will
prove the correctness of the change propagation equations of Table 4.2.

Each row in Table 4.2 considers propagation of an aggregate-change table through a
relational, aggregate, or outerjoin operator. The first column gives the equation number
used for later reference in examples. The second column in the table gives the outermost
operator used in the definition of V. Consider a change transaction ¢ consisting of the
following change: F; < (F; UY OF;), where E; is a subexpression, OF) is an aggregate-
change table and UY is an aggregate-refresh operator. We assume 6 to be (J1,72),
where J1is =g A —p and J5is =g A p, for some predicate p and a set of attributes G in
Fy. The third column expresses the new expression for V' due to the change ¢, by replacing
Eyin V by (E; UY OF;).2 The fourth column gives the refresh equation New(V,t) that
is used to refresh the view V. Theorem 13 proves that the refresh equations (New(V, 1)

of fourth column) are correct, by showing that they are equivalent to the expressions in

"When two or more base relations are updated simultaneously (or a relation appears more than once in
a view expression), we handle the updates in a sequence.

8The case of changes occurring at both the subexpressions E; and F» can be handled by first propagating
changes due to Fi, followed by propagating changes due to Fs.
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T = Attrs(E))

New V
No. v 6= (J1,T2) Refresh Equation av. Conditions
Jiis=g A -p
Jais=¢ Ap
1 a,(Fr) o,(Ey UY OFy) vV uY o,(0F) o, (0F) | Attrs(p) C G
2 M4 (Ey) M4 (B Uy OF;) VUl a(OF) M4 (0F;) | Attrs(d) C A
14 U%; (DEl X Ez)
3 E1 X E2 (El |_|5] DEl) X E2 91 = (jl A Emjg A ET) \:‘El X E2
T = Attrs(Es)
V Uy (OF; XyEy)
4 El NJEQ (El UgDEl) NJE2 01 = (jl A Eq—,jg A ET) DEl IX]JEQ Att.I‘S(J) Q G'
T = Attrs(E»)
5 | Brw By | (BiUY OE)wWE, | (V= Ey) UJOE) W Ey) mp
) Vv |_|0D;1 7TGv/7/(A)(DE1) A; € AEtFS(([),
6 ﬂ-G’,F(El) TFG',F(EI Ug DEl) 01 = (EGI /\ —|p1’ EG' /\ Pl) ﬂ-G',F(DEI) Gl g G fi’s are
F = f1(A1), p1is (V.Cnt+0OV.Cnt) #0 distributive,
oy Ju(Ag). Uy =<(A1 fi)ee oo, (A fo)> and the function
in U for A; is f;.
V Ul (OF; &, Fy)
T | BV, Ey | (B UYOE) LBy | 6= (T A =T A =) | (OF; $4,E,) | Attrs(J) CG

Table 4.2: Change propagation equations for propagating aggregate-change tables
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the third column. Theorem 13 also proves that the refresh operator used in the refresh
equation of fourth column is an aggregate-refresh operator. The fifth column gives the
expression for the propagated aggregate-change table OV, which can be derived from the
refresh equation of the fourth column. Finally, the last column of the table states the
conditions under which the equivalence of the fourth column and third column expressions
holds, i.e., conditions under which the change propagation can be done. If the condition is
not satisfied, then the refresh equation cannot be used to propagate the aggregate-change
table. We will show later how to handle changes at an operator node when the conditions
in the sixth column are not satisfied.

The first row of the table depicts the case of a selection view V = o,(F;), where £} is
a subexpression. In this case, the expression for the propagated aggregate-change table is:
OV = 0,(0F,), as shown in the fifth column. For the case of selection view, the condition
required for the change propagation is Attrs(p) C . In other words, an aggregate-change
table can be propagated through a selection operator if the selection condition is defined
over the GG attributes, which are the attributes that are not being updated by the update
functions of the refresh operator.

The second row depicts the case of projection on a set of attributes A. The condition
implies that an aggregate-change table can be propagated through a duplicate-preserving
projection only if all the attributes used in the join conditions of  are included in the set
A.

The third row considers the case of a cross product operation. In this case, the parameter
6 of the refresh operator is changed also to include the condition =444(&,) in the join
conditions [Jy and J9. No conditions are specified in the sixth column, meaning that an
aggregate-change table can always be propagated through a cross product operator.

The fourth row, depicting the case of a join operation, follows from the combination of
previous cases of selection and cross product.

The fifth row considers propagation of an aggregate-change table through the bag union
operator. The expression for OV in the fifth column gives only the change table (OV =
OF). As the refresh equation in the fourth column shows, the refresh in this case is more
complex than simply applying the change table. We need to first apply a set of deletions
(VV = Fj), followed by refreshing the result with the change table (OV = OF}), followed by
inserting the set (AV = Ej) into the result. One can derive a very efficient refresh equation

for the case of bag union operator, if the tuples in V are “tagged” L. or R depending on
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whether they come from the left operand F; or the right operand F;. We omit the trivial
details here.

The sizth row depicts the case of propagation through a generalized projection (aggre-
gate) operator. For the purposes of aggregate-change tables, we assume that any subex-
pression involving an aggregate operator stores with each tuple a count of the number of
deriving base tuples. This count is stored in a general attribute which we will call the count
attribute. For example, NumCiSales and NumCaSales are count attributes in the views
CitySales and CategorySales of Example 5. After propagation through the aggregate
operator, the join conditions and the update specifications of the aggregate-refresh op-
erator change as shown in the fourth column. The attribute named Cni, used in defining p;
in the join conditions of #; represents the count attribute of V. The condition in the sixth
column says that each aggregate function f; is distributive, the set of group-by attributes G’
is a subset of (&, and the update list U used to change F contains (A;, f;) for all 1 <14 < k.
Note that the duplicate-elimination operation is a special case of generalized projection,
and is covered by the sixth row.

The seventh row gives the refresh equation for the case of propagating an aggregate-
change table through a full outerjoin operation. In this case, the refresh operator speci-
fications change as in the case of cross product. For simplicity, we have assumed that the
aggregate-change table OF; doesn’t result in any deletions from F;. Otherwise, a more
extended refresh operator is required as discussed in Section 4.6.3.

Note that we do not give any change propagation equation for the case of monus because

monus is a singularity point (see paragraph below).

Singularity Points We refer to the operator nodes in a view expression tree, where none

of the refresh equations in Table 4.2 apply, as singularity points. Aggregate-change tables
cannot be propagated through singularity points. For example, a selection on the result
of an aggregate function is a singularity point, because it will not satisfy the condition
Attr(p) C G given in the first row of Table 4.2.

Consider a view V and a singularity point V7, which is a subexpression of V', in the
expression tree of V. As the changes to V; cannot be summarized into a change ta-
ble, we instead compute insertions (AV;) and deletions (VV;) into V; and propagate the
insertions and deletions beyond Vj. The tables AV); and VV; can be easily computed
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from the change table of its descendant in the expression tree. If V; is not material-
ized, we use the base relations to compute (relevant parts of) Vi3 whenever required by
the refresh algorithm. The insertions (AV;) and deletions (VV;) to V; are then prop-
agated through the singularity point using the change propagation equations of [GL95,
Qua97]. The computed insertions and deletions at a singularity point can then be propa-
gated further upwards in the expression tree using techniques presented in this chapter (as
they may result in change tables further on). Hence, the presence of singularity points in an
expression tree doesn’t preclude application of our change table techniques for incremental

maintenance.

Theorem 13 Assume that the refresh operator used in the expression of the third column
in Table 4.2 is an aggregate-refresh operator. Then,

(1) the change propagation equations given in Table 4.2 for propagation of aggregate-
change tables are correct, i.e., for each row, the expression in the third column is equivalent
to the refresh equation in the fourth column, and

(2) the refresh operator derived in the refresh equation (column /) is an aggregate-

refresh operator as well.

