Link Analysis

Stony Brook University
CSE545, Spring 2019
The Web, circa 1998
The Web, circa 1998

Match keywords, language (information retrieval)

Explore directory
The Web, circa 1998

- Easy to game with "term spam"
- Match keywords, language (information retrieval)
- Explore directory

Time-consuming; Not open-ended
Enter PageRank

The Anatomy of a Large-Scale Hypertextual Web Search Engine

Sergey Brin and Lawrence Page

Computer Science Department,
Stanford University, Stanford, CA 94305, USA
sergey@cs.stanford.edu and page@cs.stanford.edu

Abstract
In this paper, we present Google, a prototype of a large-scale search engine which makes heavy use of the structure and produce much text and hyperlink o

The PageRank Citation Ranking:
Bringing Order to the Web

January 29, 1998

Abstract
The importance of a Web page is an inherently subjective matter, which depends on the readers interests, knowledge and attitudes. But there is still much that can be said objectively about the structure and content of such pages. The authors would like to propose a rating system for

PageRank

Key Idea: Consider the citations of the website.
PageRank

Key Idea: Consider the citations of the website.

Who links to it? and what are their citations?
PageRank

Key Idea: Consider the citations of the website.

Who links to it? and what are their citations?

Innovation 1: What pages would a “random Web surfer” end up at?

Innovation 2: Not just own terms but what terms are used by citations?
PageRank

View 1: Flow Model:
in-links as votes

Innovation 1: What pages would a “random Web surfer” end up at?

Innovation 2: Not just own terms but what terms are used by citations?
PageRank

View 1: Flow Model: in-links as votes

Innovation 1: What pages would a "random Web surfer" end up at?

Innovation 2: Not just own terms but what terms are used by citations?
PageRank

View 1: Flow Model:

in-links (citations) as votes

but, citations from important pages should count more.

=> Use recursion to figure out if each page is important.

Innovation 1: What pages would a “random Web surfer” end up at?

Innovation 2: Not just own terms but what terms are used by citations?
PageRank

View 1: Flow Model:

How to compute?

Each page \((j)\) has an importance (i.e. rank, \(r_j\))

\[
vote_j = \frac{r_j}{n_j} \quad (n_j \text{ is } |\text{out-links}|)
\]

\[
r_j = \sum_{i \in \text{inLinks}(j)} vote_i
\]
PageRank

View 1: Flow Model:

\[r_D = \frac{r_A}{4} + \frac{r_B}{4} + \frac{r_C}{2} \]

How to compute?

Each page \((j)\) has an importance (i.e. rank, \(r_j\))

\[
vote_j = \frac{r_j}{n_j}
\]

\((n_j \text{ is } |\text{out-links}|)\)

\[
r_j = \sum_{i \in \text{inLinks}(j)} vote_i
\]
PageRank

View 1: Flow Model:

How to compute?

Each page \((j)\) has an importance (i.e. rank, \(r_j\))

\[
vote_j = \frac{r_j}{n_j}
\]

\[
r_j = \sum_{i \in \text{inLinks}(j)} vote_i
\]

\((n_j\) is \(|\text{out-links}|\))
PageRank

View 1: Flow Model:

A System of Equations:

\[r_A = \frac{r_B}{2} + \frac{r_C}{1} \]

How to compute?

Each page \((j) \) has an importance (i.e. rank, \(r_j \))

\[vote_j = \frac{r_j}{n_j} \]

\((n_j \text{ is } \text{|out-links|}) \)

\[r_j = \sum_{i \in \text{inLinks}(j)} vote_i \]
PageRank

View 1: Flow Model:

A System of Equations:

\[
\begin{align*}
 r_A &= \frac{r_B}{2} + \frac{r_C}{1} \\
 r_B &= \frac{r_A}{3} + \frac{r_D}{2} \\
 r_C &= \frac{r_A}{3} + \frac{r_D}{2} \\
 r_D &= \frac{r_A}{3} + \frac{r_B}{2}
\end{align*}
\]

How to compute?

