TensorFlow and Recurrent Neural Networks
CSE392 - Spring 2019
Special Topic in CS
Task

- Language Modeling and (Most Tasks)
- Recurrent Neural Network
 - Implementation toolkit: TensorFlow
Language Modeling

Building a model (or system / API) that can answer the following:

- A sequence of natural language
- Trained Language Model
- Training Corpus
- What is the next word in the sequence?
- training (fit, learn)
Language Modeling

Building a model (or system / API) that can answer the following:

a sequence of natural language

Trained Language Model

What is the next word in the sequence?

Training Corpus

training (fit, learn)

To fully capture natural language, models get very complex!
Two Topics

1. A Concept in Machine Learning: **Recurrent Neural Networks (RNNs)**

2. A Toolkit or Data WorkFlow System: **TensorFlow**
 Powerful for implementing RNNs
TensorFlow

A workflow system catered to numerical computation. Basic idea: defines a graph of operations on tensors
TensorFlow

A workflow system catered to numerical computation.

Basic idea: defines a graph of operations on tensors

A multi-dimensional matrix
TensorFlow

A workflow system catered to numerical computation. Basic idea: defines a graph of operations on **tensors**

- A multi-dimensional matrix
- A 2-d tensor is just a matrix.
 - 1-d: vector
 - 0-d: a constant / scalar

![Diagram of TensorFlow](i.stack.imgur.com)
TensorFlow

A workflow system catered to numerical computation.

Basic idea: defines a graph of operations on tensors

A multi-dimensional matrix

A 2-d tensor is just a matrix.
1-d: vector
0-d: a constant / scalar

Linguistic Ambiguity:
“ds” of a Tensor \neq Dimensions of a Matrix
TensorFlow

A workflow system catered to numerical computation.
Basic idea: defines a graph of operations on tensors

Why?

Efficient, high-level built-in linear algebra and machine learning optimization operations (i.e. transformations).

enables complex models, like deep learning
Operations on tensors are often conceptualized as graphs:

A simple example:

```python
c = tensorflow.matmul(a, b)
```

TensorFlow
Operations on tensors are often conceptualized as graphs:

example:

d=b+c

\[a = d \times e \]
Ingredients of a TensorFlow session

tensors*
- variables - persistent
- mutable tensors
- constants - constant
- placeholders - from data

operations
- an abstract computation (e.g. matrix multiply, add)
- executed by device kernels

graph

session
- defines the environment in which operations run.
(like a Spark context)

devices
- the specific devices (cpus or gpus) on which to run the session.
Ingredients of a TensorFlow

- **tensors**
 - variables - persistent mutable tensors
 - constants - constant
 - placeholders - from data

- **operations**
 - `tf.Variable(initial_value, name)`
 - `tf.constant(value, type, name)`
 - `tf.placeholder(type, shape, name)`

- **graph**

- **session**
 - defines the environment in which operations run
 - (like a Spark context)

- **devices**
 - the specific devices (cpus or gpus) on which to run the session.
Operations

tensors*
 variables - persistent
 mutable tensors
constants - constant
placeholders - from data

operations
an abstract computation
(e.g. matrix multiply, add)
executed by device kernels

<table>
<thead>
<tr>
<th>Category</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element-wise mathematical operations</td>
<td>Add, Sub, Mul, Div, Exp, Log, Greater, Less, Equal, ...</td>
</tr>
<tr>
<td>Array operations</td>
<td>Concat, Slice, Split, Constant, Rank, Shape, Shuffle, ...</td>
</tr>
<tr>
<td>Matrix operations</td>
<td>MatMul, MatrixInverse, MatrixDeterminant, ...</td>
</tr>
<tr>
<td>Stateful operations</td>
<td>Variable, Assign, AssignAdd, ...</td>
</tr>
<tr>
<td>Neural-net building blocks</td>
<td>SoftMax, Sigmoid, ReLU, Convolution2D, MaxPool, ...</td>
</tr>
<tr>
<td>Checkpointing operations</td>
<td>Save, Restore</td>
</tr>
<tr>
<td>Queue and synchronization operations</td>
<td>Enqueue, Dequeue, MutexAcquire, MutexRelease, ...</td>
</tr>
<tr>
<td>Control flow operations</td>
<td>Merge, Switch, Enter, Leave, NextIteration</td>
</tr>
</tbody>
</table>
Sessions