Proof: We refer to the expression Fy I_Ig OF; as the change equation throughout this proof.
As shown in the Table 4.2, the expression in the fourth column is referred to as the refresh
equation.

e Selection: V = o,(FE). It is easy to see that if a tuple v € V is deleted or updated

during the refresh equation of the fourth column, then v € F; is also deleted or updated in
the same manner by the change equation. And as updates do not affect any attributes in
Attrs(q), the updated v is retained in o, (E; U OF)).

In this paragraph, we show that the refresh equation indeed captures all the updates or
deletions required. First, note that in the change equation F} I_Ig,] OF, if a tuple oe; € OF,
deletes/updates a tuple v € o,(Fy) C E4, then cey € 0,(0F;). The above is true because
the matched pair (v,oe1) should have the same G attributes, and as Attrs(p) C G, if v
satisfies ¢ then oe; must also satisfies ¢. Thus, such a tuple ce; in o, (0F;) = OV would
update/delete the corresponding tuple v € V = 0,(F;) in the refresh equation. Therefore,
all the updates or deletions that happen to tuples in o, (£;) due to the change equation are
also captured by the refresh equation. The update to a tuple v ¢ o,(F7) due to the change

equation is irrelevant, as neither v nor its updated form will satisfy the predicate q.
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Let I be the set of tuples that is inserted into F; due to the change equation. Now,
we show that o,(/) is inserted into V' by the refresh equation, implying that the refresh
equation doesn’t miss any legitimate insertions into V. Note that I is the set of tuples in
OF; that do not find a match in . As 0,(I) C o0,(0F;) = OV, no tuple in o,(I) will
find a match in V' C E;. Hence, o,(I) will be inserted into V' due to the refresh equation.

Finally, we show that all the insertions into V' due to the refresh equation are legitimate.
A tuple ov matches with a tuple v only if they have the same G attributes. Hence, if a tuple
av € 0,(0F,) is inserted into V = o,(F}) in the refresh equation (due to a lack of match
in V), then ov will not find a match in F; also. Hence, ov € OF; will be inserted into £
by the change equation, and as ov satisfies ¢, it will also be retained in o, (£} I_Ig OFy).

e Projection: V =11 4(Fy). If Attrs(d) C A, then the information needed to decide the

effect of a tuple oe; € OF; on a tuple e; € FEy, if any, is available in I14(e;). Hence,
I14(OF;) can be applied directly to V' = I14(£;). Also, note that the resulting refresh
operator is also an aggregate-refresh operator.

e Cross Product: V = F; X FE;. Consider (E; X Fj) I_IE,J1 (OF; x E3), the refresh
equation. Let us partition the tables (£y X FEj3) and (OF; x E;) by the tuple values of

Ey. As J1 and Jo in 61 include =p¢4r5(E,), €ach of the partitions is refreshed independently
by the refresh equation. It is easy to see that a tuple <oej,e;> € OV will match with a
tuple <ey,e3> € V due to 6 in the refresh equation, if and only if the tuple ce; € OF;
matches with a tuple e; € Fy due to the parameter  in the change equation. The matches
will result in same update to the Fy attributes or deletion in both the expressions. Also, a
tuple oe; € OF; doesn’t find a match in Fy if and only if the tuples in (ge; x FE3) C OV
do not find a match in V.

It is easy to see that the refresh operator in the fourth column with the new specifications
is also an aggregate-refresh operator.

e Join: V = Fy My Fy. Follows from the previous cases, but stated in the table for

convenience.

e Union: V=F W Fy. As ((Fy W E3) = FE3) = Ey, the equivalence of the expres-

sions is obvious.

e Aggregation: V = 7TG/7J:(A)(E1). Without loss of generality, we prove this case when
k=1. Let fy = f and Ay = A, the aggregated attribute. We assume that (G' C G), A €
Attrs(U), U = <(A, f)>, and that f is a distributive function. Consider tuples €1, e, ..., €,

in F1 such that they have the same G’ values and their attribute A values are ay,as, ..., a,.
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Also, assume that the tuple e; matches with some tuple oe; € OF; due to J1 and that
the aggregated attribute A value of ge; is 0a;.? If e; doesn’t find a match in OF;, then
assume that oa; is such that f(a,oa;) = a for simplicity of the proof. Note that oe;’s
have the same G’ values too. The attribute value a; of ¢; is updated to f(a;,0a;) due
to U in the change equation. Thus, due to the change equation the tuple ey, eq,..., €,
will result in an aggregated value of f(f(a1,0a1), f(ag,0asz),..., f(a,,0a,)) in the equa-
tion of the third column. Thus, we need to show that the aggregated A value of the tuple
v € V = T sa)(F1) that is derived from ey,..., e; changes from f(ai,az,...,a,) to
f(f(ay,0ay1), f(ag, 0az), ..., f(a,,0a,)) in the refresh equation. By the definition of OV,
the tuples oey,...,oe, € OF; will be grouped to yield the aggregated attribute value
f(oay,...,0a,)), and the refresh equation of V will change the aggregated value of the
grouped value of e;s from f(a1,aq,...,a,) to f(f(a1,az,...,a,), f(0ay,...,0a,)). As fisa
distributive function, we have f(f(a1,0a1), f(az,0as),..., f(a,, 0a,)) = f(f(a1,asz,...,a,),
f(oay,...,0a,)), hence the refresh equation of V' correctly updates the aggregated attribute
value of the tuple v in V.

All insertions into Fy due to OF in the change equation will be converted to appropriate
aggregated insertions or updates into V' by the refresh equation. The deletions from F;
need not necessarily result in any deletions from V. A tuple is deleted from V only if its
aggregated attributes become zero, which is independent of the deletions of the deriving
tuples from Fj.

It is easy to see that the refresh operator in the fourth column with the new specifications
is also an aggregate-refresh operator.

e Quterjoin: V = F; [QJ F5. Suppose OF induces a set of insertions [ into the relation

Ey. Each tuple i € I results in a set of tuples Fj = i é%J Fy in OV. No tuple €} € E}
finds a match in V' due to the predicate (=¢ A =), because if it did, ¢ would have found
a match in E; due to =g. Therefore, the refresh equation results in £ being inserted into
V for each 7 € I.

Let us assume that M(C OF}) is a set of tuples that find a match in £ due to =g,
and thus result in update of a tuple in F;. Each tuple m € M results in a set of tuples
El'=m é%J Fyin OV. Note that, EJ* may consist of just one tuple <m,NULL>. If m € M
matches with a tuple e; € Fy due to both having the same G attributes, then each tuple

°If the match is due to J2, then we need to show that the pair of values a; and Oa; is such that
f(ai,0a;,b) = f(b) for any b. Once shown, the observation can be used to easily make the rest of the
argument go through.
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<m, ey> € EJ* would match with the corresponding tuple <ej,e;> € ES' = ¢4 é%J Fs. The
tuple <eq, es> exists in F; E%J ez, because the pair (m, e3) satisfies J and Attrs(J) C G.
Note that if E7* consists of only (m,NULL), then E3' consists of <e;,NULL> only. Also,
as F{?> C V, the refresh equation of V affects the updates correctly. As noted before, if
OF, results in deletions from F', then the refresh equation derived here would need to be

modified using a more extended refresh operator as illustrated in Section 4.6.3. "

EXAMPLE 7 In this example, we illustrate the techniques developed in this section
on the views of the motivating Example 5. Recall from Example 5 the definitions of

Vi (SISales), V; (CitySales), and V3 (CategorySales). We have

Vi = TtoreID itemID,SumSISales=sum(price),NumSISales=count(x) (T date>1/1/955ales)
Vy = Vi M stores

Vo = Tty SumCiSales=sum(SumSISales),NumCiSales=sum(NumSISales) (V)