Each page \((j)\) has an importance (i.e. rank, \(r_j\))

\[
 vote_j = \frac{r_j}{n_j}
\]

\(n_j\) is \(|\text{out-links}|\)

\[
 r_j = \sum_{i \in \text{inLinks}(j)} vote_i
\]
PageRank

View 1: Flow Model: Solve

1 = r_A + r_B + r_C + r_D

\[r_A = \frac{r_B}{2} + \frac{r_C}{1} \]
\[r_B = \frac{r_A}{3} + \frac{1}{r_D} \]
\[r_C = \frac{3}{r_A} + \frac{2}{r_D} \]
\[r_D = \frac{3}{r_A} + \frac{2}{r_B} \]

How to compute?

Each page \((j) \) has an importance (i.e. rank, \(r_j \))

\[vote_j = \frac{r_j}{n_j} \]

\(n_j \) is \(|\text{out-links}| \)

\[r_j = \sum_{i \in \text{inLinks}(j)} vote_i \]
PageRank

\[1 = r_A + r_B + r_C + r_D \]

\[
\begin{align*}
 r_A &= \frac{r_B}{2} + \frac{r_C}{1} \\
 r_B &= \frac{3}{r_A} + \frac{2}{r_D} \\
 r_C &= \frac{3}{r_A} + \frac{2}{r_D} \\
 r_D &= \frac{3}{r_A} + \frac{2}{r_B}
\end{align*}
\]

Transition Matrix, \(M \)

<table>
<thead>
<tr>
<th>to \ from</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1/2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1/3</td>
<td>0</td>
<td>0</td>
<td>1/2</td>
</tr>
<tr>
<td>C</td>
<td>1/3</td>
<td>0</td>
<td>0</td>
<td>1/2</td>
</tr>
<tr>
<td>D</td>
<td>1/3</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Innovation: What pages would a “random Web surfer” end up at?
To start: N=4 nodes, so \(r = [\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}] \)

View 2: Matrix Formulation

\[
1 = r_A + r_B + r_C + r_D
\]

\[
\begin{align*}
 r_A &= \frac{r_B}{2} + \frac{r_C}{1} \\
r_B &= \frac{r_A}{3} + \frac{r_D}{2} \\
r_C &= \frac{r_A}{3} + \frac{r_D}{2} \\
r_D &= \frac{r_A}{3} + \frac{r_B}{2}
\end{align*}
\]

Transition Matrix, \(M \)

<table>
<thead>
<tr>
<th>to \ from</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1/2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1/3</td>
<td>0</td>
<td>0</td>
<td>1/2</td>
</tr>
<tr>
<td>C</td>
<td>1/3</td>
<td>0</td>
<td>0</td>
<td>1/2</td>
</tr>
<tr>
<td>D</td>
<td>1/3</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Innovation: What pages would a “random Web surfer” end up at?
To start: N=4 nodes, so \(r = [\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}] \)
after 1st iteration: \(M \cdot r = [\frac{3}{8}, \frac{5}{24}, \frac{5}{24}, \frac{5}{24}] \)
after 2nd iteration: \(M(M \cdot r) = M^2 \cdot r = [\frac{15}{48}, \frac{11}{48}, \ldots] \)

View 2: Matrix Formulation

\[1 = r_A + r_B + r_C + r_D \]

\[
\begin{align*}
 r_A &= \frac{r_B}{2} + \frac{r_C}{1} \\
 r_B &= \frac{r_A}{3} + \frac{r_D}{2} \\
 r_C &= \frac{r_A}{3} + \frac{r_D}{2} \\
 r_D &= \frac{r_A}{3} + \frac{r_B}{2}
\end{align*}
\]

<table>
<thead>
<tr>
<th>to \ from</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1/2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1/3</td>
<td>0</td>
<td>0</td>
<td>1/2</td>
</tr>
<tr>
<td>C</td>
<td>1/3</td>
<td>0</td>
<td>0</td>
<td>1/2</td>
</tr>
<tr>
<td>D</td>
<td>1/3</td>
<td>1/2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Transition Matrix, M
Innovation: What pages would a “random Web surfer” end up at?

