
ProCSA: Protecting Privacy in Crowdsourced
Spectrum Allocation

Max Curran, Xiao Liang, Himanshu Gupta, Omkant Pandey, Samir R. Das

Stony Brook University, Stony Brook, USA
{mcurran,liang1,hgupta,omkant,samir}@cs.stonybrook.edu

Abstract. Sharing a spectrum is an emerging paradigm to increase
spectrum utilization and thus address the unabated increase in mobile
data consumption. The paradigm allows the “unused” spectrum bands
of licensed primary users to be shared with secondary users, as long as
the allocated spectrum to the secondary users does not cause any harm-
ful interference to the primary users. However, such shared spectrum
paradigms pose serious privacy risks to the participating entities, e.g.,
the secondary users may be sensitive about their locations and usage pat-
terns. This paper presents a privacy-preserving protocol for the shared
spectrum allocation problem in a crowdsourced architecture, wherein
spectrum allocation to secondary users is done based on real-time sens-
ing reports from geographically distributed and crowdsourced spectrum
sensors. Such an architecture is highly desirable since it obviates the need
to assume a propagation model, and facilitates estimation based on real-
time propagation conditions and high granularity data via inexpensive
means.
We design our protocol by leveraging the efficiency and generality of
recently developed fast and secure two-party computation (S2PC) pro-
tocols. We show that this approach leads to practical solutions that out-
perform the state-of-the-art in terms of both efficiency as well as func-
tionality. To achieve the desired computational efficiency, we optimize
the spectrum allocation algorithm to select a small number of relevant
reports based on certain parameters. This results in a faster RAM pro-
gram for power allocation which, under suitable adjustments to under-
lying arithmetic operations, can be efficiently implemented using S2PC.
We use the standard “ideal/real paradigm” to define the security of spec-
trum allocation and prove security of our protocol (in the semi-honest
model). We also provide data from extensive simulations to demonstrate
the accuracy, as well as computational and communication efficiency of
our schemes.

1 Introduction

The RF spectrum is a natural resource in great demand due to the unabated
increase in mobile (and hence, wireless) data consumption [4]. The research com-
munity has addressed this capacity crunch via development of shared spectrum
paradigms, where the unused spectrum bands of a licensed primary user (PU)

2 Max Curran, Xiao Liang, Himanshu Gupta, Omkant Pandey, Samir R. Das

can be allocated to an unlicensed secondary user (SU) as long as SU’s usage does
not cause harmful (wireless) interference to the PU. In a commonly used archi-
tecture for such shared spectrum systems, a centralized spectrum manager (SM)
allocates available spectrum to SUs upon request, based on PUs’ parameters
and signal attenuation (path-loss) characteristics. In the crowdsourced sensing
model we follow, the path-loss values are estimated from real-time sensing re-
ports of geographically distributed and crowdsourced spectrum sensors (SS).
Crowdsourcing allows high granularity spectrum data collection via relatively
inexpensive means, and most importantly, obviates the need to assume a sig-
nal propagation model. However, presence of many independent entities makes
the shared spectrum system particularly prone to leakage of private information
(e.g., location of radar transmitter) [34,41,16]. As the viability of crowdsourced
paradigm may depend upon privacy assurance of the crowdsourcing users (i.e.,
SS devices), it is critical to develop secured spectrum allocation protocols that
preserve privacy of all entities. The goal of our work is to develop an efficient
privacy-preserving spectrum allocation scheme in the context of the aforemen-
tioned shared spectrum architecture.

1.1 Spectrum Allocation Model, Security Challenges, Related Work

Crowdsourced Shared Spectrum Architecture. Spectrum allocation in
shared spectrum systems has been studied extensively (see [59] for a survey).
In the centralized SM architecture, it is generally assumed that the SM has
complete knowledge of the PU parameters. Many prior works assume a propa-
gation model which allows spectrum allocation power to be computed via simple
techniques (see [59] survey). However, in practice, since even the best-known
propagation models [48,25,22] have unsatisfactory accuracy, spectrum allocation
must be done overly conservatively for correctness. Crowdsourced sensing has
the potential to eliminate this limitation.

In a crowdsourced architecture, for a spectrum allocation query from the
SU, the spectrum manager (SM) first estimates appropriate signal path-loss val-
ues from known PUs’ parameters and real-time sensing reports of crowdsourced
spectrum sensors (SS), and then use the estimated path-loss values to allocate
spectrum to the SU. Allocation based on real-time channel conditions is impor-
tant for accurate power allocation, as the conditions affecting signal attenuation
(e.g., air, rain, vehicular traffic) may change over time. However, spectrum al-
location based on sensing reports can be challenging, due to need for accurate
path-loss estimation techniques from relatively inexpensive sensors – but the
challenge is mitigated with the availability of a large number of sensing reports
via crowdsourced spectrum sensing [13,40]. The practicality of crowdsourced
sensing architectures has been demonstrated in research projects [13,67,11] as
well as commercial ventures such as Flightaware [3]. Malicious behavior of some
SS nodes (faulty sensing reports) can be handled by appropriate fault-tolerance
strategies [19].
Spectrum Allocation Algorithm. For a given SU query, the goal of the spec-
trum allocation algorithm is to allocate maximum possible power to the SU such

ProCSA: Protecting Privacy in Crowdsourced Spectrum Allocation 3

that its transmission at the allocated power would not interfere with PU’s recep-
tion at any of its receivers. There are many ways to model PU receivers, e.g., a

Fig. 1: Spectrum Allocation in a Shared Spec-
trum System

coverage region around PU.
As in [39], we assume a fi-
nite set of representative re-
ceivers called PURs around
a PU. Each PUR is associ-
ated with an initial threshold,
which is continually updated,
to signify the maximum addi-
tional interference it can tol-
erate from the SUs. At a high-
level, for a single SU request
(we discuss multiple SUs in
§3.1), the spectrum allocation
algorithm consists of the fol-
lowing steps: (i) compute the path loss between the SU and each of the PURs,
(ii) allocate spectrum as below, (iii) update the PURs’ thresholds. See Figure 1.
More formally, let us denote the path loss function by P (,); we discuss estima-
tion of this function in more detail in §3.1. If an SU Si at location `i is allowed
to transmit at power ti, then the signal power received at PUR Rj at location `j
is given by pij = ti · P (`i, `j). To ensure that pij is less than each Rj ’s current
threshold τj , the maximum power that can be allocated to Si is:

min
j

τj
P (`i, `j)

. (1)

Once a certain transmit power ti has been allocated to an SU Si, the threshold
for a PUR at location `j is updated as:

τj = τj − ti × P (`i, `j) . (2)

Security Challenges. Despite the great potential of shared spectrum paradigms
in improving spectrum utilization efficiency, these systems suffer from serious pri-
vacy and security risks – particularly, due to the presense of many independent
entities. The data collected by SM from SU/SS/PU entities contains sensitive
information such as the locations, transmit power, sensing reports, requested
spectrum, etc. For example, a PU can be a military entity, an SU can be tele-
com operator, or an SS can be a private user. It is critical to protect the location,
behavior and other information of such entities for personal privacy, corporate
secrecy, and/or national security interests. Furthermore, the viability of crowd-
sourced paradigm may depend upon privacy assurance of the crowdsourcing
users (i.e., SS devices).

In order to ensure privacy of participating entities, it is essential that the SM
does not learn any information about them (including the allocated spectrum
power since it can reveal approximate location of the requesting SU). Further-
more, the scheme must not introduce too much latency, to maintain system’s
prompt responsiveness to SU requests; moreover, a delayed response may ren-
der the spectrum availability information obsolete and thus useless. Such strong

4 Max Curran, Xiao Liang, Himanshu Gupta, Omkant Pandey, Samir R. Das

privacy and efficiency requirements introduce several technical difficulties that
are hard to resolve using basic cryptography. Indeed, the spectrum allocation
function, which includes estimation of the path-loss values (as described in §3.1)
computed by the SM, has a rather complex algorithm. While this can be han-
dled using fully homomorphic encryption (FHE) [28], current FHE schemes are
far from practical. Another option is to consider general-purpose secure multi-
party computation (MPC) protocols [63,31]. While MPC would be impractical
if all sensor nodes are involved in the computation, it can be quite efficient for
smaller computations involving two (or three) parties. This is the approach we
take since, in the setting of secure spectrum allocation, two semi-trusted non-
colluding parties are naturally available: the SM and a key server (KS). The
non-trivial part is to express the computation (at the time of SU request) as a
small circuit or RAM program.
Related Works. The privacy and security issues in shared spectrum systems
have received serious attention in the research community only in the last decade
(see [35] for a survey). Due to the aforementioned difficulties, existing works
focus on simpler versions of spectrum allocation. In particular, many privacy-
preserving works have focused on the database-centric architecture, where the
spectrum allocation is done based on a spectrum database, often maintained
and controlled by a third party (e.g., Google, Spectrum Bridge, RadioSoft, etc.).
Here, the security solutions have focused on protecting SU’s location privacy
by either anonymizing its location/identity [58,66,45], private retrieval from the
database [15,24], or differential privacy or data obfuscation techniques [27,41]
(also used to protect PU privacy [16,54]). Most works in the crowdsourced spec-
trum management have focused on protecting privacy of SS nodes only, e.g.,
location leakage of spectrum sensors from their sensing reports. These include
encryption approaches to conceal the sensing reports [46,38,36] or using inter-
mediate nodes to hide location [38,47,37], which incurs significant computation
and communication overheads. Other approaches consider distributed architec-
tures [42] or architectures involving multiple service providers [60]. In summary,
most works have focused on privacy of SUs/SSs only, and either use data obfus-
cation techniques or incur substantial overheads.
State-of-the-Art. The state-of-the-art as well as closest to our work is the P2-
SAS system [21] which works in a simplified model where (a) rather than using
SSs’ real-time sensing reports, the SM pre-computes a signal attenuation map
based on an assumed propagation model such as Longley-Rice [56]; (b) SM does
not compute the actual allocation value; instead, the SM only provides a binary
yes/no answer indicating whether the SU can transmit at the requested power v.
Roughly speaking, these simplifications allow P2-SAS to express the computa-
tion as a linear function which can be computed over encrypted values using the
Paillier cryptosystem [52]. Since SM is not fully trusted, P2-SAS also introduces
a key server (KS) who is responsible for generating relevant keys but does not
see the encrypted data held by the SM. P2-SAS yields a solution in the semi-
honest model where parties follow the protocol instructions and do not collude
(but may analyze the data in their possession). Despite its limitations, P2-SAS
makes significant progress on this problem: it can serve yes/no answers to SU re-

ProCSA: Protecting Privacy in Crowdsourced Spectrum Allocation 5

quests with 97-98% accuracy under seven seconds, with appropriate acceleration
strategies including parallelization of many computational steps.