Vi = Vi Xitems

V3 = Tegtegory, SumCaSales=sum(SumSTSales),NumCaSales=sum(NumSISales) (V)

where the (virtual) views Vj and V4 have been added for better illustration of how the
aggregate-change tables propagate. We use the change propagation equations of Table 4.2
to derive the maintenance expressions for V5 and V3, in response to changes in sales, as

follows.

av; =
7T.s?foreID,ite'mID,SumSISales:sum(p?“ice),]\fumSISales:sum(_count) (HstoreID,price,_countZI (Uq Asales)
W storeID, price= —price, _count= —1(04Vsales)), where ¢ is date > 1/1/95.
[From Section 4.5.1]

Vi = Viup (OV1), where 6y is ( =(sorern,itemin} A 7Py Z{storeID,itemiD} A P)
av, = 0OV; X stores

V) =V, |_|§’12 avy, [From (4) in Table 4.2]
where 012 18 ( =(storerDitemID} U Attrs(stores) \ 7Py ={storelD,itemID} U Attrs(stores) A P)
OVy = Tty SumCiSales=sum(SumSISales),NumCiSales=sum(NumSISales) (V)

Vo = W, I_Ig; OVy, where 03 is ( =gty A 7Py Zcity A D) [From (6) in Table 4.2]

avy = 0OV; X items
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Vi = Vi |_|§’;3 avy, [From (4) in Table 4.2]
where 63 is ( ={storeID,itemID} U Attrs(items) A —p, ={storeIDitemID} U Attrs(items) N p)

!

ovs = 7Tcategory,SumC’aSales:sum(Su'mSISales),]\fumCaSales:sum(]\HL'mSISales) (D‘/S)
Vi = Vj I_IE'; OVs, where 03 is ( =category A 7P, =category A P) [From (6) in Table 4.2]

In all the above equations, U is of the form <(SUM, f), (COUNT, f)> and p is of the form
((LHS.COUNT + RH S.COUNT) = 0),'% where SUM is the aggregated attribute (SumSISales,
SumCiSales, or SumCaSales) in the corresponding view, COUNT is the count attribute ( Num-
SISales, NumCiSales, or NumCaSales) depending on the view, and f(z,y) = = + y for all
z,y.

As shown in Example 5, the above derived maintenance expressions for V5 and V3 are

very efficient compared to the expressions derived by previous approaches. O

4.6 Propagating Change Tables Generated at Outerjoin Nodes

In this section, we show how our change-table technique can be used to derive efficient and
simple algebraic expressions for maintenance of view expressions involving outerjoin oper-
ators. Quterjoin is supported in SQL. Further, outerjoins have recently gained importance
because data from multiple distributed databases can be integrated by means of outer-
join views [GJM96, GM95, RU96]. Outerjoins are also extensively used in object-relational
systems [BW89, BW90, BPP*93].

Definition 13 (Outerjoin-change table) A change table for a view involving outerjoin
operators is defined as an outerjoin-change table if the change table was either generated at
an outerjoin operator or is a result of propagation of an outerjoin-change table, using the

propagation equations we will derive for propagating outerjoin-change tables. O

For example, the change tables, O0SSInfo and OSSFullInfo, computed for the views SSInfo
and SSFullInfo respectively in Example 5 are outerjoin-change tables.

We start by showing how the insertions and deletions into an outerjoin view (R [QJ S),
in response to insertions into the base table R, can be summarized into an outerjoin-change
table. Computation of an outerjoin-change table at an outerjoin view in response to
deletions from a base table requires a more general refresh operator and is briefly discussed

in Section 4.6.3.
"Recall that LHS and RHS refer to the left and right operands of the join operation where p occurs.
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4.6.1 Generating the Outerjoin-Change Table at an Outerjoin Node

Given tables R(Aq, Az, ..., A,) and S(B1, B, ..., By,), consider an outerjoin view
V(Ai,...,An,Br,....Bn) =R &, 5,

where J is an equi-join condition. Insertions into R, represented by AR, can result in some
insertions and deletions into view V. We summarize the set of insertions and deletions to V'
in an outerjoin-change table OV defined as OV = AR é%J S. Note that the tables OV and
V have the same schema and attribute names. We show that with the following specification
of the refresh operator, the net changes in the outerjoin-change table OV can be applied
to the view V' to obtain the correctly refreshed V. The specifications, § = (J1,J2) and U,
of the refresh operator used to apply OV to V are defined as follows.

o Jiis (E¢ A p), where G = Attrs(5) and p = (A;<j<,(V.A; = NULL)).

e J,is FALSE.

e The update list U is <(A1,9), (A2 9),..., (A, g)>, where g(z,y) =y for all z,y.

Theorem 14 Consider the view V = R [QJ S and the outerjoin-change table OV =
AR éoqj S. For the above definition of the refresh operator specifications of § = (J1,J2)
and U, the following holds:

(RwWAR) {5, S= (R, s) Uy (@v)

Proof: Due to insertion of AR into R, the view V should change as follows. First,
the set of tuples AR é%J S should be inserted to V. Then, if there is a tuple ov =
KP1y T2y e e ey Ty 1,82y« oy Sp> in (AR é%J S), i.e., if ov is being inserted into V, then the
tuple <NULL,...,NULL, s, Sg, ..., S,> € V should be deleted from V.
The above effect can be achieved by updating a tuple v = <NULL, ..., NULL, s1, Sg, . . ., Sy >

in Vtoov=<ry,re,...,",S1,82,...,8,> if such a tuple ov exists in OV = AR é%J S.
The refresh of V would be complete if the tuples ov in OV for which no such match occurs
are inserted into V. By the definition of the refresh operator and its specification, one

can see that this is exactly what is achieved by the refresh expression V I_Ig av. "

4.6.2 Propagation of Outerjoin-Change Tables

Only a special form of the generic refresh operator, which we call an outerjoin-refresh

operator, is required to refresh a view using its outerjoin-change table.
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Definition 14 (Outerjoin-refresh operator) Let {4y, Ay, ..., A,, B1, Ba,..., B,,} be
the set of attributes in V' and its outerjoin-change table OV. A refresh operator I_Ig used
to apply the outerjoin-change table OV to its view V is said to be an outerjoin-refresh
operator if:

e The join condition J1 is (=¢ A p), where G = {By, Bz..., B,,} and p is a predicate
on the attributes (LHS. Ay, LHS.Ay,...,LHS.A,).

e The join condition 7 is FALSE, and

e The update list U is <(A41,9),(A2,9),...,(An, g)>, where g(z,y) = y for all z,y.
Note that (Attrs(U) N G) = ¢ and (Attrs(U) U G) = Attrs(V). ]

The refresh equations given in Table 4.2 correctly propagate an outerjoin-change table
as well, except for the case of propagation through the outerjoin operator, for which we
derive a different equation below.

Consider a view V = F; [éqOJ F5, where Fy and F; are general view expressions. Suppose
that the expression Fy changes to Fy I_Ig OF; using its outerjoin-change table OF;, where
the refresh operator I_Ig is an outerjoin-refresh operator. Let § be (=5 A p,FALSE),
where p is a predicate, and G is a set of attributes common to £y and OF;. The following
row, which replaces the row (7) in Table 4.2, shows how to propagate an outerjoin-change

table OF; through the outerjoin operator.

T | By &, || (Fy UFOFE) &, B, | V U (OF; &, Ey) | (OF; & ,F,) | Attrs(J) € G

As already mentioned, 8 is (=5 A p,FALSE) in the row above. Also,

o 0 = (J1,J2), where J is ZAttrs(By) N (PN =¢)V (/\eleAttrs(El)LHS‘el =
NULL)), J, is FALSE, and

o Uy = <(A1,9),(A2,9),...,(Ax,g)>, where {A1, Ay, ..., A} = Attrs(F4) and g(z,y) =
y for all z,y.