To start: $N=4$ nodes, so $r = [\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4},]$

after 1st iteration: $M \cdot r = [\frac{3}{8}, \frac{5}{24}, \frac{5}{24}, \frac{5}{24}]$

after 2nd iteration: $M(M \cdot r) = M^2 \cdot r = [\frac{15}{48}, \frac{11}{48}, \ldots]$

Power iteration algorithm

initialize: $r[0] = [\frac{1}{N}, \ldots, \frac{1}{N}],$
$r[-1] = [0, \ldots, 0]$

while (err_norm($r[t], r[t-1]$)>min_err):

err_norm(v_1, v_2) = $|v_1 - v_2|$ #L1 norm

“Transition Matrix”, M
Innovation: What pages would a “random Web surfer” end up at?
To start: N=4 nodes, so \(r = [\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}] \)

after 1st iteration: \(M \cdot r = [\frac{3}{8}, \frac{5}{24}, \frac{5}{24}, \frac{5}{24}] \)

after 2nd iteration: \(M(M \cdot r) = M^2 \cdot r = [\frac{15}{48}, \frac{11}{48}, \ldots] \)

Power iteration algorithm

initialize: \(r[0] = [\frac{1}{N}, \ldots, \frac{1}{N}], \)
\(r[-1]=[0, \ldots, 0] \)

while (err_norm(r[t],r[t-1])>min_err):
 \(r[t+1] = M \cdot r[t] \)
 t+=1

solution = r[t]

err_norm(v1, v2) = |v1 - v2| #L1 norm

```
  to \ from | A | B | C | D \\
------------+---+---+---+---+
    A    | 0 | 1/2 | 1 | 0 \\
    B    | 1/3 | 0 | 0 | 1/2 \\
    C    | 1/3 | 0 | 0 | 1/2 \\
    D    | 1/3 | 1/2 | 0 | 0 \\
```

“Transition Matrix”, \(M \)
As err_norm gets smaller we are moving toward: \(r = M \cdot r \)

View 3: Eigenvectors:

Power iteration algorithm

initialize: \(r[0] = [1/N, ..., 1/N], \)
\(r[-1]= [0, ..., 0] \)

while (err_norm(\(r[t], r[t-1] \)) > min_err):

\(r[t+1] = M \cdot r[t] \)
\(t+=1 \)

solution = \(r[t] \)

err_norm(v1, v2) = \(|v1 - v2| \) #L1 norm
As err_norm gets smaller we are moving toward: $r = M \cdot r$

View 3: Eigenvectors:
We are actually just finding the **eigenvector** of M.

Power iteration algorithm

initialize: $r[0] = [1/N, ..., 1/N]$
$r[-1] = [0, ..., 0]$
while ($\text{err_norm}(r[t], r[t-1]) > \text{min_err}$):
 $r[t+1] = M \cdot r[t]$
 $t += 1$

solution = $r[t]$

$\text{err_norm}(v1, v2) = |v1 - v2|$ #L1 norm

x is an **eigenvector** of λ if:
$A \cdot x = \lambda \cdot x$
As err_norm gets smaller we are moving toward: $r = M\cdot r$

View 3: Eigenvectors:
We are actually just finding the *eigenvector* of M.

Power iteration algorithm

initialize: $r[0] = [1/N, ..., 1/N]$

$r[-1] = [0, ..., 0]$

while (err_norm($r[t], r[t-1]$) > min_err):

$r[t+1] = M \cdot r[t]$

$t += 1$

solution = $r[t]$

err_norm($v1, v2$) = sum($|v1 - v2|$)

L1 norm

x is an *eigenvector* of λ if:

$A \cdot x = \lambda \cdot x$

$A = 1$

since columns of M sum to 1.

thus, $1r = Mr$
View 4: Markov Process

Where is surfer at time $t+1$? \(p(t+1) = M \cdot p(t) \)

Suppose: $p(t+1) = p(t)$, then $p(t)$ is a stationary distribution of a random walk.

Thus, r is a stationary distribution. Probability of being at given node.
View 4: Markov Process

Where is surfer at time $t+1$? $p(t+1) = M \cdot p(t)$

Suppose: $p(t+1) = p(t)$, then $p(t)$ is a stationary distribution of a random walk.

Thus, r is a stationary distribution. Probability of being at a given node.

aka 1st order Markov Process
- Rich probabilistic theory. One finding:
 - Stationary distributions have a unique distribution if:
 - No “dead-ends”: a node can’t propagate its rank
 - No “spider traps”: set of nodes with no way out.

Also known as being stochastic, irreducible, and aperiodic.
View 4: Markov Process - Problems for vanilla PI

aka 1st order Markov Process

- Rich probabilistic theory. One finding:
 - Stationary distributions have a unique distribution if:
 - No “dead-ends”: a node can’t propagate its rank
 - No “spider traps”: set of nodes with no way out.