1.2 Our Contributions

In this work, we present the first general solution to the problem of privacy-
preserving spectrum allocation in the crowdsourced spectrum sensing model
wherein a centralized spectrum manager orchestrates spectrum allocation using
sensing reports from crowdsourced spectrum sensors. Our overall contributions
are as follows:
– We present a new architecture for the problem of privacy preserving spectrum

allocation based on fast and general-purpose S2PC protocols [8,43,17,44,18].
Our protocol computes the power allocation based on the current sensing
reports by the SS nodes. Since the conditions affecting signal attenuation (e.g.,
air, rain, vehicular traffic) may change, path-loss estimation based on real-time
sensing reports is important for accurate power allocation. In contrast, the
state-of-the-art system P2-SAS pre-computes a signal attenuation map over a
grid based on an assumed propagation model, which then remains static and
does not reflect the latest conditions. We remark that pre-computation of a
attenuation map from sensing reports (i.e., without assuming a propagation
model) in a privacy-preserving manner is also non-trivial.

– Our protocol is an order of magnitude faster that the the state-of-the-art sys-
tems. More specifically, our protocol can compute the actual power allocation
in 2-2.5 seconds on average whereas P2-SAS takes 7 seconds for a yes/no an-
swer which must be iterated a few times to compute the actual allocation. See
Table 1.

– As the spectrum allocation computation involving large number of sensing
reports is computationally very expensive to be carried out over S2PC directly,
we optimize the spectrum allocation algorithm to use only a small number of
relevant sensing reports. We show experimentally that this optimization does
not affect the quality of power allocation. Overall, this optimization results in
a faster RAM program which can be efficiently implemented using fast S2PC
protocols.

– To circumvent implementation issues in using available libraries for “S2PC
for RAM program” (see §3.2), we build a custom solution that can be imple-
mented in Ivory [55]. More specifically, we design a method for performing
oblivious read/write operations, and use these routines with fast S2PC for
(small) circuits to obtain a protocol that is proven secure in the semi-honest
model under the standard ideal-world/real-world paradigm. We use additional
optimizations such as moving arithmetic operations outside the S2PC frame-
work whenever possible to extract further efficiency.

– The generality of our approach allows us to support simultaneous allocation
queries in which several SUs simultaneously request for power allocation as
opposed to just one. The knowledge of several SU requests at once allows the
computation of power allocation for each one of them in a more fair and opti-
mal manner. Ours is the first system to support such simultaneous allocation;

6 Max Curran, Xiao Liang, Himanshu Gupta, Omkant Pandey, Samir R. Das

Algorithm Time Error wrt. Plaintext Error wrt. Optimal Comm. Cost

Two SMs 2 sec 2.10−4 dB 1 dB (Log), 4 dB (L-R) 0.15 MB

SM-KS 2.5 sec 2.10−4 dB 1 dB (Log), 4 dB (L-R) 5.35 MB

P2-SAS [21] 7 secs – 2.72% 5 MB

Table 1: Summary of Results

it is not possible in P2-SAS or other known solutions since they commonly
rely on some form of homomorphic encryption, which severely limits the type
of functions they can compute within the encryption.

Results Summary. Table 1 shows the average time and accuracy of our de-
signed schemes to serve each SU request in a large area with 400 PUs and
40,000 SSs in two propagation models (used to generate the ground truth), viz.,
Log-distance (Log) and Longley-Rice (L-R). Table shows results for two of our
schemes: Two SMs (two spectrum managers) and SM-KS (SM and a key server).
To handle the SU request, we select 10 PUs and SSs appropriately using a grid of
100× 100 over the area. See §4 for further details. As the P2-SAS [21] work out-
puts only yes/no answers, the P2-SAS entry below shows accuracy as percentage
of false positives and negatives.

2 Defining Semi-Honest Secure Spectrum Allocation

We define the functionality for spectrum allocation within the framework of
secure multi-party computation. Informally, a MPC protocol is said to be secure
if any information learned by an adversary can also be generated (or “simulated”)
by an ideal-world simulator. A formal treatment for MPC framework is given
Appendix A. In the following, we define the ideal functionality for our spectrum
allocation task. We focus on semi-honest model with static corruption, which
means the set of corrupted parties is fixed before the execution of the protocol
and all parts (including the corrupted ones) follow the protocol. We also assume
authenticated communication channels between each pair of parties.

Ideal Functionality for Spectrum Allocation. The spectrum allocation
functionality involves the following participants: the requesting SU Si, PUs,
PURs, SSs, and the two spectrum managers SM0 and SM1. We note that the
roles of PUs, PURs, and SSs in the protocol are limited in that they only provide
data for the computation but do not receive any output. For clarity of presenta-
tion, we will use PNs (acronym for Private Nodes) to represent all PURs, PUs
and SSs. Also, even though PNs consist of many independent nodes, for ease of
presentation, we will treat the entire set of PNs as one single party and use D
to denote the concatenation of their data. The above simplifications are merely
for clarity of presentation and do not affect the generality of our results.

The spectrum allocation functionality fSA is described as follows (details are
given in §3.1):
– Input: The requesting SU Si sends its location `i to fSA. SM0 and SM1 input

nothing to fSA, but we use the symbol ⊥ as a placeholder for them. All the
PNs (i.e., all the PURs, PUs and SSs, as mentioned above) send their data D
to fSA.

ProCSA: Protecting Privacy in Crowdsourced Spectrum Allocation 7

– Computation: Upon receiving the above input (`i,⊥,⊥, D), fSA does the
following (as described in §3.1):

• For j 6= i, compute the path loss P (`i, `j) between the Si and Sj

• Calculate the proper transmit power ti to Si per Eqn. (1)
• Update the thresholds for each PUR location `j per Eqn. (2)

– Output: (ti,⊥,⊥,⊥) are the outputs to participants (Si,SM0,SM1,PNs) re-
spectively.
We note that SM0 and SM1 neither send any input nor receive any output

from fSA. Even though the SMs are “dummy” within fSA functionality, their
existence is important to define and prove the security of our protocol.
Correctness and Security. For a protocol Π, we define its correctness and
security w.r.t. fSA in the following way.

Definition 1 (Correctness). We say that Π correctly computes fSA if the
following holds except for negligible probability

outputΠ(`i,⊥,⊥, D) = fSA(`i,⊥,⊥, D) (3)

where the tuple (`i,⊥,⊥, D) denotes the input data from (Si,SM0,SM1,PNs)
and outputΠ is the output function of protocol Π.

Definition 2 (Security). We say that Π securely computes fSA in a semi-
honest model with static corruption if there exists a probabilistic polynomial-time
algorithm SΠ such that for every I ⊆ {Si,SM0,SM1,PNs} that does not contain
both SM0 and SM1,

{SΠ(I, inputI , f
SA
I (`i,⊥,⊥, D))} c≡ {viewΠI (`i,⊥,⊥, D)} (4)

where the tuple (`i,⊥,⊥, D) denotes the input data from (Si,SM0,SM1,PNs),
inputI denotes the input of parties in set I and viewΠI (`i,⊥,⊥, D) is the views
of parties in set I at Π’s termination on input (`i,⊥,⊥, D).

We remark that, in our model, set I cannot simultaneously include both SM
servers since they are non-colluding. The definitions are easy to modify to work
with a single SM and a KS, or other equivalent setups.

3 Secure Spectrum Allocation

Fig. 2: Path Loss Estimation

Our secured approach to spectrum
allocation is based on on the S2PC
technique, but we incorporate vari-
ous optimizations to make the over-
all approach viable for our context.
We start with describing the plaintext
(unsecured) version of our spectrum
allocation algorithm.