Theorem 15 Assume that the refresh operator used in the expression of the third column
in Table 4.2 is an outerjoin-refresh operator.
(1) The change propagation equations given in Table 4.2, with the following two changes,

correctly propagate outerjoin-change tables.
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o Disregard the condition in column 6 of the first row (selection view)
e Replace the seventh row by row (7b) given above
(2) The refresh operator derived in each of the refresh equations (column 4) is also an

outerjoin-refresh operaior.

Proof: It is easy to see that the refresh operator in the fourth column with its new spec-
ifications is also an outerjoin-refresh operator. As before, we refer to the expression
Fy I_Ig OF; as the change equation throughout this proof.

o V =0,(F;). We use the characteristics of the outerjoin-refresh operator to show
that o, (Fy LY OF)) = 0,(F1) UY o,(0Ey).

First, we show that the refresh equation of V' doesn’t miss any legitimate insertions into
V affected by the change equation F} I_Ig OF; . Let I be the set of tuples that is inserted
into Fy due to the change equation. We will show that o,(/) is inserted into V' by the
refresh equation, implying the result. Note that [ is the set of tuples in OF; that do not
find a match in Ey. As 0,(I) C 0,(0F;) = OV, no tuple in o,(/) will find a match in
V C FEy. Hence, 0,(I) will be inserted into V' using the refresh equation.

Now, we show that all insertions into V' due to the refresh equation are legitimate. The
refresh equation may induce an insertion of the tuple ov € OV into V if ov doesn’t find a
match in V. If ov € I, where [ is the set of tuples in OF; that don’t find a match in Fy,
then the insertion is obviously legitimate. Suppose, ov ¢ I. This implies that ov € OF;
found a match with a tuple e; € F. Because of the specifications of the outerjoin-refresh
operator, the match results in the tuple e; in F; being updated to ov by the change equation
Fyq I_Ig OF;. Now note that as ov € OV, it satisfies the selection condition ¢, and hence the
tuple ov (updated from e; in ;) will be included in the expression o, (£, UY OF;) of the
third column. Thus, the insertion of ov into V' by the refresh equation is correct. As the
match between tuples is one-to-one, the tuple ov results in only one update in the table £y
due to the change equation, which as shown above corresponds to the insertion of ov into
V' due to the refresh equation.

In the refresh equation, if a tuple v € V is updated by a tuple av € OV = o,(0OF,),
then v € F7 would have been updated by ov € OF; by the change equation too. According
to the update characteristics of the outerjoin-refresh operator, the tuple v is updated to
ov by ov. Now, ov satisfies the predicate p, hence the updated tuple ov is correctly retained
in V' by the refresh equation. This shows that the updates to V in the refresh equation are

legitimate.
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The only updates the refresh equation might miss are of the kind where a tuple ge; €
OF; matches with a tuple ¢’ € o7(F) in the change equation. The match results in the
tuple €’ being updated to oe;. If gey satisfies the condition p, then it is included in V' by
the change equation. In the refresh equation, as oe; € OV doesn’t find a match in V, it is
inserted into V. Hence, the desired effect is achieved.

e Projection: V =11 4(£y). If Attrs(d) C A, then the information needed to decide the

effect of a tuple oe; € OF; on a tuple e; € FEy, if any, is available in Il14(e;). Hence,
[14(OF4) can be applied directly to V = I14(FE4).

e Cross Product: V = F; X FE;. Consider (E; X Fj) I_IE,J1 (OF; x E3), the refresh
equation. Let us partition the tables (£ x Fj3) and (OF; x E;) by the tuple values
of Fy. As J1 and J3 in 6 include Attrs(Fy), each of the partitions is refreshed indepen-

dently by the refresh equation. It is easy to see that a tuple <oey,ey> € OV will result
in a match with a tuple <ej,es> € V due to 6; in the refresh equation, if and only if
the tuple oe; € OF; matches with a tuple e; € Fy due to the parameter 8 in the change
equation. The match will result in the same updates to the F; attributes in both the ex-
pressions. Also, a tuple oe; € OF; doesn’t find a match in Fy if and only if the tuples in
(oeq x E3) € OV do not find a match in V.

e Join: V = E| Mj F,. Follows from the previous cases.

e Union: V=F W Fy. As ((Fy W E3) = FE3) = Ey, the equivalence of the expres-

sions is obvious.

e Aggregation: V = 7TG/7J£(A)(E1). Without loss of generality, we prove this case when
kE =1. Let fy = f and Ay = A, the aggregated attribute. We assume that (G’ C
G), A € Attrs(U), U = <(A, f)>, and that f is a distributive function. Consider tu-

ples e1,€9,...,€e, in Fy such that they have the same G’ values, and let their attribute
A values be ay,as,...,a,. Assume that the tuples ey,...,e; find matches with tuples
gey,...,0¢ in OF; due to the join condition ;. Thus, a¢; = NULL and oe;’s have the

same G’ values as e;’s for 1 < 7 < [. Also, the attribute A value of e; is updated to
oa;, for 1 < ¢ < [, due to the update parameter U in the change equation. Hence,
due to the change equation the tuples ey, es,..., e, will result in an aggregated value of
f(oay,0aq, ..., 0a;, ai41, @142, - - ., @y,) in the expression of the third column. Thus, we need
to show that the aggregated A value of the tuple v that is derived from ey, ..., e, in the view
V' = T j(a)(F1) changes from f(a1,as, ..., a,) to f(oay,0ay, ..., 00, ajy1, a4z, - . -, ay) in

the refresh equation. Now, by the definition of OV, the tuples gey,...,0e; € OF; will be
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grouped to yield the aggregated attribute value f(oay,...,0a;) in a tuple in OV. The
refresh equation of V' then updates the aggregated value of the grouped value of e;s from
flay,aq,...,a;) to f(f(ar,aq,...,a,), f(oay,...,00)) = f(ait41,...,a,,001,...,0a;),as a;
to a; are NULL. Hence the refresh equation of V correctly updates the aggregated attribute
value of the tuple v in V.

All insertions into E due to OF; will be converted to aggregated insertions into V' by
the refresh equation.

e Outerjoin: V = FE; éﬁj Fy. Let M(C OF4) be the set of tuples in OF; that find a

match in £; in the change equation due to J; = (=g A p). Note that G is a set of
attributes in £y and p is a predicate over the rest of the attributes in Fy. Consider m € M
and that m finds a match with a tuple e; in E; due to J;. Each m results in a set
of tuples " = m é%JEg in OV = 0OF; [QJ Fy, where E5* may consist of just one tuple
<m,NULL>. Each tuple ] = <m, ey> € EJ* will find a match with the corresponding tuple
v = <ey,ez> € V (note that e; may be NULL) due to the join condition J; A = Attrs(By)-
As Attrs(J) C G and <m,ey;> € EJ', the tuple v exists in V' (even if e; = NULL). The
tuple <eqp, e3> gets updated to <m,ey> due to the update list U; in the refresh equation
of V. This update affected in V by the refresh equation is correct because m € OF; also
updates e; € Fy to m in the change equation, as Attrs(G) U Attrs(U) = Attrs(E4), and m
and e; have the same G attributes. Thus, all the updates of tuples in E; due to the change
equation are correctly applied to V by OV in the refresh equation.