Also known as being stochastic, irreducible, and aperiodic.
View 4: Markov Process - Problems for vanilla PI

aka 1st order Markov Process

- Rich probabilistic theory. One finding:
 - Stationary distributions have a unique distribution if:
 - No "dead-ends": a node can’t propagate its rank
 - No "spider traps": set of nodes with no way out.

Also known as being stochastic, irreducible, and aperiodic.
View 4: Markov Process - Problems for vanilla PI

<table>
<thead>
<tr>
<th>to \ from</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1/3</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1/3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>1/3</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

What would r converge to?

aka 1st order Markov Process
- Rich probabilistic theory. One finding:
 - Stationary distributions have a unique distribution if:
 - same node doesn’t repeat at regular intervals
 - non-zero chance of going to any other node
 - columns sum to 1

Also known as being *stochastic*, *irreducible*, and *aperiodic*.
Goals:
- No “dead-ends”
- No “spider traps”

The “Google” PageRank Formulation

Add teleportation: At each step, two choices
1. Follow a random link (probability, $\beta = \sim .85$)
2. Teleport to a random node (probability, $1-\beta$)
The “Google” PageRank Formulation
Add teleportation: At each step, two choices
1. Follow a random link (probability, $\beta = \sim .85$)
2. Teleport to a random node (probability, $1-\beta$)

<table>
<thead>
<tr>
<th>to \ from</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>$\frac{1}{3}$</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>$\frac{1}{3}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>$\frac{1}{3}$</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
The “Google” PageRank Formulation
Add teleportation: At each step, two choices
1. Follow a random link (probability, $\beta = \sim .85$)
2. Teleport to a random node (probability, $1 - \beta$)

<table>
<thead>
<tr>
<th>to \ from</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0+.15*¼</td>
<td>1</td>
<td>0+.15*¼</td>
</tr>
<tr>
<td>B</td>
<td>⅓</td>
<td>0+.15*¼</td>
<td>0</td>
<td>.851+.15¼</td>
</tr>
<tr>
<td>C</td>
<td>⅓</td>
<td>0+.15*¼</td>
<td>0</td>
<td>0+.15*¼</td>
</tr>
<tr>
<td>D</td>
<td>⅓</td>
<td>.851+.15¼</td>
<td>0</td>
<td>0+.15*¼</td>
</tr>
</tbody>
</table>
The “Google” PageRank Formulation
Add teleportation: At each step, two choices
1. Follow a random link (probability, $\beta = \sim .85$)
2. Teleport to a random node (probability, $1-\beta$)

Goals:
No “dead-ends”
No “spider traps”

<table>
<thead>
<tr>
<th>to \ from</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$0+.15^{*\frac{1}{4}}$</td>
<td>$0+.15^{*\frac{1}{4}}$</td>
<td>$85^{1}+.15^{\frac{1}{4}}$</td>
<td>$0+.15^{*\frac{1}{4}}$</td>
</tr>
<tr>
<td>B</td>
<td>$.85^{\frac{1}{3}}+.15^{\frac{1}{4}}$</td>
<td>$0+.15^{*\frac{1}{4}}$</td>
<td>$0+.15^{*\frac{1}{4}}$</td>
<td>$.85^{1}+.15^{\frac{1}{4}}$</td>
</tr>
<tr>
<td>C</td>
<td>$.85^{\frac{1}{3}}+.15^{\frac{1}{4}}$</td>
<td>$0+.15^{*\frac{1}{4}}$</td>
<td>$0+.15^{*\frac{1}{4}}$</td>
<td>$0+.15^{*\frac{1}{4}}$</td>
</tr>
<tr>
<td>D</td>
<td>$.85^{\frac{1}{3}}+.15^{\frac{1}{4}}$</td>
<td>$.85^{1}+.15^{\frac{1}{4}}$</td>
<td>$0+.15^{*\frac{1}{4}}$</td>
<td>$0+.15^{*\frac{1}{4}}$</td>
</tr>
</tbody>
</table>
The “Google” PageRank Formulation
Add teleportation: At each step, two choices
1. Follow a random link (probability, $\beta = \sim .85$)
2. Teleport to a random node (probability, $1-\beta$)

Goals:
No “dead-ends”
No “spider traps”