8 Max Curran, Xiao Liang, Himanshu Gupta, Omkant Pandey, Samir R. Das

3.1 Plaintext Algorithm

For a new SU request, the Plaintext algorithm can be described as a sequence
of the following steps (as per §1.1): (i) compute the path loss between the SU
and each of the PURs, (ii) allocate spectrum as per Eqn. (1), and (iii) update the
thresholds of the PURs based on the allocation to the SU. We describe the first
step in detail below; the other two steps are just straightforward assignment of
values to appropriate variables. Later, we motivate and discuss selection of SSs
and PUs to make the algorithm more computationally efficient, without much
compromise in spectrum utilization.
Path Loss Estimation. As per Eqn. (1), we need to compute the path loss
between the requesting SU Si and each of the PUs’ receivers (i.e., PURs). For a
given PUR Rjk of a PU Pj , we compute the path loss P (Si, Rjk) between Rjk
and Si as follows. See Figure 2.
1. First, we compute the path loss P (Si, Pj) between the SU Si and PU Pj in

two steps as follows:

(a) Compute path loss P (Pj , C`) from PU Pj to each of the spectrum sensors
C`. Since a spectrum sensor C` only senses the aggregate power received
from all PUs, computing path loss from PU Pj to C` requires splitting
the sensed power across the PUs (as described later).

(b) Use interpolation to compute the path loss P (Si, Pj).

2. Then, we compute the desired path loss P (Si, Rjk) from the above computed
P (Si, Pj).
We now describe each of the above steps below.

(1a) Estimating P (Pj , C`) From Sensed Power at C`. As mentioned above, a spec-
trum sensor C` senses only the aggregate power received from all the PUs. Thus,
we must first “split” the total received power of C` among the PUs; we do this
splitting based on the weighted distance as follows. Let r` be the total power
received at C`, and tx be the transmit power of a PU Px. Then, we estimate the
power received rjl at C` due to PU Pj as:

rjl =
tj/d (C`, Pj)

αs∑
Px
tx/d (C`, Px)

αs
× r` (5)

Above, d() is the distance function and αs is an exponent parameter that is
used to control the above splitting. Now, we can easily compute the path loss
P (Pj , C`) as:

P (Pj , C`) = rjl/tj (6)

Note that the above estimation of P (Pj , C`) does not depend upon Si, and then
can be precomputed.
(1b) Interpolation to Compute P (Si, Pj). Once we have estimated the path loss
between a PU Pj and every SS C`, we use interpolation to estimate the path
loss from Pj to the current SU Si under consideration. Prior works [64,13] have
used Ordinary Kriging (OK), k-nearest neighbors (k-NN) classifier, or inverse
distance weighted (IDW) approaches for such interpolation—with k-NN and OK
performing similarly [64]. Here, for simplicity, we start with the IDW approach,
and later refine it to using IDW over k nearest neighbors (making the overall

ProCSA: Protecting Privacy in Crowdsourced Spectrum Allocation 9

scheme akin to a more sophisticated version of the traditional k-NN scheme [64]).
Using IDW, we get (here, Cx is a SS node):

P (Si, Pj) =

∑
Cx
P (Cx, Pj) /d (Si, Cx)

αp∑
Cx

1/d (Si, Cx)
αp

(7)

Above, αp is an exponent parameter that is used to control the above interpo-
lation.
(2) Compute Path Loss P (Si, Rjk) from SU to PUR. We now use the estimated
path loss between the SU Si and a PU Pj to estimate the path loss between the
SU Si and the PU Pj ’s PURs. Each PUR Rjk is represented by its location.
To estimate the desired path loss P (Si, Rjk), we assume a uniform log-distance
path loss model within the triangle of nodes Pj , Si and Rjk. In particular, we
use:

P (Si, Rjk) =
P (Si, Rj) (d (Si, Rjk))αp

(d (Si, Rj))αp
(8)

Selection of PUs and SSs for Computational Efficiency. Involving all the
PUs and SSs in the above path loss estimation is quite inefficient, as the num-
ber of PUs and especially SSs can be very large. This computational efficiency
is particularly critical in the secured S2PC implementation. Thus, to improve
computational efficiency, we devise a strategy to select only a small number of
PUs and SSs—that are most pertinent to the SU Si requesting spectrum. Note
that the PUs that are very far away from Si are unlikely to be affected by the
spectrum allocated to Si, especially if there are sufficiently many PUs that are
close enough to Si. Similarly, only the SSs that are close to the selected PUs
(and thus to the SU Si) are going to be much useful in the above interpolation
step. Note that in the interpolation step, the SSs are weighted by the inverse
distance to Si; thus, SSs that are far away from Si will have minimal impact.
Based on the above arguments, for the sake of computational efficiency, we thus
select PUs and SSs that are “close” to the given SU Si and use only these PUs
and SSs in the above computations. In particular, given an SU Si, we pick kss
nearest SSs, and kpu nearest PUs; here, the distance to SSs is unweighted, but
the distance to a PU is weighted by the average of the thresholds of its PURs.
The kss and kpu values may be chosen based on the density of PUs and SSs. Our
simulation results (see §4) show that only a small number of close-by SS and PU
nodes suffice to obtain sufficiently accurate path-loss, if the density of SS nodes
is sufficiently high.
Grid Based Implementation. To implement the selection of SSs and PUs effi-
ciently, we employ a grid-based heuristic wherein we divide the given area into
cells using horizontal and vertical grid lines, and associate with each cell the list
of PUs and SSs that should be selected if the requesting SU is at the cell’s center.
When a request of SU Si comes, we determine the cell C in which the Si lies, and
use the PUs and SSs associated with C for path-loss estimation steps. It is im-
portant to note that this grid-based heuristic is not exact, i.e., it may not return
the nearest set of SSs and weighted PUs as it approximates the position of a
requesting SU Si by the center of C, the cell in which Si lies. However, our simu-
lation results show that the grid-based approach is computationally efficient and

10 Max Curran, Xiao Liang, Himanshu Gupta, Omkant Pandey, Samir R. Das

sufficiently accurate for our purposes. Note that the set of PUs associated with
some cell may need to be updated due to updates to the PUR thresholds after
every spectrum allocation (recall that the distance to PUs are weighted by the
average of their PUR thresholds); for efficiency, we only update the thresholds
of the PURs of the selected PUs.
Handling Multiple SUs. The above describes the process to allocate spectrum
to a single SU request. Multiple SU requests can be easily handled one at a time,
except that in step (1a) above, we need to also account for the fact that a SS
may sense power from SU transmissions. This can be handled easily by storing
information about the active SUs with the containing cell, and incorporating it
in the (1a) step. Multiple SU requests can also be handled simultaneously, to
incorporate a given fairness constraint, by solving a system of linear equations
(with one equation for each PUR) within our S2PC framework.

3.2 Secured Algorithm using Two SMs

In this section, we present the secured implementation of our plain algorithm
between two spectrum managers. We first present the solution in the simpler
setting where there are two semi-honest SMs, and then show how to replace the
second SM with a key server. This allows us to focus on core issues related to
security and efficiency first.

At a high-level, this secured algorithm works by having all the PNs secret-
share their data to the two SMs, who will then run S2PC protocols between
two SMs for each stage of our plain algorithm. Most of our spectrum allocation
algorithm involves only simple arithmetic operations which can be implemented
efficiently in S2PC; the only parts that require special attention are the following:
in our grid-based interpolation, SMs need to read data from the selected PNs
and update the threshold for PURs. These operations happen on the large data
array secret-shared between the two SMs.

A direct S2PC implementation will be quite inefficient. One option is to
use “S2PC for RAM program” [51,33]. However, the actual implementation us-
ing known libraries for efficient S2PC for RAM program [33,57,62,61,65,20,10]
runs into several issues. While there are several available implementations that
offer different features, these are maintained by individual researchers/teams
and often incompatible with each other. Our spectrum allocation algorithm best
operates as a RAM program often switching between arithmetic and boolean op-
erations, and it becomes difficult to obtain a workable solution existing known
implementations. Therefore, we design a novel oblivious read/write algorithms,
which allow fast and secure access of the secret-shared data array. These algo-
rithms can be easily incorporated into our secured protocol.

In the remainder of this subsection, we first give a formal description of our
secured protocol, and then present our oblivious Read/Write algorithm in detail.

Protocol 1 (Secured Spectrum Allocation). Our secured spectrum alloca-
tion protocol Π consists of the following stages (subprotocols):
Πoff : All the PNs secret-share their data D as D0 +D1 (using an additive secret
sharing scheme), and send D0 (resp. D1) to SM0 (resp. SM1). These two SMs

ProCSA: Protecting Privacy in Crowdsourced Spectrum Allocation 11

then run an S2PC protocol implementing the functionality foff , which denotes all
the steps in §3.1 before the request of any SU Si arrives. Specifically, it includes
step (1a) of Path Loss Estimation and the construction of the grid system
used to choose proper subset of PUs and SSs for efficient computation. The
result is stored in an array data structure A for later use. At the end of this
stage, SM0 and SM1 get A0 and A1 respectively, which are secret shares of A
(i.e. A0 +A1 = A). We remark that the task of this stage should be done off-line
(before any request of SU arrives) to improve efficiency.
Πslct: This is the selecting stage to get the subset J of indices of array A, which
indicates the data needed for pass loss estimation. Πslct asks Si to secret-share its
location `i = `0i + `1i to SM0 and SM1. Then the two SMs run an S2PC protocol
implementing the functionality fslct : (`0i , `

1
i)→ (J0, J1) described as follows. fslct

takes input (`0i , `
1
i) from SM0 and SM1 respectively. It first recovers `i = `0i + `1i

and then computes the indices as specified in Selection of PUs and SSs in §3.1,
resulting in a set of indices J . Then the protocol secret shares J = J0 + J1 to
SM0 and SM1 as the output of this stage.
Πread: SM0 and SM1 use J0 and J1 respectively as input to read data from A,
following our Secured Array-Entry Read algorithm (specified later). At the end
of this sub-protocol, A[j] will be secrete shared as A′′0 [j] +A′′1 [j] for every j ∈ J .
The output of this stage to SM0 (resp. SM1) is the sequence of secret shares
{A′′0 [j]}j∈J (resp. {A′′1 [j]}j∈J).
Πalloc: SM0 and SM1 use {A′′0 [j]}j∈J and {A′′1 [j]}j∈J as input to calculate the
allocated transit power ti. ti is then secret-shared to t0i + t1i . SM0 (resp. SM1)
gets t0i (resp. t1i) as output. This sub-protocol again is implemented via 2PC.
Πupdate: SM0 and SM1 run an S2PC protocol implementing the computation of

the new threshold τj as per Eqn. (2). The results are again secret shared. SM0

holds {τ0
j }j∈J , and SM1 holds {τ1

j }j∈J such that τ0
j + τ1

j = τj for all j ∈ J .