Lets consider the other set of tuples [ in OF;, that are inserted into E; (because
they didn’t find a match in Fy). Let ¢ € I. The tuple ¢ results in the set of tuples
Fy =1 équEg in OV. Tuple <i,e;> € E} may find a match v in V due to the condition
=astrs(Bs) N (Aecanrs(p)LHS.€ = NULL) in Jy. In that case the tuple v is correctly
updated to <7,e3>. All the other unmatched tuples in OV are correctly inserted into V. g

EXAMPLE 8 Consider a view

V= 7TA,B,F:sum(D),H:sum(E),Num:Count(*) (UA<5((R [ég]C:DS) X T))7

where R(A, B,C),S(D, FE), and T(A, B, L) are base relations, and X is the natural join
operation, i.e., a join with the join condition (=4 g}). Recall that for computing the SUM
aggregates, the attribute value of NULL is taken as 0, provided at least one tuple has a

non-NULL value.
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For clarity of presentation, let us assume V; = R [QO:DS’ Vo= Vi XT, Vs =0455(Va).
Let us define a predicate p as ((LHS.D = NULL) A (LHS.E = NULL)), a predicate ¢
as ((LHS.Num + RHS.Num) = 0), an update list U; as <(F,g),(H,g)>, and U as
<(D,h),(E,h),(Num,h)>. Here, g(z,y) = y for all z,y, h(z,y) = z+y for all z,y # NULL,
and h(NULL,y) = y. We illustrate our techniques of maintaining views involving outerjoin
operators by deriving maintenance expressions for V' in response to insertions, AS, into S.
The equation used for computing OV] is similar to that derived in Theorem 14. In this

case, we have insertions into S, and hence we use a right outerjoin operation instead.

OoVi = (R&,_p AS)

Vi=W% I_Igl1 OVy, where 0y is ( =aurs(r) A P, FALSE) [From Theorem 14]
av, = aviXT

Vo = W, I_Ig;1 OV, where 02 is ( =asrs(R) U Attrs(T) A P, FALSE) [From (4) in Table 4.2]
OVs = o0a>5(0V)

Vi = Vs Uy OV [From (1) in Table 4.2]
OV = T4 B F=Sum(D),H=Sum(E),Num=Count(x) (OV3)

Vv = v uY ov,where 8 is (=ga,By ANq =By Agq) [From (4)in Table 4.2] O

4.6.3 Propagation of Deletions through Outerjoin Operators

The changes in an outerjoin V = R [QJ S due to deletions from a base relation R cannot
be summarized in an outerjoin-change table within our restricted definition of the refresh
operator. In this section, we show that by using an extended definition of the refresh
operator, we can apply changes summarized in an appropriately defined change table to V'
in response to deletions from a base table.

Consider a simple outerjoin view V = R [QJ S. Let VR be the set of deletions from R,
and let S = T Attrs(S),Num=Count(x) (S). We define the OJDeletion-change table OV that

succinctly represents changes to V' in response to VR as
OV = VR &, S*.

The view V is refreshed using the refresh equation V' I_IgDV, where I_Ig is the 0JDeletion-
refresh operator as defined in Algorithm 10. Here, 0 = (= apr5(vy)s (Sastrs(s) N Attrs(S) #
NULL)) and U = <(Ay, f), ..., (An, f)>, where f(z,y) = NULL for all z,y and {Ay, ..., Ax} =
Attrs(R).
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The OJDeletion-refresh algorithm (Algorithm 10) used to refresh the view V works as
follows. A tuple (r,s,!)in OV comes from [ copies of s in S and a tuple r in VR. Thus, the
tuple r belonged to R before deletions and V' has at least [ copies of (r,s). Now, if there is
another tuple v’ = (r,s) € V, then the [ copies of (r,s) can be deleted from V as a result
of deletion of r from R. But, if no such v’ exists in V', then each of the copies of (r,s) in
V should be changed to (NULL, s), as the tuple s € S now becomes a dangling tuple after
deletions from R. Thus, the [ copies of (r, s) are updated accordingly in Algorithm 10. One
can see that it is essential to store in OV the number of copies [ of s from S. Also, note that
the OJDeletion-refresh algorithm doesn’t to query any sources, and hence can be executed

very efficiently.

Algorithm 10  OJDeletion-Refresh Algorithm

Used to apply an OJDeletion-change table to its view
Input
View V(Ay,...,An, B1,...,Bn)
OJDeletion-change Table OV (Ay, ..., A, B1, ..., By, Num)
Characteristics of the OJDeletion-refresh Parameters
0= (J1,T2).T1is Zaprs(v) and J2is =g, where G = {By, By, ..., Bn}
U= <(A1, 1), (A2, f2)s -5 (Any fr)>.

Output
Refreshed table V,ie., V I_Ig av.
BEGIN
for each tuple ov = (r,s,/) in OV /* 1 is the value of U attributes, */

/* s is the value of the G attributes, and / is an integer. */
Let {vy,..., v} be the tuples in V that match ov due to the join condition J;.
/* Note that there are at least / tuples in V' that will match ov due to J;. */
if there is a tuple v’ € V such that o' ¢ {v,..., v} and

v’ matches with ov due to the join condition 7

then Delete tuples vy, vq,...,v; from V;
else Update each tuple vy, vy, ..., v in V using the specifications in U;
end if;

end for;

return V;

END. <
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New V
No. v 6= (T1,T2) Refresh Equation av Conditions
:71 18 =v
:72 18 =G
1 oq(E) oq(Ey U OFy) VUl o,(0F) oq,(0E) Attrs(q) C G
2 Ma(Ey) 4 (B, Uf OF) V Uy T4 (DE) Ma(OEy) G C A

1% Ugl (DE1 X Eg)
3 E1 X E2 (E1 |_|9U DEl) X E2 91 = (L71 A Ef,jg A ET) DEl X E2
T = Attrs(E2)

V UJ (BB X; Ey)
4 E1 X 7 E2 (E1 |_|9U DEl) My E2 91 = (:71 A ET,jQ A ET) DEl X 7 Eg AttI‘S(J) g G
T = Attrs(E2)

ot

E1 (U] E2 (El I_IgU DEl) (U] E2 ((V - Ez) |_|9UDE1) (U] EQ) DEl

V Uy (OF; &, E,)
6 | E1 b4 ,Bs || (BE1 UJOE) &5 By | 1= (J1 A =,J2 A =) | (OF1 &, E5) | Attrs(J) C G
T = Attrs(E1)

Table 4.3: Change propagation equations for propagating OJDeletion-change tables

Propagating OJDeletion-change Table

In this section, we present change propagation equations that are used to propagate an

OJDeletion-change table through various operators.

Theorem 16 Assume that the refresh operator used in the expression of the third column
in Table 4.3 is an 0JDeletion-refresh operator. Then,

(1) the change propagation equations given in Table 4.3 for propagation of O.JDeletion-
change tables are correct, i.e., for each row, the expression in the third column is equivalent
to the refresh equation in the fourth column, and

(2) the refresh operator derived in the refresh equation (column 4) is an 0JDeletion-

refresh operator as well.

Proof: It is easy to see that the refresh operator in the fourth column with its new specifi-
cations is also an 0JDeletion-refresh operator. As before, we will refer to the expression

FEy I_Ig OF; as the change equation throughout this proof.
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e Selection: V = o, (Fy). As, Attrs(q) N Attrs(U) = ¢, we know that ¢ attributes are

not updated by any refresh operation. Thus, tuples in F; that do not pass the ¢ condition
end up being deleted (possibly after being updated first) from both the expressions in third
column and the fourth column.