- **tensors**: Places operations on **devices**
 - Variables - persistent
 - Mutable tensors
 - Constants - constant
 - Placeholders, from data

- **operations**: an abstract computation (e.g. matrix multiply, add) executed by device *kernels*

- **session**: defines the environment in which operations *run*.
 (like a Spark context)

- **devices**: the specific devices (cpus or gpus) on which to run the session.
Ingredients of a TensorFlow session:

- **tensors***:
 - *variables* - persistent, mutable tensors
 - *constants* - constant
 - *placeholders* - from data

- **operations**:
 - an abstract computation (e.g. matrix multiply, add) executed by device *kernels*

- **session**:
 - defines the environment in which operations *run*. (like a Spark context)

- **devices**:
 - the specific devices (cpus or gpus) on which to run the session.
import tensorflow as tf
b = tf.constant(1.5, dtype=tf.float32, name="b")
c = tf.constant(3.0, dtype=tf.float32, name="c")
d = b+c
e = c+2
a = d*e
import tensorflow as tf
b = tf.constant(1.5, dtype=tf.float32, name="b")
c = tf.constant(3.0, dtype=tf.float32, name="c")

d = b+c #1.5 + 3
e = c+2 #3+2

a = d*e #4.5*5 = 22.5
Example (working with 0-d tensors)

```python
import tensorflow as tf
b = tf.constant(1.5, dtype=tf.float32, name="b")
c = tf.constant(3.0, dtype=tf.float32, name="c")
d = b+c  # 1.5 + 3
e = c+2  # 3+2
a = d*e  # 4.5*5 = 22.5
```
import tensorflow as tf

b = tf.constant([1.5, 2, 1, 4.2],
 dtype=tf.float32, name="b")
c = tf.constant([3, 1, 5, 10],
 dtype=tf.float32, name="c")

d = b+c
e = c+2

a = d*e
Example: now a 1-d tensor

```
import tensorflow as tf
b = tf.constant([1.5, 2, 1, 4.2],
                 dtype=tf.float32, name="b")
c = tf.constant([3, 1, 5, 10],
                 dtype=tf.float32, name="c")
d = b+c  # [4.5, 3, 6, 14.2]
e = c+2  # [5, 4, 7, 12]
a = d*e  # ??
```
Example: now a 2-d tensor

```python
import tensorflow as tf
b = tf.constant([[...], [...]],
    dtype=tf.float32, name="b")
c = tf.constant([[...], [...]],
    dtype=tf.float32, name="c")
d = b+c
e = c+2
a = tf.matmul(d,e)
```
Example: Logistic Regression

```python
X = tf.constant([[...], [...]],
                dtype=tf.float32, name="X")

y = tf.constant([...],
                dtype=tf.float32, name="y")

# Define our beta parameter vector:
beta = tf.Variable(tf.random_uniform([featuresZ_pBias.shape[1], 1], -1., 1.), name = "beta")
```
Example: Logistic Regression

```python
X = tf.constant([[...], [...]],
    dtype=tf.float32, name="X")

y = tf.constant([...],
    dtype=tf.float32, name="y")

# Define our beta parameter vector:
beta = tf.Variable(tf.random_uniform([featuresZ_pBias.shape[1], 1], -1.,
    1.), name = "beta")

#then setup the prediction model's graph:
y_pred = tf.softmax(tf.matmul(X, beta), name="predictions")
```
Example: Logistic Regression

```python
X = tf.constant([[...], [...]],
                 dtype=tf.float32, name="X")

y = tf.constant([...],
                 dtype=tf.float32, name="y")

# Define our beta parameter vector:
beta = tf.Variable(tf.random_uniform([featuresZ_pBias.shape[1], 1], -1.,
                                     1.), name = "beta")

#then setup the prediction model's graph:
y_pred = tf.softmax(tf.matmul(X, beta), name="predictions")

#Define a *cost function* to minimize:
penalizedCost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pred),
                                         reduction_indices=1))  #conceptually like |y - y_pred|
```
Optimizing Parameters -- derived from gradients