Πwrite: SM0 and SM1 use {τ0
j }j∈J and {τ1

j }j∈J as input to update data in
{A[j]}j∈J . This sub-protocol is implemented as our Secured Array-Entry Write
algorithm (specified later).
Πoutput: SM0 (resp. SM1) sends t0i (resp. t1i) as it received in Πalloc to Si. Si

recovers ti = t0i + t1i as the final output of the main protocol Π. ut
SM0(A0, j0) SM1(A1, j1)

A0[i]→ A′0[i] A1[i]→ A′1[i]
S2PC

protocol
(j0, s0) (j1, s1)

j′1 j′0
oblivious
transfer

(A′0, j
′
1) (A′1, j

′
0)

A′1[j
′
1] A′0[j

′
0]

S2PC for
re-sharing

(r0, A
′
1[j
′
1]) (r1, A

′
0[j
′
0])

A′′0 [j] A′′1 [j]

Fig. 3: Array-Entry Read Operation

Secured Array-Entry Read. Con-
sider an array A[1..n]. The secret
sharing of array A[1..n] entails that
SM0 and SM1 store A0[1..n] and
A1[1..n] respectively with A0[i] and
A1[i] as two random numbers such
that A0[i] + A1[i] = A[i]. Now, let’s
say we are given an index j (that
has been “computed” in S2PC), and
we wish to “load” the entry A[j] into
S2PC without either SM learning about either the index j or the entry A[j] being
accessed. We use the oblivious transfer (OT) technique [53,23] to implement our
solution; the OT techniques allows two parties to exchange information securely.

12 Max Curran, Xiao Liang, Himanshu Gupta, Omkant Pandey, Samir R. Das

In particular, if one party has the array and the other party has the index of
interest, then OT allows the first party to transfer A[j] to another without either
party knowing the other party’s input parameter. In our context, the additional
challenge is that neither the index j nor the array A is known to either of the
parties; these values are shared across the two SMs. We address this challenge
by random “shifting” of the indexes and array values at each SM, and engage
in S2PC appropriately as described below. Our solution to access an entry A[j]
into S2PC securely involves the following steps:

We start with assuming that, from earlier stages in the execution of S2PC,
the target index j is shared across the two SMs. Thus, at the beginning of this
stage, SM0 holds j0 and A0 as input while SM1 holds j1 and A1 as input; here,
j0 and j1 are the secret shares of our target index j, and A0 and A1 are secret
shares of data array A.
1. First, each SM creates new arrays by shifting the indices and entries of the

given arrays by fixed random values. More formally, SM0 and SM1 create
arrays A′0[1..n] and A′1[1..n] as:

A′0[i] = A0[(i+ s0)%n] + r0, A′1[i] = A1[(i+ s1)%n] + r1

where s0 and r0 (resp. s1 and r1) are random numbers chosen by SM0 (resp.
SM1).

2. Now, S2PC protocol transfers appropriate indices to the SMs. In particular,
SM0 (resp. SM1) holding j0 and s0 (resp. j1 and s1) as input run a S2PC
protocol to implement the following functionality f : Upon receiving inputs
from SM0 and SM1, f recovers j = j0 + j1 and sends j′1 := (j + s1)%n (resp.
j′0 := (j + s0)%n) to SM0 (resp. SM1) as the output.

3. Now, the SMs exchange array entries via OT. In particular, SM0 fetches A′1[j′1]
from SM1, and SM1 fetches A′0[j′0] from SM0.

4. Then SM0 (resp. SM1) uses A′1[j′1] and r0 (resp. A′0[j′0] and r1) as input to run
a S2PC protocol implementing the following functionality f : Upon receiving
inputs from SM0 and SM1, f recovers A[j] as

A[j] = A′0[j′0] +A′1[j′1]− r0 − r1

and then secret shares the A[j] as A′′0 [j]+A′′1 [j], and sends A′′0 [j] (resp. A′′1 [j])
to SM0 (resp. SM1) as the final output.

Secured Array-Entry Write. Consider an array A[1..n] again as above, where
the SM0 and SM1 store the secret shares A0[1..n] and A1[1..n] respectively of
the array. Now, given two private values (secret-shared across the SMs) j and d,
we wish to update the array entry A[j] by adding d to it. We achieve the above
update of A[j] to A[j] + d in a secured manner by adding zero to the remaining
entries A[i] (for i 6= j). One simple (but inefficient) way to achieve the above is
as follows.
– At start, SM0 (resp. SM1) holds j0 and d0 (resp. j1 and d1) as input, where
j0 and j1 are the secret shares of the target index j while d0 and d1 are the
secret shares of value d to be added to A[j].

ProCSA: Protecting Privacy in Crowdsourced Spectrum Allocation 13

– SM0 creates an array D0[1..n] of random and private numbers.
– SM0 holding D0 and d0 as input and SM1 holding d1 as input execute a S2PC

protocol implementing the following functionality f : Upon receiving input
from SMs, f computes the “complement” D1 of D0 such that D0[i]+D1[i] = 0
for i 6= j and D0[j] +D1[j] = d. f sends D1 to SM1 as the output.

– Finally, each SM updates its array as: A0[i] = A0[i] + D0[i] and A1[i] =
A1[i] +D1[i] for all i (including j).

SM0(A0, j0, d0) SM1(A1, j1, d1)

S2PC
protocol

(j0, s0) (j1, s1)
j′1 := (j + s1)%n j′0 := (j + s0)%n

Create U0,V0 Create U1,V1
V ′0 [i] = V0[(i + s0)%n] V ′′0 [i] = V ′0 [(i− s1)%n]

= V0[(i + s0 − s1)%n]

V ′0

V ′1 [i] = V1[(i + s1)%n]
V ′′1 [i] = V ′1 [(i− s0)%n]
= V1[(i + s1 − s0)%n]

V ′1

W0 = U0 + V ′′1 W0[i] = W0[(i− s1)%n]
A1 updates to A1 +W0

W0

W1[i] = W1[(i− s0)%n]
A0 updates to A0 +W1

W1 = U1 + V ′′0
W1

Fig. 4: Array-Entry Write Operation

The above approach how-
ever can be very inefficient
due to a large number of oper-
ations (O(n) additions) com-
puted in S2PC. To circumvent
this, we propose another ap-
proach that limits the num-
ber of arithmetic operations
at S2PC to a small constant
while pushing most of the
arithmetic operations to the
SMs. We achieve this by cre-
ating two arrays at each SM,
shifting their indexes and exchanging them appropriately. We use the term shift-
ing an array B[1..n] by m to mean the operation B[i] = B[(i + m)%n]. For
b ∈ {0, 1}, our approach works as follows:

– Input. Same as in the above approach, SMb holds Ab, jb and db as input.
– Creating j′b. Each SMb samples a random number sb. Then each SMb on input

(jb, sb) execute a S2PC protocol implementing the following functionality f :
Upon receiving SMs’ input, f recovers j = j0 + j1 and sends j′1−b := (j +
s1−b)%n to SMb as the output.

– Updating Arrays Ub and Vb. Each SMb creates two arrays Ub and Vb, such that
Ub[i] + Vb[i] = db for i = j′1−b and 0 otherwise. Here, the idea is that these
arrays (after manipulation) will eventually be sent over to the other SM (i.e.,
SM1−b) who will be able to shift these arrays by s1−b, to get the share of d in
the jth index.

– Manipulation and Exchange of Vb. Now, each SMb shifts Vb further by sb (its
private random number) and sends it over to the other SM (i.e., SM1−b). The
SMb on receiving V1−b shifts it by −sb. Thus, each SMb has V1−b which has
been shifted by sb + s1−b − sb = s1−b.

– Addition of Local Update Arrays, and Exchange. Each SMb now adds the
locally available Ub and V1−b (each has a shift of s1−b) to get Wb. At this
point, W0 and W1 are such that, if we ignore their shifts, their respective
entries add up to zero and d. SMs exchange their W0 and W1.

– Final Updating. Each SMb now has W1−b (with a shift of j1−b). The array
W1−b is finally shifted by −sb and added to Ab array.

Correctness and Security. The correctness of Protocol 1 is obvious. The
security proof is given in Appendix B.

14 Max Curran, Xiao Liang, Himanshu Gupta, Omkant Pandey, Samir R. Das

Fig. 5: Average difference in power allocated by Plaintext and Optimal schemes
for varying number of (a) selected SSs, (b) selected PUs, and (c) grid size.

Fig. 6: Average difference in spectral power allocated by secured (i.e., 2-SMs or
SM-KS) and Plaintext schemes for varying parameter values.