Now, consider a tuple <r,s> in F; that passes the ¢ condition, where s is the value of
the G attributes. As Attrs(q) C Attrs(J2) = G, any tuple of the form (rq, s) that belongs
to Fy will also pass the condition ¢ and is retained in V = o, (OF;). Similarly, any tuple of
the form (ry,s,/;) € OF; will also be retained in o,(0F;). Therefore, if the tuple (r,s) is
deleted in the change equation (the refresh operation of Fj), then it is also deleted in the
refresh equation. Similarly, if (r, s) is updated to (NULL, s) by the change equation, then it
is also updated to (NULL, s) by the refresh equation.

e Projection: V = [14(F1). As G C A, all the attributes that govern the refresh opera-

tion are retained in the projected table. Hence, the refresh operation is not affected.

e Cross Product: V = F; X FE;. Consider (E; X Fj) I_Ig,]1 (OF; x E3), the refresh
equation. Let us partition the tables (£ x Fj3) and (OF; x E;) by the tuple values
of Fy. As J1 and J3 in 6 include Attrs(Fy), each of the partitions is refreshed indepen-
dently by the refresh equation. A tuple (r, s, e2) is deleted or updated to (NULL, s, e2) if and

only if the corresponding tuple (r,s) is deleted or updated to (NULL,s) by the operation
F I_IgDEl in the change equation.

e Join: V = F| Mj F,. Follows from the previous cases.

e Quterjoin: Fy £<O]JE2. Consider the refresh equation (F4 [éqOJEQ) I_IE,J1 (OF, é%J FEs),
where Attrs(J) C G. Let v = <r,s,e3> be a tuple in V = (F; [QJEQ), where <r,s> €

Fy and e3 € Fj3 and the pair (<r,s>,ez) passes the join condition J. The tuple v is
affected by the refresh equation in the fourth column only if there is a tuple <r, s,[, e3> in
(OF, é%J F3). That is, v is updated to <NULL, s, e3> if there is a tuple <r,s,[> in OFy,
a tuple (ez) in Fy, and a tuple <rqy,s,e;> in V for some r; # r. This implies that the
tuple <r, s> is also updated to <NULL, s> in the refresh operation F; I_IE,]EIEl7 as <rp, s>
belongs to Fy. If there is no such tuple <ry,s,es> in V, then v is deleted from V in the
refresh equation of V', and similarly <r, s> is deleted from F; in the change equation.
Similarly, it can be argued that a tuple (r,s,NULL) is deleted or updated in V if and
only if (r,s) is deleted or updated in Fy. Also, it is easy to see that tuples that are of the
type (NULL, NULL, e3) appear in both the tables, represented by the third and fourth column

expressions, consistently. "
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4.7 Handling Deletions and Updates Directly and Efficiently

In this section, we present an approach for efficiently handling certain kinds of deletions
using our change-table technique. The same techniques can be used to also propagate some
updates directly instead of propagating them as insertions and deletions as in traditional
approaches. As the techniques for handling deletions and updates in this context are very
similar, we discuss handling of deletions in detail and illustrate how updates can be handled

through an example.

4.7.1 The Deletion-Refresh Operator

For the case of propagating deletions efficiently, we define a deletion-refresh operator
that is slightly different than the general refresh operator (Algorithm 9) defined in Sec-
tion 4.4. First, the deletion-refresh operation has only the § = (71, J32), parameter
associated with it. Also, J1 is FALSE and 5 is an arbitrary join condition. Now, consider
a refresh equation V Uy OV, where Uy is a deletion-refresh operator. The deletion-
refresh algorithm is defined as follows. If a pair of tuples ov € OV and v € V match due
to the join condition Jg, then the tuple v from V is deleted. However, if one tuple in
OV matches with many tuples in V, then all the matching tuples in V must be deleted
(difference with the Algorithm 9), causing more than one deletion. This is the key idea in
the derivation of efficient expressions for propagating deletions. Also, the unmatched tuples
in OR are ignored (instead of being inserted as in Algorithm 9). For the case of apply-
ing a change table using a deletion-refresh operator, the view and its change table can
have very different schemas. We summarize the characteristics of the deletion-refresh

operator below.

Characteristics of the Deletion-Refresh Operator

e The parameter § = (FALSE, [J3), where J3 is some join condition. As J; = FALSE,

U is not needed.
e A tuple of the change table can match with more than one tuple of its view.

e Matched tuples in V are deleted, and unmatched tuples in the change table are ig-

nored.
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Definition 15 (Deletion-Change Table) A change table that is applied to its view using

the above defined deletion-refresh operator is referred to as a deletion-change table. O

Generation of Deletion-Change Tables

In this subsection, we discuss generation of deletion-change tables from a set of deletions into
a view. We will see that only certain kinds of deletions can be converted to deletion-change
tables.

The techniques presented in this section can be used to propagate any deletion V R that
can be represented as a pair (J2,0R), such that R = VR = R Uy OR, where Ug is a
deletion-refresh operator. For example, any SQL statement that deletes all tuples in R
satisfying a given predicate can be represented as such a pair. Below, we define a notion of
“duplicate-intensive” deletions, which can also be converted to deletion-change tables, and

propagated efficiently using the change-table technique.

Definition 16 (Duplicate-intensive deletions) A set of tuples V R is called a duplicate-
intensive deletion (D-ID) with respect to a table R if for every tuple t € VR, the number
of duplicates of ¢ in R is no more than the number of duplicates of ¢t in VR.

A duplicate-intensive deletion signifies that if a tuple t is deleted from R then all its
duplicates are also deleted. Any deletion from a set R is trivially a duplicate-intensive

deletion. O

The change-table technique can be extended to efficiently propagate any duplicate-
intensive deletion. If VR is a D-ID w.r.t. R, then for 73 = (Z4u,sr)) and OR = VR,
the following equation holds: R -~ VR = R Uy OR, where Uy is a deletion-refresh

operator. See Theorem 17 for a proof.

Propagating Deletion-Change Tables

In this subsection, we present change propagation equations for propagating deletion-change

tables through various operators. The change propagation equations are given in Table 4.4.

Theorem 17 Assume that the refresh operator used in the expression of the third column
in Table /.4 is a deletion-refresh operator. Then,

(1) the change propagation equations given in Table 4.4 for propagation of deletion-
change tables are correct, i.e., for each row, the expression in the third column is equivalent

to the refresh equation in the fourth column, and
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(2) the refresh operator derived in the refresh equation (column j) is a deletion-refresh

operator as well.

No. Vv New V Refresh Equation av Conditions

1 R (R = VR) (R U OR) OR=VR | VRis D-ID

0 = (FALSE, =asttrs(R)) w.r.t. R

2 04(E) 04(E Uy OF) 04(E) Uy OF oFE

3 IT4(E) Ma(F Us OF) MA(E) Up H4(OFE) MA(OFE) | Attrs(d) C A
4 | By x By (E1 U OF;) x By (E1 x Ey) U OF, my

5 E1Xy; Ey || (E1 Ug OF;) Xy By (E1 Xy E2) Up OF OF,

6 | By W By || (B1 W OF) W Ey | (V=Ey) Ug OF)) W Ey 0F,

7 Ta pa(E) Ta pa(E Uy OF) Ta ) (E) Ug OF oF Attrs(6) C G

Table 4.4: Change propagation equations for efficiently propagating deletions

Proof: It is easy to see that the refresh operator in the fourth column with its new speci-
fications is also a deletion-refresh operator.

As the deletion-refresh operation deletes all the duplicates of any tuple deleted from
the view, it suffices to show that the refresh equation in the fourth column is set-equivalent
to the change equation in the third column.

e Generation: V= R. We need to show that if VR is a D-ID w.r.t. R, then for 7, =
(EA”TS(R)) and OR = VR, the following equation holds: R - VR = R Uy OR, where Ly

is a deletion-refresh operator. Consider a tuple r € (R = VR), which implies r € R
and r ¢ VR. Hence, r ¢ OR =V R. Thus, r € R Us OR. Now, consider r € (R Ug OR),
which implies r is in R, but not in OR = V R. Hence, r belongs to R ~ VR.

e Selection: V = o, (F). If a tuple e is in o,(& Ug OF), then ¢(e) is true, e € F, and

there is no tuple v € OF such that J3(e,v) is true. Thus, e € 0,(F) and also, no such v
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exists in OF. Hence, e € (0,(F) Ug OF).