TensorFlow has built-in ability to derive gradients given a cost function.

\[\text{tf.gradients(cost, \{params\})} \]

[Graph showing optimization process:](http://rasbt.github.io/mlxtend/user_guide/general_concepts/gradient-optimization/)
Example: Logistic Regression

```python
X = tf.constant([[...], [...]],
                dtype=tf.float32, name="X")
y = tf.constant([...],
                dtype=tf.float32, name="y")

# Define our beta parameter vector:
beta = tf.Variable(tf.random_uniform([featuresZ_pBias.shape[1], 1], -1., 1.), name = "beta")

#then setup the prediction model's graph:
y_pred = tf.softmax(tf.matmul(X, beta), name="predictions")

#Define a *cost function* to minimize:
cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pred),
                         reduction_indices=1))
```
Example: Logistic Regression

```python
X = tf.constant([[...], [...]], dtype=tf.float32, name="X")
y = tf.constant([...], dtype=tf.float32, name="y")
# Define our beta parameter vector:
beta = tf.Variable(tf.random_uniform([featuresZ_pBias.shape[1], 1], -1., 1.), name = "beta")
# then setup the prediction model's graph:
y_pred = tf.softmax(tf.matmul(X, beta), name="predictions")
#Define a *cost function* to minimize:
cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pred), reduction_indices=1))
# define how to optimize and initialize:
optimizer = tf.train.GradientDescentOptimizer(learning_rate = learning_rate)
training_op = optimizer.minimize(cost)
init = tf.global_variables_initializer()
```
Example: Logistic Regression

```python
X = tf.constant([[...], [...]], dtype=tf.float32, name="X")
y = tf.constant([...], dtype=tf.float32, name="y")

# Define our beta parameter vector:
beta = tf.Variable(tf.random_uniform([featuresZ_pBias.shape[1], 1], -1., 1.), name = "beta")
# then setup the prediction model's graph:
y_pred = tf.softmax(tf.matmul(X, beta), name="predictions")

#Define a *cost function* to minimize:
cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pred), reduction_indices=1))

#define how to optimize and initialize:
optimizer = tf.train.GradientDescentOptimizer(learning_rate = learning_rate)
training_op = optimizer.minimize(cost)
init = tf.global_variables_initializer()

#iterate over optimization:
with tf.Session() as sess:
    sess.run(init)
    for epoch in range(n_epochs):
        sess.run(training_op)
    #done training, get final beta:
    best_beta = beta.eval()
```
Neural Networks: Graphs of Operations
Neural Networks: Graphs of Operations (excluding the optimization nodes)

Figure 9.2 Simple recurrent neural network after Elman (Elman, 1990). The hidden layer includes a recurrent connection as part of its input. That is, the activation value of the hidden layer depends on the current input as well as the activation value of the hidden layer from the previous timestep. (Jurafsky, 2019)
Neural Networks: Graphs of Operations (excluding the optimization nodes)

"hidden layer"

Figure 9.2 Simple recurrent neural network after Elman (Elman, 1990). The hidden layer includes a recurrent connection as part of its input. That is, the activation value of the hidden layer depends on the current input as well as the activation value of the hidden layer from the previous timestep. (Jurafsky, 2019)
Neural Networks: Graphs of Operations (excluding the optimization nodes)

Neural Networks: Graphs of Operations (excluding the optimization nodes)

"hidden layer"