3.3 Secure Allocation Using One SM and a Key Server

We now modify the secured algorithm from previous subsection to the case of a
single SM and a key server. A key server (KS) is a semi-trusted entity in that it
can use its persistent storage to only store the cryptographic keys and no other
data. We can implement our secured approach over a single SM and a KS, with
the following modification to the secret sharing mechanism.

An entity E with the data ai that it wants to share (in our task, E could be a
SS/PU/PUR node with its input) will ask KS for an AES key ki. E secret shares
ai to ai0 + ai1. It then sends ai0 and AESki(ai1) to SM, where AESki(ai1) is the
AES-encrypted ai1 with key ki. This finishes the secret sharing stage. After all
the necessary data is shared in this way to SM, it can run our aforementioned
protocol Π with KS playing the role of SM1. More specifically, SM sends the
encrypted shares to KS, who has the corresponding AES keys for decryption.
Now we are in the setting where two parties hold the secret shares of input for
the spectrum allocation task. They can then run protocol Π as if KS is SM1.

The above mechanism enables secured two-party computation using S2PC
protocol without requiring S2PC to perform any cryptographic operations. Also,
it can be used easily to implement the secure read and write operations as
described in the previous subsection.

4 Simulation Results

In this section, we evaluate our developed techniques for secured spectrum allo-
cation, by demonstrating its accuracy and computational efficiency.
S2PC Implementation. The core component of our designed algorithm is the
use of S2PC protocol to securely compute certain arithmetic operations. To aid
our implementation, we use a pre-existing S2PC library Ivory [55]. Ivory provides

ProCSA: Protecting Privacy in Crowdsourced Spectrum Allocation 15

Fig. 7: Time taken by the secured algorithms for varying parameter values.

pre-built circuits for simple operations over integers; these circuits can be used
to compute more complex functions using S2PC protocol. Limited by the Ivory
library, we use a fixed-point representation for values in S2PC. In particular, we
represent a real value v in terms of a standard int value x, such that v = x× 2k

where k is a (positive or negative) constant which determines the precision level
of the fixed point value. We use 64 bits to represent real values.

Simulation Setup and Parameters. Similar to the settings in the most closely
related work [21], we consider a geographic area of 10km × 10km, with 400
PUs and 40000 SSs randomly distributed in the area; we use a large number of
spectrum sensors to demonstrate the scalability of our approach in high-density
crowdsourced settings. We use 5 PURs for each PU located at 100m around the
PU. In each of the plots below, we vary one of the parameter settings while keep-
ing the other parameter settings to their default values. In particular, the default
values for various parameter settings are as follows: number of selected PUs: 10,
number of selected SSs: 10, grid of 100 × 100. We consider two signal propaga-
tion models, viz., log-distance (Log) and Longley-Rice (L-R) [56], to generate the
“ground truth” data, i.e., the sensing reports at the SSs, based on the power and
location of each PU. Log-distance (Log) model is a simple model, wherein the
signal attenuation at a distance d is proportional to dα where α is the path-loss
exponent constant. In contrast, the Longley-Rice (L-R) is a complex model of
wireless propagation, which takes multiple parameters, such as geolocation of
transmitter (TX) and receiver (RX), their antenna configuration, terrain data,
weather, and soil condition. In particular, we use the SPLAT! application [1] to
generate path losses based on L-R model for desired pairs of points.

Accuracy of Plaintext (PT) Algorithm vs. Optimal (OPT). We start with
evaluating the accuracy of our PT algorithm (§3.1) with respect to the optimal
or “ground truth” (denoted by OPT) scheme which allocates maximum spectrum
power possible based on the true path-loss values derived directly from the un-
derlying propagation model. Recall that accuracy of PT algorithm is affected
by three aspects of the algorithm: (i) path-loss estimation error, (ii) selection
strategy, which selects only the nearest SSs and PUs, and the (iii) grid-based
implementation which approximates a SU’s location with the containing grid-
cell’s center and updates the PUR thresholds of only the PUs that are associated
with the containing grid-cell. See Figure 5, which plots the average spectrum dif-
ference (in dB) between the spectrum power allocated by the PT algorithm and
the optimal OPT, for varying number of selected SSs and PUs and grid size, for
Log-distance and Longley-Rice propagation models. For the Log-distance model,
as mentioned in §3.1, the first and the third steps of our path-loss estimation

16 Max Curran, Xiao Liang, Himanshu Gupta, Omkant Pandey, Samir R. Das

process are provably 100% accurate if the chosen exponent is the same as that
of the underlying model (as is the case in the simulations); thus, the path-loss
estimation errors in the Log-distance model are solely due to the second (inter-
polation) step. In Figure 5, we observe that for the Log-distance (Log) model,
the difference between the PT and OPT schemes on average is minimal (1-2 dB)
when the number of selected PUs and SSs is 10, and the grid size is at least
as 100 × 100. For the Longley-Rice (L-R) model, the average error is about 4-5
dB for similar parameter values; this is largely expected, as the complex L-R

model depends on various terrain-specific factors and thus is more difficult to
estimate accurately compared to the Log model which depends solely on dis-
tance between points. In summary, a small number (10-15) of SSs and PUs are
sufficient to minimize the error, and choosing a larger number of SSs or PUs is
not helpful. Also, a 100 × 100 grid seems fine enough. This justifies our selec-
tion strategy and its grid-based implementation, and facilitates computational
efficiency of our secured schemes as described below.
Accuracy of Secured vs. Plaintext Algorithms. We now present statistics
for the accuracy of our secured schemes (§3.2), as compared to the Plaintext
(PT) algorithm. Note that the two secured schemes, viz., using two SMs (2-SMs)
or an SM plus a key server KS (SM-KS), allocate the same spectrum power and
thus will have the same accuracy—as they differ only in their implementation.
In Figure 6, we plot the difference between the spectrum power allocated by
our secured schemes and the Plaintext (PT) algorithm, for varying number of
selected SSs or PUs or grid size, for Log-distance (Log) and Longley-Rice (L-R)
propagation models. Here, the range of the values for number of SSs or PUs
selected is partly dictated by the the results in Figure 5 which show that only a
small number (10-15) of SSs of PUs are sufficient for minimizing the error of the
Plaintext algorithm. Figure 6 shows that across all parameter values of interest
the difference between the Secured and Plaintext is near zero dB.
Computation Time. Figure 7 plots computation time taken by the two secured
schemes, viz., 2-SMs (using two SMs) and SM-KS (one SM and a key server)
for varying grid size, # of selected SSs, and # of selected PUs selected. We
use a virtual machine with 48GB ram and 6 virtual CPUs— with each vCPU
implemented as a single hardware hyper-thread on a Intel Xeon E5 v3 (Haswell)
platform [2]. We observe that the computation time taken by either scheme is of
the order of 2-3 seconds, except for grids larger than 500 × 500 (due to higher
grid-table sizes). However, as shown in prior results, a 100 × 100 grid is fine
enough for delivering high accuracy.
Communication Overhead. The communication overhead of our secured schemes
was observed to be minimal. In particular, for the optimal parameters of a grid
of 100× 100 and 10 selected SSs and PUs each, the secured schemes (2-SMs as
well as SM-KS) incur a communication overhead of about 150 KB in computing
the arithmetic and access operations. The SM-KS scheme incurs an additional
communication overhead of 5.2 MB to transfer the grid array. Thus, the total
communication overhead for the 2-SMs scheme is 150 KB, while that for the
SM-KS scheme is 5.35 MB.

ProCSA: Protecting Privacy in Crowdsourced Spectrum Allocation 17

References

1. https://www.qsl.net/kd2bd/splat.html.

2. https://cloud.google.com/compute/docs/cpu-platforms.

3. FlightFeeder for Android, FlightAware. http://flightaware.com/adsb/

android/.

4. J. Andrews et al. What will 5G be? IEEE JSAC, 2014.

5. T. Araki, A. Barak, J. Furukawa, T. Lichter, Y. Lindell, A. Nof, K. Ohara, A. Watz-
man, and O. Weinstein. Optimized honest-majority mpc for malicious adversaries-
breaking the 1 billion-gate per second barrier. In Security and Privacy (SP), 2017
IEEE Symposium on, pages 843–862. IEEE, 2017.

6. T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara. High-throughput semi-
honest secure three-party computation with an honest majority. In Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pages 805–817. ACM, 2016.

7. D. Beaver. Foundations of secure interactive computing. In Annual International
Cryptology Conference, pages 377–391. Springer, 1991.

8. A. Ben-David, N. Nisan, and B. Pinkas. Fairplaymp: a system for secure multi-
party computation. In Proceedings of the 15th ACM conference on Computer and
communications security, pages 257–266. ACM, 2008.

9. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In Proceedings of the twen-
tieth annual ACM symposium on Theory of computing, pages 1–10. ACM, 1988.

10. N. Buescher, A. Weber, and S. Katzenbeisser. Towards practical ram based secure
computation. In European Symposium on Research in Computer Security, pages
416–437. Springer, 2018.

11. R. Calvo-Palomino, D. Giustiniano, V. Lenders, and A. Fakhreddine. Crowdsourc-
ing spectrum data decoding. In IEEE INFOCOM 2017 - IEEE Conference on
Computer Communications, 2017.

12. R. Canetti. Security and composition of multiparty cryptographic protocols. Jour-
nal of CRYPTOLOGY, 13(1):143–202, 2000.