Now, if a tuple e € (0,(F) Ug OF), then e € o,(F), and there is no v € OF such
that J3(e,v) is true. Hence, e € F, p(e) is true, and no such v is in OF. Thus, € is in
o.(F Ug OF).

e Projection: V =1I4(F). If a tuple e, is in [I4(E Uy OF), then there exists some
tuple e € E such that [14(e) = e,. Also, there is no tuple v in OF such that Jz(e,v) is
true. Let v, = [14(v). As, e, € [14(F) and Attrs(f) C A, we can show by contradiction
that there is no tuple v, in [14(0OF) such that J2(eq,vq) is true (else, there will be a v in
OF such that J2(e,v) is true). Hence, e, also belongs to (I14(F) Ug l4(OF)).

Now, if a tuple e, is in I14(F) Ug [14(OF), then there exists some tuple e such that
ITa(e) = e,. Also, e € E and there is no tuple v € OF such that v, = Il4(v) and
J2(€q,v4) = T2(e,v) is true. Therefore, e, isin [14(F£ Ug OF).

e Cross Product: V = Fy X F,. Let us assume there is tuple oe in OF that matches

with a tuple e € F due to J3. Such a tuple oe will also match with a tuple (e, e2) € Fy X FEj
for any tuple e; € 5. Hence, the refresh equation of the fourth column is true.
e Join: V = E| M; F,. Follows from the previous cases of selection and cross product.
e Union: V = F; U F,. This case is obvious, as V =~ Fy = Fj.
o Aggregation: V = T 7(4). As Attrs(f) C G, this case is also obvious. "

EXAMPLE 9 Consider a view V = T4 B p—sumn)(R X S), where R(A, B,C) and
S(B,C, D) are base relations. We will evaluate the maintenance expressions of the view V
in response to deletions in R. Let us assume that 7 = R X S and that R is a set without
duplicates.

The approach of [GL95, Qua97] yields very complicated expressions for AV and VV in
terms of VT = VR XS. If we were to use the aggregate-change table techniques presented

earlier, then we would compute the aggregate-change table OV as

av = 7TA,B,E’: —sum(D),ent=—count(x) (VR > S)

The aggregate-refresh operator is then used to refresh the view V using its aggregate-
change table OV.
Using the techniques presented in this section, we derive the maintenance expressions

in response to deletions in R as follows. As R is a set, the set of deletions VR from R is

such that R -~ VR = R Ug OR, where OR(A, B,C) = VR and § = (FALSE, =4 B c})-
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So, we have

R - VR = R Ug OR
oV = OTr=0R [From (5,7) in Table 4.4]
V. =V Wy (OV)

The expression obtained above is more efficient than the maintenance expressions obtained
by the aggregate-change table techniques or [MQM97, GL95, Qua97], as in all these ap-
proaches computation of the changes to V will require evaluating an expensive join operation

VR XS, O

EXAMPLE 10 In this example, we briefly show how updates can be propagated efficiently
using the techniques presented in this section.

Consider a view V = T4 g p—sum(c) (R X 5), where R(A, B) and S(B,C) are the base
relations and B is the primary key of R.

A set of updates to the table R of the kind (a,b) — (¢, b) can be represented in a change
table OR, which has the same schema as that of R. A tuple ar = (¢,b) € OR signifies
that any tuple r = (a,b) € R is updated to or. This refresh operation can be algebraically
represented as R = R I_Ig OR, where U = <(A, f)> and f(z,y) = y for any z,y. Also,
# = (=B, FALSE) and the matches may be many-to-one as in the case of deletions.

Using the change propagation equations from Table 4.4, we get the maintenance expres-

sion of V' as follows. We assume that V;(A,B,C) =R X S.

R = R UJ OR

OV = OV, =0R

Vo= VvV uj(@v)

4.8 Optimality Issues

In this section, we discuss the optimality of the incremental maintenance algorithm based
on our change-table techniques. For simplicity and concreteness, we consider the simplistic
cost model wherein the cost incurred by a maintenance algorithm in maintaining a view

in response to some changes at the base relations is the number of sources (base relations)
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queried. The above cost model is reasonable in a data warehouse model where the dominant
cost is the cost incurred in querying the sources.
Let us consider change-table techniques presented in this chapter for incremental main-

tenance of general view expressions along with the following two minor optimizations:

e In computing a view, we tag the tuples in the result of a union operator with L. or
R depending on whether the tuple comes from the left operand or the right operand.
The above improvement makes propagation of an aggregate and outerjoin change table
through a union operator very efficient. In essence, the refresh equation of the fifth

row in Table 4.2 will not involve F; or F;.

e When computing the refresh equation, the view contents are used, whenever possible,
to compute a required subexpression using the minimum number of source queries.
For e.g., consider V.= R x (S x T). In response to insertions into R, to compute
changes at V', we need to query (S x T') according to the propagation equations in
Table 4.2. Instead, we query R and compute (S x T") using the value of V', minimizing

the number of source queries.

We incorporate the above two improvements into the change-table technique and prove

the following result.

Theorem 18 Given an expression tree of a view V, the change-table technique queries
the minimum number of sources required in order to compute changes at each node in the

expression tree.

Proof: We are given an expressions tree for a view V, which is materialized, and are
required to compute changes at each node in the expression tree. We need to show that the
incremental maintenance algorithm based on our change-table technique achieves that by
querying minimum number of sources.

The change-table technique works by computing a change table and refresh operator
specifications at each operator/node of the given expression tree of V. As a change ta-
ble along with the refresh operator specifications is sufficient to refresh the corresponding
subexpression, the change-table technique in effect computes changes at each node in the
expression tree.

We now show by induction on the height of the expression tree that the change-table

technique queries the minimum number of sources required to compute changes at each



CHAPTER 4. INCREMENTAL MAINTENANCE OF VIEWS 104

node of an expression tree. The claim is trivially true for V' = R, where R is a base relation.
Let us assume the claim to be true for any expression tree of height less than h.

Consider a view expression V = f(Fy, F2) of height h, where the view expressions F4 and
F5 are of heights less than h. By the inductive hypothesis, we know that the change-table
technique has computed a change table for F; and all its subexpressions using minimum
number of source queries. We assume that the subexpression F5 doesn’t change. A tuple
(g,u) € Fq changes to (g,u1) due to changes at Fy, where u is the value of the update
attributes (Attrs(U)).

We consider various cases.

Selection: V' = o,(£;). Unless V is a singularity point, the change-table technique

doesn’t query any sources to compute the change table OV at V. Now, V is a singu-
larity point iff OF; is an aggregate change-table and an attribute of the selection condition
q belong to the set of aggregated attributes Attrs(U). As the selection depends on the
aggregated attribute, the tuple (g, u) may not be in V' but (g, u;) may pass the condition
g. Hence, as v may not be available, in order to computer uq, it is essential to query the
expression F7, which is what the change-table technique does.

Projection: V- =114(F4). In this case, V is a singularity point iff an attribute of the

group set (G, on the basis of which matching of tuples is done, does not belong to the set
of projected attributes A. In EYy, the tuple (g, u) changes to (g,u1). In absence of some of
the G attributes in V, it may be impossible to refresh V based on just the changes to Fj.
Hence, it may be necessary to query Fy, when V is a singularity point.

Cross Product: V = F; x Fj. Given changes into the expression Fy, it is obvious that

one would need to query Fs in order to compute changes at V.

Union: V = Fy W F,. After incorporating the improvements stated before this theo-

rem, the change-table technique does not need to query any sources to compute OV from
aF;.

Monus: V = E; = Fj. Given changes into the expression Fy (F3), it is easy to see that

one would need to query FEy (Ey and Ej) in order to compute changes at V.

Monus: V = E; [éqoj F5. Given changes into the expression Fq, it is easy to see that

one would need to query Fs in order to compute changes at V. "

We define an algorithm to be a change-propagating algorithm if it computes changes
(in some form) at each node in the given expression tree of the view. The above theorem

shows that our change-table technique is better than any change-propagating maintenance
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algorithm for a given expression tree (even in the presence of singularity points). Though
its not necessary for an incremental maintenance algorithm to be change-propagating, all
the previously proposed maintenance algorithms fall in that category.