Activation Function

$h_t = g(\text{vecmul}(h_{t-1} U) + \text{vecmul}(x_t V))$

$y_t = f(\text{matmul}(h_t W))$

Figure 9.2 Simple recurrent neural network after Elman (Elman, 1990). The hidden layer includes a recurrent connection as part of its input. That is, the activation value of the hidden layer depends on the current input as well as the activation value of the hidden layer from the previous timestep. (Jurafsky, 2019)
Neural Networks: Graphs of Operations (excluding the optimization nodes)

"hidden layer"

\[y_t = f(\text{matmul}(h_t, W)) \]

Activation Function

\[h_t = g(h_{t-1} U + x_t V) \]

short hand for vector/ matrix multiply

Figure 9.2 Simple recurrent neural network after Elman (Elman, 1990). The hidden layer includes a recurrent connection as part of its input. That is, the activation value of the hidden layer depends on the current input as well as the activation value of the hidden layer from the previous timestep. (Jurafsky, 2019)
Neural Networks: Graphs of Operations (excluding the optimization nodes)

"hidden layer"

\[
y(t) = f(h(t)W)
\]

Activation Function

\[
h(t) = g(h(t-1)U + x(t)V)
\]

Figure 9.2 Simple recurrent neural network after Elman (Elman, 1990). The hidden layer includes a recurrent connection as part of its input. That is, the activation value of the hidden layer depends on the current input as well as the activation value of the hidden layer from the previous timestep. (Jurafsky, 2019)
Neural Networks: Graphs of Operations (excluding the optimization nodes)

Activation Function

\[
h_t = g(h_{t-1}U + x_tV)
\]

\[
y_t = f(h_tW)
\]

Figure 9.2 Simple recurrent neural network after Elman (Elman, 1990). The hidden layer includes a recurrent connection as part of its input. That is, the activation value of the hidden layer depends on the current input as well as the activation value of the hidden layer from the previous timestep.

(Jurafsky, 2019)
Neural Networks: Graphs of Operations (excluding the optimization nodes)

\[y(t) = f(h(t)W) \]

Activation Function

\[h(t) = g(h(t-1)U + x(t)V) \]

Figure 9.2 Simple recurrent neural network after Elman (Elman, 1990). The hidden layer includes a recurrent connection as part of its input. That is, the activation value of the hidden layer depends on the current input as well as the activation value of the hidden layer from the previous timestep. (Jurafsky, 2019)
Common Activation Functions

\[z = h_l W \]

Logistic: \[\sigma(z) = \frac{1}{1 + e^{-z}} \]

Hyperbolic tangent: \[\text{tanh}(z) = 2\sigma(2z) - 1 = \frac{e^{2z} - 1}{e^{2z} + 1} \]

Rectified linear unit (ReLU): \[\text{ReLU}(z) = \max(0, z) \]
Common Activation Functions

\[z = b_i W \]

Logistic: \[\sigma(z) = \frac{1}{1 + e^{-z}} \]

Hyperbolic tangent: \[\tanh(z) = 2\sigma(2z) - 1 = \frac{e^{2z} - 1}{e^{2z} + 1} \]

Rectified linear unit (ReLU): \[\text{ReLU}(z) = \max(0, z) \]
Example: Forward Pass

```
# define forward pass graph:
h_{(0)} = 0
for i in range(1, len(x)):
    h_{(i)} = g(U h_{(i-1)} + W x_{(i)})  # update hidden state
    y_{(i)} = f(V h_{(i)})  # update output
```

(Geron, 2017)
Example: Forward Pass

...

#define forward pass graph:

\[h(\theta) = 0 \]

for i in range(1, len(x)):

\[h(i) = tf.tanh(tf.matmul(U, h(i-1)) + tf.matmul(W, x(i))) \]

#update hidden state

\[y(i) = tf.softmax(tf.matmul(V, h(i))) \]

#update output
Example: Forward Pass

```python
# define forward pass graph:

h(0) = 0
for i in range(1, len(x)):
    h(i) = tf.tanh(tf.matmul(U, h(i-1)) + tf.matmul(W, x(i)))  # update hidden state

y(i) = tf.softmax(tf.matmul(V, h(i)))  # update output

...  

cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pred)))
```
Optimization:

Backward Propagation

...#define forward pass graph:
h(0) = 0
for i in range(1, len(x)):
 h(i) = tf.tanh(tf.matmul(U, h(i-1)) + tf.matmul(W, x(i))) #update hidden state
 y(i) = tf.softmax(tf.matmul(V, h(i))) #update output
...
cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pred)))

To find the gradient for the overall graph, we use back propagation, which essentially chains together the gradients for each node (function) in the graph.
Optimization:

Backward Propagation

...
#define forward pass graph:
h(0) = 0
for i in range(1, len(x)):
 h(i) = tf.tanh(tf.matmul(U, h(i-1))+ tf.matmul(W, x(i)))
#update hidden state
y(i) = tf.softmax(tf.matmul(V, h(i)))
#update output
...

cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_pred)))

To find the gradient for the overall graph, we use **back propagation**, which essentially chains together the gradients for each node (function) in the graph.

With many recursions, the gradients can vanish or explode (become too large or small for floating point operations).
Solution: Unrolling
Solution: Unrolling

Figure 9.8. Part-of-speech tagging as sequence labeling with a simple RNN. Pre-trained word embeddings serve as inputs and a softmax layer provides a probability distribution over the part-of-speech tags as output at each time step.
Example: Forward Pass

```python
#define forward pass graph:

h(i) = tf.nn.relu(tf.matmul(U, h(i-1)) + tf.matmul(W, x(i)))  # update hidden state
y(i) = tf.softmax(tf.matmul(V, h(i)))  # update output
```
Example: Forward Pass

hidden_size, output_size = 5, 1

define forward pass graph:

h(i) = tf.contrib.BasicRNNCell(num_units=hidden_size, activation = tf.nn.relu)
y(i) = tf.softmax(tf.matmul(V, h(i))) # update output
hidden_size, output_size = 5, 1

define forward pass graph:

\[h(i) = \text{tf.contrib.BasicRNNCell}(\text{num_units} = \text{hidden_size}, \text{activation} = \text{tf.nn.relu}) \]
\[y(i) = \text{tf.softmax}(\text{tf.matmul}(V, h(i))) \] # update output
Example: Forward Pass

hidden_size, output_size = 5, 1

#define forward pass graph:

cell = tf.contrib.rnn.OutputProjectionWrapper(
 tf.contrib.rnn.BasicRNNCell(num_units=hidden_size, activation = tf.nn.relu),
 output_size = output_size

y_{(t)} = tf.softmax(tf.matmul(V, h_{(t)})) #update output
Example: Forward Pass

hidden_size, output_size = 5, 1

define forward pass graph:
cell = tf.contrib.rnn.OutputProjectionWrapper(
 tf.contrib.rnn.BasicRNNCell(num_units=hidden_size, activation = tf.nn.relu),
 output_size = output_size
)
Example: Forward Pass

```python
hidden_size, output_size = 5, 1

define forward pass graph:
cell = tf.contrib.rnn.OutputProjectionWrapper(
    tf.contrib.BasicRNNCell(num_units=hidden_size, activation = tf.nn.relu),
    output_size = output_size
#define training parameters:
learning_rate = 0.001
cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(outputs))  #softmax cost
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
```
hidden_size, output_size = 5, 1

#define forward pass graph:
cell = tf.contrib.rnn.OutputProjectionWrapper(
 tf.contrib.BasicRNNCell(num_units=hidden_size, activation = tf.nn.relu),
 output_size = output_size
#define training parameters:
learning_rate = 0.001
cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(outputs))) #softmax cost
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(cost)
init = tf.global_variables_initializer()
hidden_size, output_size = 5, 1
input_size, unroll_steps = 10, 20

X = tf.placeholder(tf.float32, [None, unroll_steps, input_size])
y = tf.placeholder(tf.float32, [None, unroll_steps, output_size])