13. A. Chakraborty, M. S. Rahman, H. Gupta, and S. R. Das. Specsense: Crowdsensing
for efficient querying of spectrum occupancy. In IEEE INFOCOM 2017 - IEEE
Conference on Computer Communications, 2017.

14. D. Chaum, C. Crépeau, and I. Damgard. Multiparty unconditionally secure pro-
tocols. In Proceedings of the twentieth annual ACM symposium on Theory of
computing, pages 11–19. ACM, 1988.

15. B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval.
In Foundations of Computer Science, 1995. Proceedings., 36th Annual Symposium
on, pages 41–50. IEEE, 1995.

16. M. A. Clark and K. Psounis. Trading utility for privacy in shared spectrum access
systems. IEEE/ACM Transactions on Networking, 2017.

17. I. Damg̊ard, V. Pastro, N. Smart, and S. Zakarias. Multiparty computation from
somewhat homomorphic encryption. In Advances in Cryptology–CRYPTO 2012,
pages 643–662. Springer, 2012.

18. D. Demmler, T. Schneider, and M. Zohner. Aby-a framework for efficient mixed-
protocol secure two-party computation. In NDSS, 2015.

19. G. Ding, F. Song, Q. Wu, Y. Zou, L. Zhang, S. Feng, and J. Wang. Robust spectrum
sensing with crowd sensors. In IEEE VTC, 2014.

https://www.qsl.net/kd2bd/splat.html
https://cloud.google.com/compute/docs/cpu-platforms
http://flightaware.com/adsb/ android/
http://flightaware.com/adsb/ android/

18 Max Curran, Xiao Liang, Himanshu Gupta, Omkant Pandey, Samir R. Das

20. J. Doerner and A. Shelat. Scaling oram for secure computation. In Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pages 523–535. ACM, 2017.

21. Y. Dou, K. C. Zeng, H. Li, Y. Yang, B. Gao, K. Ren, and S. Li. P2-sas: Privacy-
preserving centralized dynamic spectrum access system. IEEE Journal on Selected
Areas in Communications, 35(1):173–187, 2017.

22. E. Drocella, J. Richards, R. Sole, F. Najmy, A. Lundy, and P. McKenna. 3.5 GHz
exclusion zone analyses and methodology. Tech. Rep., 2015.

23. S. Even, O. Goldreich, and A. Lempel. A randomized protocol for signing contracts.
Communications of the ACM, 28(6):637–647, 1985.

24. B. Fan, D. G. Andersen, M. Kaminsky, and M. D. Mitzenmacher. Cuckoo filter:
Practically better than bloom. In Proceedings of the 10th ACM International on
Conference on emerging Networking Experiments and Technologies, pages 75–88.
ACM, 2014.

25. U. FCC. Longley-rice methodology for evaluating TV coverage and interference.
OET Bulletin, 69, 2004.

26. J. Furukawa, Y. Lindell, A. Nof, and O. Weinstein. High-throughput secure three-
party computation for malicious adversaries and an honest majority. In Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques, pages 225–255. Springer, 2017.

27. Z. Gao, H. Zhu, Y. Liu, M. Li, and Z. Cao. Location privacy in database-driven
cognitive radio networks: Attacks and countermeasures. In INFOCOM, 2013 Pro-
ceedings IEEE, pages 2751–2759. IEEE, 2013.

28. C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of
the 41st Annual ACM Symposium on Theory of Computing, pages 169–178. ACM,
2009.

29. O. Goldreich. Foundations of Cryptography: Basic Tools. Cambridge University
Press, New York, NY, USA, 2000.

30. O. Goldreich. Foundations of cryptography: volume 2, basic applications. Cam-
bridge university press, 2009.

31. O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In
Proceedings of the nineteenth annual ACM symposium on Theory of computing,
pages 218–229. ACM, 1987.

32. S. Goldwasser and L. Levin. Fair computation of general functions in presence of
immoral majority. In Conference on the Theory and Application of Cryptography,
pages 77–93. Springer, 1990.

33. S. D. Gordon, J. Katz, V. Kolesnikov, F. Krell, T. Malkin, M. Raykova, and
Y. Vahlis. Secure two-party computation in sublinear (amortized) time. In Pro-
ceedings of the 2012 ACM conference on Computer and communications security,
pages 513–524. ACM, 2012.

34. M. Grissa, B. Hamdaoui, and A. A. Yavuz. Location privacy in cognitive radio
networks: A survey. IEEE Communications Surveys & Tutorials, 2017.

35. M. Grissa, B. Hamdaoui, and A. A. Yavuza. Location privacy in cognitive radio
networks: A survey. IEEE Communications Surveys Tutorials, 19(3), 2017.

36. M. Grissa, A. Yavuz, and B. Hamdaoui. Lpos: Location privacy for optimal sens-
ing in cognitive radio networks. In Global Communications Conference (GLOBE-
COM), 2015 IEEE, pages 1–6. IEEE, 2015.

37. M. Grissa, A. Yavuz, and B. Hamdaoui. An efficient technique for protecting loca-
tion privacy of cooperative spectrum sensing users. In Computer Communications
Workshops (INFOCOM WKSHPS), 2016 IEEE Conference on, pages 915–920.
IEEE, 2016.

ProCSA: Protecting Privacy in Crowdsourced Spectrum Allocation 19

38. M. Grissa, A. A. Yavuz, and B. Hamdaoui. Preserving the location privacy of sec-
ondary users in cooperative spectrum sensing. IEEE Transactions on Information
Forensics and Security, 12(2):418–431, 2017.

39. A. T. Hoang, Y. Liang, and M. H. Islam. Power control and channel allocation in
cognitive radio networks with primary users’ cooperation. IEEE Transactions on
Mobile Computing, 9, 2010.

40. P. Ishwar, A. Kumar, and K. Ramchandran. Distributed sampling for dense sen-
sor networks: a bit-conservation principle. In Information Processing in Sensor
Networks, pages 17–31. Springer, 2003.

41. X. Jin, R. Zhang, Y. Chen, T. Li, and Y. Zhang. DPSense: Differentially private
crowdsourced spectrum sensing. In Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security, pages 296–307. ACM, 2016.

42. B. Kasiri, I. Lambadaris, F. R. Yu, and H. Tang. Privacy-preserving distributed
cooperative spectrum sensing in multi-channel cognitive radio manets. In Commu-
nications (ICC), 2015 IEEE International Conference on, pages 7316–7321. IEEE,
2015.

43. V. Kolesnikov and T. Schneider. Improved garbled circuit: Free XOR gates and
applications. In Proceedings of 35th International Colloquium on Automata, Lan-
guages and Programming, pages 486–498, 2008.

44. B. Kreuter, A. Shelat, and C.-H. Shen. Billion-gate secure computation with ma-
licious adversaries. In USENIX Security Symposium, volume 12, pages 285–300,
2012.

45. H. Li, Q. Pei, and W. Zhang. Location privacy-preserving channel allocation
scheme in cognitive radio networks. International Journal of Distributed Sensor
Networks, 12(7):3794582, 2016.

46. S. Li, H. Zhu, Z. Gao, X. Guan, K. Xing, and X. Shen. Location privacy preser-
vation in collaborative spectrum sensing. In INFOCOM, 2012 Proceedings IEEE,
pages 729–737. IEEE, 2012.

47. Y. Mao, T. Chen, Y. Zhang, T. Wang, and S. Zhong. Protecting location informa-
tion in collaborative sensing of cognitive radio networks. In Proceedings of the 18th
ACM International Conference on Modeling, Analysis and Simulation of Wireless
and Mobile Systems, pages 219–226. ACM, 2015.

48. A. Medeisis and A. Kajackas. On the use of the universal Okumura-Hata propaga-
tion prediction model in rural areas. In Vehicular Technology Conference Proceed-
ings, 2000. VTC 2000-Spring Tokyo. 2000 IEEE 51st, volume 3, pages 1815–1818.
IEEE, 2000.

49. S. Micali and P. Rogaway. Secure computation. In Annual International Cryptology
Conference, pages 392–404. Springer, 1991.

50. P. Mohassel, M. Rosulek, and Y. Zhang. Fast and secure three-party computation:
The garbled circuit approach. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, pages 591–602. ACM, 2015.

51. R. Ostrovsky and V. Shoup. Private information storage. In STOC, volume 97,
pages 294–303. Citeseer, 1997.

52. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In International Conference on the Theory and Applications of Cryptographic Tech-
niques, pages 223–238. Springer, 1999.

53. M. O. Rabin. How to exchange secrets with oblivious transfer. IACR Cryptology
ePrint Archive, 2005:187, 2005.

54. N. Rajkarnikar, J. M. Peha, and A. Aguiar. Location privacy from dummy devices
in database-coordinated spectrum sharing. In Dynamic Spectrum Access Networks
(DySPAN), 2017 IEEE International Symposium on, pages 1–10. IEEE, 2017.

20 Max Curran, Xiao Liang, Himanshu Gupta, Omkant Pandey, Samir R. Das

55. P. Rindal. Ivory. https://github.com/ladnir/Ivory-Runtime, 2018.
56. J. Seybold. Introduction to RF Propagation. Wiley, 2005.
57. E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. Devadas.

Path oram: an extremely simple oblivious ram protocol. In Proceedings of the
2013 ACM SIGSAC conference on Computer & communications security, pages
299–310. ACM, 2013.

58. L. Sweeney. k-anonymity: A model for protecting privacy. International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(05):557–570, 2002.

59. E. Z. Tragos, S. Zeadally, A. G. Fragkiadakis, and V. A. Siris. Spectrum assign-
ment in cognitive radio networks: A comprehensive survey. IEEE Communications
Surveys & Tutorials, 15(3):1108–1135, 2013.