An interesting open problem is to design a provably optimal incremental maintenance
algorithm under the above cost model for maintenance of general view expressions (without
restricting ourselves to the class of change-propagating algorithms). We have focussed our
recent work on adapting the maintenance algorithm based on our change-table techniques
to obtain an optimal approach. We conjecture that the change-table technique with some
minor improvements/optimizations can be translated into an optimal incremental mainte-

nance algorithm under the above cost model.

4.9 Related Work

A large body of work exists describing different algorithms for incrementally maintaining
materialized views [BLT86, RK86, Han87, BCL89, CW91, QW91, GMS93, GLT94, GL95,
CGL*196, GIM97, Qua97, GK98]. Each work applies to different classes of views and has
various advantages and disadvantages. As mentioned in Section 4.1, none of the above
algorithms can deal with general view expressions involving aggregations and outerjoins.
Further, these algorithms work with sets (or bags) of insertions and deletions, rather than
with change tables. Below, we discuss some of the above algorithms.

Qian and Wiederhold in [QW91] present a technique (later corrected in [GLT94]) to
propagate sets of insertions and deletions through relational algebra operators without
duplicates. The techniques in [QW91] were extended to bag algebra by Griffin and Libkin
in [GL95]. While [QW91] did not deal with aggregates at all, [GL95] did consider aggregates
when they are applied as the last operator in an expression, and when there are no groupby
columns. The work of [GL95] was further extended by Quass [Qua97] to include general
expressions involving aggregation. However, as illustrated in Section 4.1, the technique
of [Qua97] works with bags of insertions and deletions, and is thereby less efficient, and
more complex, than the change table technique presented in this chapter. None of [QW91,
GL95, Qua97] can deal with outerjoins.

Gupta et al. [GMS93] also present algorithms for incrementally maintaining views with
duplicates. Aggregation is considered only for the case where a view is materialized at each

aggregation node. Quterjoins are not considered in [GMS93]. Mumick et al. in [MQM97]
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give an algorithm for efficiently maintaining a set of summary tables. A summary table is
the result of applying a single aggregation over an SPJ expression over star schema tables
in a data warehouse. [MQM97] does not consider outerjoins, or general view expressions
involving aggregate operators.

Gupta et al. in [GIMI7] present maintenance and self-maintenance algorithms to com-
pute the incremental changes to a materialized outerjoin view R &5 S, where R and S are
base tables. The algorithms presented in [GJM97| are procedural rather than algebraic,
and do not apply to general view expressions containing outerjoin operators. In recent
work done concurrently with ours, Griffin and Kumar in [GK98] extend the techniques of
[GIMIT] by deriving propagation equations through outerjoin operators. As [GK98] prop-
agates changes in the form of insertions and deletions, their incremental algorithm is less
efficient than our change-table techniques for general view expressions, as briefly illustrated
in our motivating example.

The problem of incremental view maintenance is closely related to the self-maintainability
problem of views [GJM94, QGMW96, GJM97]. A view is defined as self-maintainable with
respect to certain kinds of changes if the view can be updated using the old view value and
the changes, without accessing any base relations. The change-table technique presented in
this chapter, in most cases, derives maintenance expressions that do not refer to the base
tables, even when such self-maintenance expressions were not possible using only insertions
and deletions as types of updates. Hence, the techniques presented in this chapter help in

deriving efficient self-maintenance expressions.

4.10 Concluding Remarks

In this chapter, we have developed a change-table technique for incremental maintenance
of general view expressions involving aggregate and outerjoin operators. Traditional main-
tenance techniques [QW91, GL95, Qua97] propagate insertions and deletions from the base
relations to the view through each of its operators. In contrast, we compute change tables at
an aggregate or outerjoin operator, and use change propagation equations to propagate the
change tables through various operators. The resulting maintenance expressions for general

view expressions are simple and very efficient compared to previous traditional techniques.
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Conclusions

A data warehouse is built for the purposes of information integration and/or decision sup-
port and analysis. A data warehouse extracts, integrates and stores relelvant information
from a distributed set of the data sources.

In this thesis, we have addressed the core issues that arise in design of a data warehouse
viz., selection of views to materialize and efficient incremental maintenance of materialized
views. This thesis has made a significant contribution in solving these problems compre-

hensively.

5.1 Selection of Views to Materialize

In this thesis, we have developed a theoretical framework for the general problem of selection
of views in a data warehouse. The view-selection problem in a data warehouse is to select
a set of views to materialize so as to optimize the total query response time, under some
resource constraint such as total space and/or the total maintenance time of the materialized
views. For the simpler constraint of disk space, we have presented competitive polynomial-
time heuristics that deliver a solution within a 0.63 factor of the optimal for some important
special cases of the problem that occur in practice viz. AND view graphs and OR view
graphs. For both these special cases, we have extended the results to graphs with indexes
associated with each view. Finally, we have also developed a greedy heuristic (AO-greedy)
for general AND-OR view graphs.

All the above described work done on the view-selection problem considered only a disk-

space constraint. In practice, the more realistic constraining factor is the total maintenance
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time. Thus, we also considered the maintenance-cost view-selection problem where the
constraint is the total maintenance time of the materialized views. As the maintenance-
cost view-selection problem is intractable, we designed an Inverted-tree Greedy algorithm
for the special case of OR view graphs, that provably delivers a solution within a constant
factor of the optimal. We also designed an A* heuristic that delivers an optimal solution
for general AND-OR graphs. Our preliminary experiment results are very encouraging for
the Inverted-tree Greedy algorithm. The results show that the Inverted-tree greedy almost
always delivers an optimal solution and the time taken by the Inverted-tree greedy algorithm
for OR view graphs is orders of magnitude less than that taken by the A* heuristic.

There are still a lot of questions which remain unanswered and need considerable atten-

tion. Noteworthy among them are:

1. Does there exist a polynomial time algorithm for the view-selection problem for the

special case of AND view graphs?

2. Are there competitive polynomial-time heuristics for other special cases (even without

updates)? For e.g., for AND-OR trees or binary AND-OR view trees?

3. Are there view-selection approximation algorithms even for optimizing just mainte-

nance costs in any of the special cases?

4. Can we prove any negative results about the approximability of the view-selection

problem?

‘We believe that the techniques developed in this thesis will offer significant insights into

the greedy heuristic and the nature of the view-selection problem in a data warehouse.

5.2 Incremental Maintenance of General View Expressions

In this thesis, we have developed a change-table technique for the problem of incremental
maintenance of general view expressions. Ours is the first research work presenting algebraic
expressions for maintaining general views involving aggregate and outerjoin operators.
Traditional maintenance techniques [QW91, GL95, Qua97] propagate insertions and
deletions from the base relations to the view through each of its operators. In contrast, we
compute change tables at an aggregate or outerjoin operator, and use change propagation

equations to propagate the change tables through the relational, aggregate and outerjoin
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operators. We show that the changes represented in change tables can be applied to its
corresponding materialized view using an appropriately defined refresh operator. The re-
sulting maintenance expressions for general view expressions are simple and very efficient
compared to previous techniques.

The change-table technique presents a new paradigm for view maintenance using change
tables. The maintenance expressions derived by the change-table techniques are usually
self-maintenance expressions, as they usually refer only to the view and the changes to
the base tables, minimizing the number of queries to the base tables. Such a paradigm is
likely to encourage research into developing more efficient maintenance and self-maintenance
expressions than are possible using the insertion/deletion paradigm. For example, the
change-table technique can be used to (1) efficiently propagate certain kinds of deletions,
and (2) for propagating certain kinds of updates directly, without querying the sources.

Our future work focuses on translating our techniques into a provably optimal incremen-

tal maintenance approach under some reasonable cost model.
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