#define forward pass graph:
cell = tf.contrib.rnn.OutputProjectionWrapper(
 tf.contrib.BasicRNNCell(num_units=hidden_size, activation = tf.nn.relu),
 output_size = output_size
)

#define training parameters:
learning_rate = 0.001

cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(outputs))) #softmax cost

optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(cost)
init = tf.global_variables_initializer()
Example: Forward Pass

```
hidden_size, output_size = 5, 1
input_size, unroll_steps = 10, 20
X = tf.placeholder(tf.float32, [None, unroll_steps, input_size])
y = tf.placeholder(tf.float32, [None, unroll_steps, output_size])

# define forward pass graph:
cell = tf.contrib.rnn.OutputProjectionWrapper(
tf.contrib.BasicRNNCell(num_units=hidden_size, activation = tf.nn.relu),
output_size = output_size

# define training parameters:
learning_rate = 0.001
cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(outputs))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(cost)
init = tf.global_variables_initializer()

# execute training:
epochs = 1000
batch_size = 50
with tf.Session() as sess:
    init.run()
```

(Geron, 2017)
hidden_size, output_size = 5, 1
input_size, unroll_steps = 10, 20
X = tf.placeholder(tf.float32, [None, unroll_steps, input_size])
y = tf.placeholder(tf.float32, [None, unroll_steps, output_size])

#define forward pass graph:
cell = tf.contrib.rnn.OutputProjectionWrapper(
 tf.contrib.BasicRNNCell(num_units=hidden_size, activation = tf.nn.relu),
 output_size = output_size)

#define training parameters:
learning_rate = 0.001
cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(outputs)))
on optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(cost)
init = tf.global_variables_initializer()

#execute training:
cephs = 1000
batch_size = 50
with tf.Session() as sess:
 init.run()
 for iter in range(epochs):
 X_batch, y_batch = ...#fetch next batch
 sess.run(training_op, feed_dict={X:X_batch, y:y_batch})
hidden_size, output_size = 5, 1
input_size, unroll_steps = 10, 20
X = tf.placeholder(tf.float32, [None, unroll_steps, input_size])
y = tf.placeholder(tf.float32, [None, unroll_steps, output_size])

#define forward pass graph:
cell = tf.contrib.rnn.OutputProjectionWrapper(
 tf.contrib.rnn.BasicRNNCell(num_units=hidden_size, activation=tf.nn.relu),
 output_size = output_size
)

#define training parameters:
learning_rate = 0.001
cost = tf.reduce_mean(-tf.reduce_sum(y * tf.log(outputs)))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(cost)
init = tf.global_variables_initializer()

#execute training:
epochs = 1000
batch_size = 50
with tf.Session() as sess:
 init.run()
 for iter in range(epochs):
 X_batch, y_batch = ...
 sess.run(training_op, feed_dict={X: X_batch, y: y_batch})
 if iter % 100 == 0:
 c = cost.eval(feed_dict={X: X_batch, y: y_batch})
 print(iter, "\tcost: ", c)
(Geron, 2017)
Example: Forward Pass

```
hidden_size, output_size = 5, 1
input_size, unroll_steps = 10, 20
X = tf.placeholder(tf.float32, [None, unroll_steps, input_size])
y = tf.placeholder(tf.float32, [None, unroll_steps, output_size])

# define forward pass graph:
cell = tf.contrib.rnn.OutputProjectionWrapper(
    tf.contrib.BasicRNNCell(num_units=hidden_size, activation = tf.nn.relu),
    output_size = output_size
)

# define training parameters:
learning_rate = 0.001

cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(outputs)))
# softmax cost
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(cost)
init = tf.global_variables_initializer()

# execute training:
epochs = 1000
batch_size = 50
with tf.Session() as sess:
    init.run()
    for iter in range(epochs):
        X_batch, y_batch = ...
        # fetch next batch
        sess.run(training_op, feed_dict={X:X_batch, y:y_batch})
        if iter % 100 == 0:
            c = cost.eval(feed_dict={X:X_batch, y:y_batch})
            print(iter, "  cost: ", c)
```