60. W. Wang and Q. Zhang. Privacy-preserving collaborative spectrum sensing with
multiple service providers. IEEE Transactions on Wireless Communications, 14(2),
2015.

61. X. Wang, H. Chan, and E. Shi. Circuit oram: On tightness of the goldreich-
ostrovsky lower bound. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pages 850–861. ACM, 2015.

62. X. S. Wang, Y. Huang, T. H. Chan, A. Shelat, and E. Shi. Scoram: oblivious ram
for secure computation. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pages 191–202. ACM, 2014.

63. A. C.-C. Yao. How to generate and exchange secrets. In Foundations of Computer
Science, 1986., 27th Annual Symposium on, pages 162–167. IEEE, 1986.

64. X. Ying, C. W. Kim, and S. Roy. Revisiting tv coverage estimation with
measurement-based statistical interpolation. In International Conference on Com-
munication Systems and Networks (COMSNETS), 2015.

65. S. Zahur, X. Wang, M. Raykova, A. Gascón, J. Doerner, D. Evans, and J. Katz.
Revisiting square-root oram: efficient random access in multi-party computation.
In 2016 IEEE Symposium on Security and Privacy (SP), pages 218–234. IEEE,
2016.

66. L. Zhang, C. Fang, Y. Li, H. Zhu, and M. Dong. Optimal strategies for defending
location inference attack in database-driven crns. In Communications (ICC), 2015
IEEE International Conference on, pages 7640–7645. IEEE, 2015.

67. T. Zhang, N. Leng, and S. Banerjee. A vehicle-based measurement framework for
enhancing whitespace spectrum databases. In Proc. ACM Mobicom, 2014.

A Definition of MPC

The notion of secure multi-party computation (MPC) was first developed in
[63,31,9,14] who also established initial feasibility results. It allows a set of mu-
tually distrusting parties to compute a joint function over their private inputs
so that each party learns nothing beyond its intended output. The efficiency
of MPC protocols, particularly for the case of two and three parties, has seen
tremendous improvements over the past few years, reaching the blazing-fast rates
of up to a billion gates per second [8,17,44,18,50,6,26,5]. Our work takes advan-
tage of this newfound efficiency of S2PC protocols, and benefits directly from
further improvements to their efficiency.

We remark that we choose the MPC framework as opposed to the simpler
two party framework even though the actual computation in our framework is

https://github.com/ladnir/Ivory-Runtime

ProCSA: Protecting Privacy in Crowdsourced Spectrum Allocation 21

performed by two parties (either two SMs or a SM and a KS). This choice
is important since before the two-party computation kicks in, other parties in
the system are involved in security sensitive pre-processing and post-processing
stages. The MPC framework captures all such activities and enables us to con-
struct proofs for all parties in the system.

In the remainder of this section, we show the definition of MPC. We assume
familiarity with standard cryptographic concepts such as Turing machines, prob-
ability ensembles, computational indistinguishability etc., and refer the reader
to [29,30] for a detailed treatment.

The Multi-Party Functionality. In the n-party computation problem, there
are n participants (parties). The computation task is cast by specifying a func-
tionality and denote it as a function mapping n inputs to n outputs, namely,
f : ({0, 1}∗)n → ({0, 1}∗)n. We denote the input as a vector x̄ = (x1, . . . , xn). On
input x̄, fi(x̄) denotes the i-th output f . We say a n-party protocol Π computes
f if, for i ∈ {1, . . . , n}, party Pi with input xi learns fi(x̄) as the result of the
execution of Π.

The Ideal/Real Paradigm. Given a multi-party protocol Π that implements a
functionality f , we define its security via the simulation paradigm [31,32,49,7,12].
Imagine an “ideal-world” execution, where all each party simply sends its input
to the functionality f , and then receives the correct output. In this execution,
there is no interactions between any pair of parties, and each party learns nothing
more than its input and output (and the information that can be inferred). So
this ideal-world execution is considered as the most secure scenario that one can
hope for. Based on this mental experiment, we thus believe Π is secure if any
adversary Adv (participating in a real execution of Π) can do no more harm
than in an ideal-world execution of f . This intuition is formalized by consider
a simulator in the ideal-world execution. If any information learned by Adv can
be generated (or “simulated”) by a simulator from the input and output of the
parties corrupted by Adv, then Adv gains nothing in the real-world execution,
thus the protocol is secure.

The Adversarial Model. We focus on semi-honest model with static corrup-
tion. By semi-honest, we mean that all the parties/entities (including the cor-
rupted ones) follow the protocol; however, a corrupted party may attempt to
infer private data of other parties from the information obtained during the
protocol operation. By static corruption, we mean that the set of corrupted par-
ties remains fixed throughout the execution of the protocol. We also assume
authenticated communication channels between every pair of parties.

The correctness and security of an n-party protocol Π implementing a (de-
terministic) n-party functionality f is formalized as follows:

Definition 3 (Correctness [30]). We say that Π correctly computes f if the
following holds except for negligible probability: for any input vector x̄, at the
end of the execution of Π, party Pi gets fi(x̄) as its output.

22 Max Curran, Xiao Liang, Himanshu Gupta, Omkant Pandey, Samir R. Das

Definition 4 (Semi-Honest Security [30]). For I = {i1, . . . , it} ⊆ [n], let
fI(x̄) :=

(
fi1(x̄), . . . , fit(x̄)

)
, and let viewΠI (x̄) :=

(
I, viewΠi1 (x̄), . . . , viewΠit (x̄)

)
.

We say that protocol Π securely computes f under the semi-honest model with
static corruption if there exists a probabilistic polynomial-time algorithm S (the
simulator) such that for every I as above,{

S
(
I, (xi1 , . . . , xit), fI(x̄)

)}
x̄∈({0,1}∗)n

c≡
{

viewΠI (x̄)
}
x̄∈({0,1}∗)n

(9)

where
c≡ denotes computational indistinguishability [29], and viewΠi (x̄) denotes

the view of i-th party (i ∈ [n]) consisting of its input, random tape and received
messages during the execution of Π on input x̄.

B Security Proof

In this section, we give a proof of the following theorem, which shows the security
of our protocol. After that, we also discuss how to extend the security proof to
the scenario where one SM is replaced with a KS.

Theorem 1 (Security of Protocol 1). Protocol 1 is a secure multi-party com-
putation implementation of the plaintext algorithm shown in §3.1 with respect to
semi-honest adversaries which do not corrupt SM0 and SM1 at the same time.

B.1 Proof of Theorem 1 for Two-SM Setting

The details of our protocol Π are already given in Protocol 1. Here we summarize
and illustrate its structure in Fig. 8 to ease our presentation.

According to Eqn. (4) in the security definition, we need to show a simulator
for different combinations of views for all possible subset I ⊆ {Si,SM0,SM1,PNs}
such that I does not contain SM0 and SM1 at the same time (Recall that we
assume they do not collude). For our specific protocol Π, we claim that it will
be sufficient if we can construct a simulator for each party separately (which is
not necessarily true for general MPC protocols). To see why, recall that both Si

(except for its final output ti) and PNs receive no message during the execution
of Π. Simulators for them can be constructed in a “dummy” way by just out-
putting the input/output of Si and PNs. So the essential part of Π is actually a
S2PC protocol between SM0 and SM1. To prove the security of a S2PC protocol,
it suffices to show two separate simulators for each participant. Also, it is not
hard to verify that once SM0 and SM1 are not corrupted at the same time, the
simulator for a spectrum manager can be composed with the aforementioned
“dummy” simulators of Si and PNs arbitrarily, to get a whole simulator for any
corrupted set I that goes through the security proof. Therefore, we will conduct
the security proof by constructing simulators for different parties in our protocol
separately. In our protocol Π, we use Spty to denote the simulator for a party
pty ∈ {SU,SM0,SM1,PNs}.

ProCSA: Protecting Privacy in Crowdsourced Spectrum Allocation 23

SU(`i) SM0 SM1 PNs(D)

S2PC for

foff

D0

A0

D1

A1
⊥ ⊥

+⊥ D0 D1 DΠoff :

+`0i `1i ⊥`iΠslct:

S2PC for

fslct

`0i
J0

`1i
J1

⊥ ⊥

Our read

for j ∈ J
(J0, A0)

{A′′0[j]}j∈J
(J1, A1)

{A′′1[j]}j∈J
⊥ ⊥Πread:

S2PC for

falloc

{A′′0[j]}j∈J
t0i

{A′′1[j]}j∈J
t1i

⊥ ⊥Πalloc:

S2PC for

fupdate

t0i
{τ 0j }j∈J

t1i
{τ 1j }j∈J

⊥ ⊥Πupdate:

Our write

for j ∈ J{τ 0j }j∈J {τ 1j }j∈J⊥ ⊥Πwrite:

+t0i t1iti ⊥Πoutput:

Fig. 8: Sub-protocols of Our Protocol Π

Simulator for SU. It is straightforward to simulate the view of requesting SU
Si. Because all it does in protocol Π are conducting a secret sharing of its location
`i to SMs, and receiving the final output ti (as illustrated in Figure 8). So given
`i and ti, a simulator SSU can successfully simulate Si’s view by outputting a
secret sharing of ti. We remark that only messages received by (in contrast to
“sent from”) a party appear in its view. Since in secret sharing stage SU only
sends out message, its view only contains t0i and t1i such that t0i +t1i = ti (besides
its input and random tape). So the output of SSU(`i, ti) is identically distributed
to the view of SU in a real execution.