<table>
<thead>
<tr>
<th>to \ from</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>$\frac{1}{3}$</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>$\frac{1}{3}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>$\frac{1}{3}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
The “Google” PageRank Formulation
Add teleportation: At each step, two choices
1. Follow a random link (probability, $\beta = \sim 0.85$)
2. Teleport to a random node (probability, $1-\beta$)
The “Google” PageRank Formulation
Add teleportation: At each step, two choices
1. Follow a random link (probability, $\beta = \sim .85$)
2. Teleport to a random node (probability, $1-\beta$)

<table>
<thead>
<tr>
<th>to \ from</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>.85*/¼+.15*¼</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1/3</td>
<td>.85*/¼+.15*¼</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1/3</td>
<td>.85*/¼+.15*¼</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>1/3</td>
<td>.85*/¼+.15*¼</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
The “Google” PageRank Formulation
Add teleportation: At each step, two choices
1. Follow a random link (probability, $\beta = \sim .85$)
2. Teleport to a random node (probability, $1-\beta$)
 (Teleport from a dead-end has probability 1)

<table>
<thead>
<tr>
<th>to \ from</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$0+.15*\frac{1}{4}$</td>
<td>$1*\frac{1}{4}$</td>
<td>$851+.15\frac{1}{4}$</td>
<td>$0+.15*\frac{1}{4}$</td>
</tr>
<tr>
<td>B</td>
<td>$.85*\frac{1}{3}+.15*\frac{1}{4}$</td>
<td>$1*\frac{1}{4}$</td>
<td>$0+.15*\frac{1}{4}$</td>
<td>$.851+.15\frac{1}{4}$</td>
</tr>
<tr>
<td>C</td>
<td>$.85*\frac{1}{3}+.15*\frac{1}{4}$</td>
<td>$1*\frac{1}{4}$</td>
<td>$0+.15*\frac{1}{4}$</td>
<td>$0+.15*\frac{1}{4}$</td>
</tr>
<tr>
<td>D</td>
<td>$.85*\frac{1}{3}+.15*\frac{1}{4}$</td>
<td>$1*\frac{1}{4}$</td>
<td>$0+.15*\frac{1}{4}$</td>
<td>$0+.15*\frac{1}{4}$</td>
</tr>
</tbody>
</table>
Goals:
No “dead-ends”
No “spider traps”

Teleportation, as Flow Model:

\[r_j = \sum_{i \rightarrow j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N} \]

(Brin and Page, 1998)

<table>
<thead>
<tr>
<th>to \ from</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0+.15*¼</td>
<td>1*¼</td>
<td>851+.15¼</td>
<td>0+.15*¼</td>
</tr>
<tr>
<td>B</td>
<td>.85¾+.15¼</td>
<td>1*¼</td>
<td>0+.15*¼</td>
<td>.851+.15¼</td>
</tr>
<tr>
<td>C</td>
<td>.85¾+.15¼</td>
<td>1*¼</td>
<td>0+.15*¼</td>
<td>0+.15*¼</td>
</tr>
<tr>
<td>D</td>
<td>.85¾+.15¼</td>
<td>1*¼</td>
<td>0+.15*¼</td>
<td>0+.15*¼</td>
</tr>
</tbody>
</table>
Goals:
No “dead-ends”
No “spider traps”

Teleportation, as Flow Model:
\[r_j = \sum_{i \to j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N} \]
(Brin and Page, 1998)

Teleportation, as Matrix Model:
\[M' = \beta M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N} \]

<table>
<thead>
<tr>
<th>to \ from</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0+.15*1/4</td>
<td>1*1/4</td>
<td>851+.151/4</td>
<td>0+.15*1/4</td>
</tr>
<tr>
<td>B</td>
<td>.851/3+.151/4</td>
<td>1*1/4</td>
<td>0+.15*1/4</td>
<td>.851+.151/4</td>
</tr>
<tr>
<td>C</td>
<td>.851/3+.151/4</td>
<td>1*1/4</td>
<td>0+.15*1/4</td>
<td>0+.15*1/4</td>
</tr>
<tr>
<td>D</td>
<td>.851/3+.151/4</td>
<td>1*1/4</td>
<td>0+.15*1/4</td>
<td>0+.15*1/4</td>
</tr>
</tbody>
</table>
Goals:
No “dead-ends”
No “spider traps”

