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Basics of Natural Language Processing

e lokenization
o Sentence
o Word
e Part of Speech Tagging

e Syntactic Parsing



From language to features

Feature encodings

e Count
e Relative Frequency
e TF-IDF

e Dimensionally Reduced



Features: Closed-to-Open Vocabulary

automatic content analysis

closed-vocabulary open-vocabulary
manual crowdsourced derived _ words &
dictionaries dictionaries dictionaries topics phrases

hand-driven data-driven



Standard Tasks

e |nsight

e Prediction



General “Insight” Framework

Volunteer or Public Data

social media
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linguistic
feature
extraction
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b) topics
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Prediction Framework

Human or Community Data

Outcomes / Controls
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Levels of Analysis
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Example Tasks

1.

2.

Text-based Geolocation

Community Health Prediction

(Handling many features, few observations)

Human Temporal Orientation

(Sophisticated Features)



1. Text-based Geolocation

GOAL: Determine where a given user lives.

Versions

1. Based on posts (e.g. status updates, tweets)
2. Based on profile information

Gold-Standard: Geo-coordinates (lat+lon)



2. Community Health Prediction

Atherosclerotic heart disease mortality



Encoding a community
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Twitter Predicts Heart Disease

Perfomance of Twitter-Based and Traditional Risk Factor-Based Regression Models
of County-Level Atherosclerotic Coronary Heart Disease (ACHD) Mortality

Onhby Twitter

All Predictors (exce pt Twitter)

Income and Education

Smaking

Diabetes

Hypertension

Obesity

%Black

%Female

% Married

YeHispanic
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Accuracy of County-Level ACHD Predictions (Pearson r with CDC-reported ACHD)




3. Human Temporal Orientation



past?
{ present? future?




Building a model

message

did nothing this morning but watch TV and it was fantastic =)

dislikes being sick.... and misses her bf

pancake day tomorrow pancake day tomorrow xxxxx

Training Data
4.3k

tweets+ statuses

Learn
Model

Application Data
1.3m statuses

R1

-.67
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class
past
present

future



Building a model

message R1 R2 R3 m class
did nothing this morning but watch TV and it was fantastic =) -67 -50 -50 -55 |past
dislikes being sick.... and misses her bf 0 0 0 0 present
pancake day tomorrow pancake day tomorrow xxxxx S50 .50 1 .67  future

<

[ Linguistic Feature Extraction




Building a model

parts-of-speech time

(covers tense) expressions
Linguistic Feature Extraction

™\

r'd
lexica words and
phrases




Building a model

“today” “in two weeks”
time
expressions
“January 15"

‘last year”



Building a model

parts-of-speech time

(covers tense) expressions
Linguistic Feature Extraction

™\

r'd
lexica words and
phrases




Building a model

message R1 R2 R3 m class
did nothing this morning but watch TV and it was fantastic =) -67 -.50 -50 -55 past
dislikes being sick.... and misses her bf 0 0 0 0 present
pancake day tomorrow pancake day tomorrow xxxxx .50 .50 1 .67  future

<

Linguistic Feature Extraction

L

Learn Message-Level Model



Building a model
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Accuracy over a held-out set: 72%;

baseline: 53%

Schwartz, H. A., Park, G., Sap, M., ..., & Ungar, L. (2015). Extracting Human Temporal Orientation from Facebook Language. NAACL-2015:
Conference of the North American Chapter of the Association for Computational Linguistics




Building a model

parts-of-speech .
(covers tense)62 4

Linguistic Feature Extraction
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Schwartz, H. A., Park, G., Sap, M., ..., & Ungar, L. (2015). Extracting Human Temporal Orientation from Facebook Language. NAACL-2015:
Conference of the North American Chapter of the Association for Computational Linguistics
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