General Ingredients for Pytorch

1. The model (defined in an `nn.module` object)

2. The loss function

3. The training loop
General Ingredients for Pytorch

1. The model (defined in an `nn.module` object) maps X to y_{pred}

2. The loss function evaluates y_{pred} versus y

3. The training loop runs the model and loss in loop with gradient descent.
1. The model

maps X (features) to y_{pred} (prediction of y)

class LogReg(nn.Module):

def __init__(self, num_feats, learn_rate = 0.01, device = torch.device("cpu")):
 #the constructor; define any layer objects (e.g. Linear)
 super(LogReg, self).__init__()
 self.linear = nn.Linear(num_feats+1, 1) #add 1 to features for intercept

 def forward(self, X):
 #This is where the model itself is defined.
 #For binary logistic regression the model takes in X and returns
 #a probability (a value between 0 and 1)

 newX = torch.cat((X, torch.ones(X.shape[0], 1)), 1) #add intercept

 return 1/(1 + torch.exp(-self.linear(newX))) #log func on the linear output
1. The model

maps X (features) to y_{pred} (prediction of y)

class LogReg(nn.Module):

 def __init__(self, num_feats, learn_rate = 0.01, device = torch.device("cpu")):
 # the constructor; define any layer objects (e.g. Linear)
 super(LogReg, self).__init__()
 self.linear = nn.Linear(num_feats+1, 1) # add 1 to features for intercept

 def forward(self, X):
 # This is where the model itself is defined.
 # For binary logistic regression the model takes in X and returns
 # a probability (a value between 0 and 1)

 newX = torch.cat((X, torch.ones(X.shape[0], 1)), 1) # add intercept

 return 1/(1 + torch.exp(-self.linear(newX))) # log func on the linear output
"log loss" or "normalized log loss":

\[J(\beta) = -\frac{1}{N} \sum_{i=1}^{N} y_i \log p(x_i) + (1 - y_i) \log (1 - p)(x_i) \]
2. The loss function *evaluates* \texttt{ypred} *versus* \texttt{y}

```python
# e.g.
def normalizedLogLoss(ypred, ytrue):
    # Given:
    # ypred - a vector (torch 1-d tensor) of predictions from the model.
    # these are probabilities (values between 0 and 1)
    # ytrue - a vector (torch 1-d tensor) of the true labels
    # Output:
    # the logloss
    logloss = -1*torch.sum(ytrue*torch.log(ypred) + (1 - ytrue)*torch.log(1-ypred))
    N = ytrue.shape[0]
    normlogloss = (1/N)*logloss
    return normlogloss

# Alternative: return torch.nn.BCELoss(size_average=True)(ypred, ytrue)
```
"log loss" or "normalized log loss":

$$J(\beta) = -\frac{1}{N} \sum_{i=1}^{N} y_i \log p(x_i) + (1 - y_i) \log (1 - p)(x_i)$$
3. The training loop

runs the model and loss in loop with gradient descent.

#runs the training loop of pytorch model:
sgd = torch.optim.SGD(model.parameters(), lr=learning_rate) #gradient descent
loss_func = nn.CrossEntropyLoss() #includes log

#training loop:
for i in range(epochs):
 model.train() #tells pytorch we are training
 sgd.zero_grad() #sets the gradients to 0

 #forward pass:
 ypred = model(Xtrain)
 loss = loss_func(ypred, ytrain)

 #backward pass: runs gradient descent (or variant)
 loss.backward() #computes gradients
 sgd.step() #updates parameters

 if i % 20 == 0:
 print(" epoch: %d, loss: %.5f" %(i, loss.item()))
#training loop:
for i in range(epochs):
 model.train() # tells pytorch we are training
 sgd.zero_grad() # sets the gradients to 0

forward pass:
ypred = model(Xtrain)
loss = loss_func(ypred, ytrain)

backward pass: runs gradient descent (or variant)
loss.backward() # computes gradients
sgd.step() # updates parameters

if i % 20 == 0:
 print(" epoch: %d, loss: %.5f" %(i, loss.item()))
Training is done: how do I get predictions?

Easy!
Training is done: how do I get predictions?

Easy!

\[\text{ypred} = \text{model}(X) \]
From binary logistic regression to multiclass softmax

Two updates

- Model (forward method)
- Loss function
Pytorch Specifics: Model

class LogReg(nn.Module):
 ...

 def forward(self, X):
 # This is where the model itself is defined.
 # For logistic regression the model takes in X and returns
 # the results of a decision function

 newX = torch.cat((X, torch.ones(X.shape[0], 1)), 1) # add intercept

 return 1/(1 + torch.exp(-self.linear(newX)))
 # logistic function on the linear output
class MultiClassLogReg(nn.Module):
 def __init__(self, num_feats, num_classes, learn_rate = 0.01, device = torch.device("cpu")):
 #the constructor; define any layer objects (e.g. Linear)
 super(LogReg, self).__init__()
 self.linear = nn.Linear(num_feats+1, num_classes)

 def forward(self, X):
 #This is where the model itself is defined.
 #For logistic regression the model takes in X and returns
 #the results of a decision function

 newX = torch.cat((X, torch.ones(X.shape[0], 1)), 1) #add intercept

 #return 1/(1 + torch.exp(-self.linear(newX)))
 #logistic function on the linear output

 return self.linear(newX) #only use linear if using cross-entropy loss
Pytorch Specifics: loss

runs the training loop of pytorch model:
sgd = torch.optim.SGD(model.parameters(), lr=learning_rate)
loss_func = nn.CrossEntropyLoss() # includes log

training loop:
for i in range(epochs):
 model.train()
 sgd.zero_grad()
 # forward pass:
 ypred = model(X)
 loss = loss_func(ypred, y)
 # backward: /(applies gradient descent)
 loss.backward()
 sgd.step()

 if i % 20 == 0:
 print(" epoch: %d, loss: %.5f"%(i, loss.item()))
Two equivalent options for multi-class:

option 1 (what the previous slides covered)

```python
# in model/forward:
    return self.linear(newX)  # only use linear if using cross-entropy loss

# in loss/train:
    loss_func = nn.CrossEntropyLoss()  # includes log softmax
        # alternative: nn.NLLLoss()  # negative log likelihood loss
```

option 2

```python
# in model/forward:
    return nn.log_softmax(self.linear(newX))  # log softmax is multiclass

# in loss/train:
    loss_func = nn.NLLLoss()  # negative log likelihood loss
```