Simulator for PNs. All the work PNs do in protocol Π is to secret share D
to SMs. PNs receive no messages during the execution of Π. SPNs can easily
finish his job by outputting D with the random tapes of PNs. This output is
also identically distributed with the real-execution view.

Simulator for SMs. Since the roles of the two SMs are symmetric in Π, it
suffices to show a simulator for SM0 (or SM1). At a high level, we will construct
simulators for SM0 in each sub-protocols of Π, which, if pulled together, will
give us the final simulator for SM0 in Π.

24 Max Curran, Xiao Liang, Himanshu Gupta, Omkant Pandey, Samir R. Das

For X ∈ {off, slct, read, alloc, update,write, output}, denote SSM0

X as the sim-
ulator which can generate a view of SM0 in sub-protocol ΠX on corresponding
input and output. First, notice that SSM0

slct , SSM0

alloc and SSM0

update must exist, because
their corresponding sub-protocols are implemented via 2PC. Also, it is straight-
forward to see that SSM0

off and SSM0
output exist because participants of these two

sub-protocols only conduct secret sharing. The existence of SSM0

read and SSM0

write for
corresponding sub-protocols (shown as dashed box in Figure 8) is waiting to be
shown. However, we will defer the proof to §B.2. Here we assume their existences
and show how to construct simulator SSM0

Π for Π based on these sub-protocol
simulators.

The Full Simulator. SSM0

Π runs these sub-protocols simulators in order, from

SSM0

off to SSM0
output. It always sets the simulated output of last sub-protocol as the

input to next simulator, except for SSM0

slct and SSM0
output (see the following). For

Πslct, SM0’s input in Πslct is from the secret sharing of `i, instead of the output
of last stage (see Figure 8). In this case, SSM0

Π will just input a random string to

SSM0

slct to continue the simulation; for Πoutput, SM0 takes no input. Finally, SSM0

Π

combines and outputs (in order) the simulated view of all the sub-protocols as
its output.

Proof for Indistinguishability. We then prove that the output of SSM0

Π is
indistinguishable from the view of SM0 in a real execution of Π by hybrid argu-
ment. For X in the ordered list of stages {off, slct, read, alloc, update,write, output},
denote HybX

SM0
as the execution (also called “hybrid”) of Π, where the simula-

tor SΠSM0
takes control until stage ΠX (included). The remaining stages are just

executed as in the real protocol. By definition, we have Hyboutput
SM0

= SSM0

Π .

First, notice that the view in real execution viewΠSM0
is identically distributed

as Hyboff
SM0

. Because the only difference between them is that the view of SM0 in

the real execution of Πoff is replaced by the simulation results from SSM0

off , and
this simulation is perfect.

To show the indistinguishability between Hyboff
SM0

and Hybslct
SM0

, we introduce

an intermediate hybrid Hyboff-slct
SM0

, which is the same as Hybslct
SM0

except that the
input to SM0 at the beginning of Πslct is the real secret share `0i . The only differ-
ence between Hyboff

SM0
and Hyboff-slct

SM0
is that Πslct is executed in the former, but

simulated by SSM0

slct in the latter (on the same “real” input `0i). By the security of

SSM0

slct , we have Hyboff
SM0

c≡ Hyboff-slct
SM0

. Also, it can be seen that Hyboff-slct
SM0

id≡ Hybslct
SM0

,

where
id≡ denotes identical distribution [29]. That is because the secret share `0i

(in Hyboff-slct
SM0

) is identically distributed with a random string (in Hybslct
SM0

). And
since this is the only difference between these two hbyrids, we know that they

are identical. In summary, we proved Hyboff
SM0

c≡ Hyboff-slct
SM0

id≡ Hybslct
SM0

.

The indistinguishability of the remaining hybrids follows straightforwardly
from the security of corresponding sub-protocol simulators, with the only excep-

ProCSA: Protecting Privacy in Crowdsourced Spectrum Allocation 25

tion of Hyboutput
SM0

. But Hybwrite
SM0

id≡ Hyboutput
SM0

can also be shown following a similar

argument as we did for viewΠSM0

id≡ Hyboff
SM0

.

In summary, we have the following relations, which proves SSM0

Π successfully
simulates the view of SM0.

viewΠSM0

id≡ Hyboff
SM0

c≡ Hybslct
SM0

c≡ Hybread
SM0

c≡ Hyballoc
SM0

c≡ Hybupdate
SM0

c≡ Hybwrite
SM0

id≡ Hyboutput
SM0

= SSM0

Π

B.2 Simulators for Read and Write Sub-Protocols

Recall that the proof in §B.1 is based on our assumption that there exist simu-
lators for our read and write protocol (namely, they are secure S2PC protocols).
In this section, we prove the correctness of this assumption by constructing valid
simulators for them. We remark that this will finally complete the security proof
for our protocol Π.

Simulator for SM0 in Πread. In practice, Πread is executed for |J | times until
all {A[j]}j∈J are retrieved. But it suffices to show a simulator for a single read
operation (without loss of generality, the j-th one). As discussed in §3.2, the input
of SM0 is a secret share j1, the output is A′′0 [j]. To do the simulation, Sread

SM0
first

samples randomness r0, s0 and set A′0[i] = A0[(i+ s0)%n] + r0 by himself. The
remaining stages consist of a S2PC protocol to exchange j′0 and j′1 values, two
OT protocols and a S2PC protocol to secret share A[j] = A′′0 [j]+A′′1 [j]. Sread

SM0
can

finish the simulation for them simply by calling the corresponding simulators.
The only place we need to be careful is the input to the S2PC protocol which
implements the secret re-sharing of A[j]. In the real execution, SM0 holds as
input (r0, A

′
1[j′1]). When Sread

SM0
replace the S2PC protocol with its simulator, it

has no way to get the correct A′1[j′1]. But note that A′1[j′1] is uniformly random.
So we can just sample a random string to play the role of A′1[j′1], helping us to
finish the simulation.

Simulator for SM0 in Πwrite. In §3.2, we describe two versions of Πwrite. The
first one is simpler but inefficient. We call the it the plain version. We call
the second one efficient version. For the plain version, the simulator can be
constructed in a similar way as for Sread

SM0
, which we need not repeat here. Next,

we describe Swrite
SM0

for the efficient version. (Similar as for simulating Πread, we
show a simulator for a single write operation).

The inputs for SM0 consist of the secret share j0 of the target index and the
secret share τj of new threshold. SM0 on input j0 first runs a S2PC protocol
with SM1, after which SM0 gets j′1 = (j+ s1)%n (see §3.2 for details). Swrite

SM0
can

just call the simulator for this S2PC protocol to go through this stage. In the
remaining stages, SM0 receives two messages from SM1: V1 and W1. Since both
of them are secret shares created by SM1, they look random to SM0. So Swrite

SM0
can

replace them by sampling two random strings (a formal proof for the security of
this replacement involves a standard reduction to the security of secret sharing
scheme, which we omit here), which finishes the simulation successfully.

26 Max Curran, Xiao Liang, Himanshu Gupta, Omkant Pandey, Samir R. Das

B.3 Replace SM1 with a Key Server.

In §3.3, we discussed a variant of the protocol where SM1 is replaced by a
key server. To give a proof for that case, it suffices to show that the secret
sharing mechanism happened among E, SM0 and KS constitutes a secure 3-
party computation (3PC) protocol, whose simulator is denoted as S3PC. This
is because that our proof for the 2-SMs setting is presented in a modular way.
We can construct a simulator for this SM-KS setting by combining S3PC with
the simulator SΠ we constructed for 2-SMs setting. (Of course, other parts of
SΠ should be modified accordingly, but in a straightforward manner. Also, all
the tasks of SM1 now will be conducted by KS). Next, similar as we argued for
the 2-SMs scenario, we will prove the security of the 3PC protocol by showing
separate simulators for each participants.

Simulator for KS. In the 3PC protocol, KS receives no output. All the work it
does is to issue AES keys when E requests. So SKS3PC can be constructed trivially.

Simulator for E. E receives AES key Ki from KS. To construct the simulator
SE3PC for him, we can sample a key from the AES key distribution and output it
as Ki to E. Since both samplings conducted by SE3PC and KS are from the same
distribution, this simulation is perfectly.

Simulator for SM0. SM0 receives ai0 and AESKi
(ai1) in this 3PC protocol.

Intuitively, ai1 looks uniform since it is a share of the secret sharing of ai. It
can be simulated easily by pick a uniform string r such that |r| = |ai0|. To
simulate AESKi

(ai1), we can use AESKi
(0|ai1|), whose indistinguishability from

AESKi
(ai1) is guaranteed by the semantic security of AES scheme. A formal

proof requires some caution to deal with the fact that ai0 and ai1 are not in-
dependent (they satisfy the constraint ai0 + ai1 = ai). But this can be done by
standard hybrid argument conducted in the following order:(

ai, ai0,AESki(ai1)
)

c≡
(
ai, ai0,AESki(0

|ai1|)
) c≡

(
ai, r,AESki(0

|ai1|)
)

which implies
(
ai0,AESki(ai1)

) c≡
(
r,AESki(0

|ai1|)
)

by simply hiding ai from
both sides.

	ProCSA: Protecting Privacy in Crowdsourced Spectrum Allocation
	 Max Curran, Xiao Liang, Himanshu Gupta, Omkant Pandey, Samir R. Das