Teleportation, as Flow Model:

$$r_j = \sum_{i \rightarrow j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}$$

(Brin and Page, 1998)

Teleportation, as Matrix Model:

$$M' = \beta M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N}$$

<table>
<thead>
<tr>
<th>to \ from</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0+.151/4</td>
<td>.851/4+.151/4</td>
<td>85*1+.151/4</td>
<td>0+.151/4</td>
</tr>
<tr>
<td>B</td>
<td>.851/3+.151/4</td>
<td>.851/4+.151/4</td>
<td>0+.151/4</td>
<td>.85*1+.151/4</td>
</tr>
<tr>
<td>C</td>
<td>.851/3+.151/4</td>
<td>.851/4+.151/4</td>
<td>0+.151/4</td>
<td>0+.151/4</td>
</tr>
<tr>
<td>D</td>
<td>.851/3+.151/4</td>
<td>.851/4+.151/4</td>
<td>0+.151/4</td>
<td>0+.151/4</td>
</tr>
</tbody>
</table>
Goals:
No “dead-ends”
No “spider traps”

Teleportation, as Flow Model:
\[
 r_j = \sum_{i \rightarrow j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}
\]
(Brin and Page, 1998)

Teleportation, as Matrix Model:
\[
 M' = \beta M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N}
\]

To apply: run power iterations over M' instead of M.

<table>
<thead>
<tr>
<th>to \ from</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0+.15*\frac{1}{4}</td>
<td>1*\frac{1}{4}</td>
<td>851+.15\frac{1}{4}</td>
<td>0+.15*\frac{1}{4}</td>
</tr>
<tr>
<td>B</td>
<td>.85*\frac{1}{3}+.15*\frac{1}{4}</td>
<td>1*\frac{1}{4}</td>
<td>0+.15*\frac{1}{4}</td>
<td>.851+.15\frac{1}{4}</td>
</tr>
<tr>
<td>C</td>
<td>.85*\frac{1}{3}+.15*\frac{1}{4}</td>
<td>1*\frac{1}{4}</td>
<td>0+.15*\frac{1}{4}</td>
<td>0+.15*\frac{1}{4}</td>
</tr>
<tr>
<td>D</td>
<td>.85*\frac{1}{3}+.15*\frac{1}{4}</td>
<td>1*\frac{1}{4}</td>
<td>0+.15*\frac{1}{4}</td>
<td>0+.15*\frac{1}{4}</td>
</tr>
</tbody>
</table>
Goals:
No “dead-ends”
No “spider traps”

Teleportation, as Flow Model:
\[r_j = \sum_{i \rightarrow j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N} \]
(Brin and Page, 1998)

Teleportation, as Matrix Model:
\[M' = \beta M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N} \]

Steps:
1. Compute M
2. Add 1/N to all dead-ends.
3. Convert M to M’
4. Run Power Iterations.

<table>
<thead>
<tr>
<th>to \ from</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0+.15*1/4</td>
<td>1*1/4</td>
<td>851+.151/4</td>
<td>0+.15*1/4</td>
</tr>
<tr>
<td>B</td>
<td>.851/3+.151/4</td>
<td>1*1/4</td>
<td>0+.15*1/4</td>
<td>.851+.151/4</td>
</tr>
<tr>
<td>C</td>
<td>.851/3+.151/4</td>
<td>1*1/4</td>
<td>0+.15*1/4</td>
<td>0+.15*1/4</td>
</tr>
<tr>
<td>D</td>
<td>.851/3+.151/4</td>
<td>1*1/4</td>
<td>0+.15*1/4</td>
<td>0+.15*1/4</td>
</tr>
</tbody>
</table>
Goals:
No “dead-ends”
No “spider traps”

Steps:
1. Compute \(M \)
2. Add \(1/N \) to all dead-ends.
3. Convert \(M \) to \(M' \)
4. Run Power Iterations.

Teleportation, as Flow Model:
\[
 r_j = \sum_{i \rightarrow j} \beta \frac{r_i}{d_i} + (1 - \beta) \frac{1}{N}
\]
(Brin and Page, 1998)

Teleportation, as Matrix Model:
\[
 M' = \beta M + (1 - \beta) \left[\frac{1}{N} \right]_{N \times N}
\]

In Practice, Just store \(\beta M \) as sparse matrix and distribute according to above.