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Goal: Generalize to new data

Original Data New Data?

Does the 
model accurately
reflect new data?

Model
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Expected value of y (something we 
are trying to predict) based on X (our 
features or “evidence” for what y 
should be)



Supervised vs. Unsupervised

Supervised

● Predicting an outcome
● Loss function used to characterize quality of prediction

Unsupervised

● No outcome to predict
● Goal: Infer properties of                without a supervised loss function.
● Often larger data. 
● Don’t need to worry about conditioning on another variable.
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Try to best represent but with on p’ columns.
Dimensionality reduction
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Cluster 1

Cluster 2

Cluster 3

Clustering: Group observations based 
on the features (i.e. like reducing the 
number of observations into K groups).



Concept: in 2-d (clustering)
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Clustering

Typical formalization:

Given:

● set of points
● distance metric (Euclidean, cosine, etc…)
● number of clusters (not always provided)

Do: Group observations together that are similar. Ideally,

● Members of same cluster are the “same”.
● Members of different clusters are “different”.

Keep in mind: usually many more than 2 dimensions. 



Often many dimensions and 
no clean separation.

Clustering



Often many dimensions and 
no clean separation.

Clustering Supposes 
observations have a 
“true” cluster. 



K-Means Clustering

Clustering: Group similar observations, often over unlabeled data.

K-means: A “prototype” method 
(i.e. not based on an algebraic model). 

Euclidean Distance:
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K-Means Clustering

Clustering: Group similar observations, often over unlabeled data.

K-means: A “prototype” method 
(i.e. not based on an algebraic model). 

Euclidean Distance:

centers = a random selection of k cluster centers

until centers converge:

1. For all x
i
, find the closest center (according to d)

2. Recalculate centers based on mean of euclidean distance

Example: http://shabal.in/visuals/kmeans/6.html

http://shabal.in/visuals/kmeans/6.html


K-Means Clustering

Understanding K-Means

(source: Scikit-Learn)



The Curse of Dimensionality

Problems with high-dimensional spaces:

1. All points (i.e. observations) are nearly equally far apart.

2. The angle between vectors are almost always 90 degrees 
(i.e. they are orthogonal). 
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Hierarchical Clustering

● Agglomerative (bottom up):
○ Initially, each point is a cluster

○ Repeatedly combine the two “nearest” clusters into one

● Divisive (top down):
○ Start with one cluster and recursively split it



Hierarchical Clustering

● Agglomerative (bottom up):
○ Initially, each point is a cluster

○ Repeatedly combine the two “nearest” clusters into one

● Divisive (top down):
○ Start with one cluster and recursively split it

● Regular K-Means is 

“Point assignment clustering”:
○ Maintain a set of clusters

○ Points belong to “nearest” cluster
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Hierarchical Clustering

● Agglomerative (bottom up):
○ Initially, each point is a cluster

○ Repeatedly combine the two “nearest” clusters into one

○ Stop when reaching a threshold in

■ Distance between points in cluster, or

■ Maximum distance from “center”

■ Maximum number of points In Euclidean 
space



Hierarchical Clustering

● Agglomerative (bottom up):
○ Initially, each point is a cluster

○ Repeatedly combine the two “nearest” clusters into one

But what if we have no “centroid”? 
(such as when using cosine distance)



Clustering: Applications
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Clustering: Applications

(musicmachinery.com)



Concept: Dimensionality Reduction in 3-D, 2-D, and 1-D

Data (or, at least, what we want from the data) may be accurately 
represented with less dimensions.  



Concept, In Matrix Form:
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Try to best represent but with on p’ columns.
Dimensionality reduction



Rank: Number of linearly independent columns of A. 
(i.e. columns that can’t be derived from the other columns through addition).

Q: What is the rank of this matrix?

Dimensionality Reduction
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1 1 0



Rank: Number of linearly independent columns of A. 
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Dimensionality Reduction - PCA

Linear approximates of data in r dimensions.

Found via Singular Value Decomposition:

X[nxp] = U[nxr] D[rxr] V[pxr]
T

X: original matrix, U: “left singular vectors”, 
D: “singular values” (diagonal), V: “right singular vectors”



Dimensionality Reduction - PCA

Linear approximates of data in r dimensions.

Found via Singular Value Decomposition:

X[nxp] = U[nxr] D[rxr] V[pxr]
T

X: original matrix, U: “left singular vectors”, 
D: “singular values” (diagonal), V: “right singular vectors”

X ≈ nn

p p



Dimensionality Reduction - PCA - Example

X[nxp] = U[nxr] D[rxr] V[pxr]
T

Users to movies matrix
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Dimensionality Reduction - PCA - Example

X[mxn] = U[mxr] D[rxr] V
T

[nxr]

(UD)T =



Dimensionality Reduction - PCA
Linear approximates of data in r dimensions.

Found via Singular Value Decomposition:

X[nxp] = U[nxr] D[rxr] V[pxr]
T

X: original matrix, U: “left singular vectors”, 
D: “singular values” (diagonal), V: “right singular vectors”

Projection (dimensionality reduced space) in 3 dimensions:
(U[nx3] D[3x3] V[px3]

T)

To reduce features in new dataset: 
Xnew V = Xnew_small 



Dimensionality Reduction - PCA

Linear approximates of data in r dimensions.

Found via Singular Value Decomposition:

X[nxp] = U[nxr] D[rxr] V[pxr]
T

U, D, and V are unique

D: always positive



Dimensionality Reduction v. Clustering

Clustering: Group n observations into k clusters

Soft Clustering: Assign observations to k clusters with some weight or probability.

Dimensionality Reduction: Assign m features to p components with some weight 
or probability. 



Dimensionality Reduction v. Clustering

Clustering: Group n observations into k clusters

Soft Clustering: Assign observations to k clusters with some weight or probability.

Dimensionality Reduction: Assign m features to p components with some weight 
or probability. 

Can often use one to do the other with one extra step. Examples

● From Dimensionality Reduction to Clusters:
○ Use U instead of a V from SVD = mapping observations to soft clusters
○ Project based on V, Apply a threshold on U = mapping observations to clusters
○ Threshold v (or use sparse PCA) = soft clustering of features

● From Clusters to Dimensionality Reduction:
○ Use soft cluster ids as features


