Transformer Sequence Models

CSE354 - Spring 2020
Natural Language Processing
Most NLP Tasks. E.g.

- Sequence Tasks
 - Language Modeling
 - Machine Translation
 - Speech Recognition

- Transformer Networks
 - Transformers
 - BERT
Evolution of Sequence Modeling

RNNs LSTMs LSTMS with Attention Attention without LSTMs
Multi-level bidirectional RNN (LSTM or GRU)
Multi-level bidirectional RNN (LSTM or GRU)

Each node has a forward -> and backward <- hidden state: Can represent as a concatenation of both.

(Eisenstein, 2018)
Multi-level bidirectional RNN (LSTM or GRU)

Average of top layer is an embedding (average of concatenated vectors)

(Eisenstein, 2018)
Multi-level bidirectional RNN (LSTM or GRU)

Sometimes just use left-most and right-most hidden state instead

(Eisenstein, 2018)
I feel terrible about what happened to Stark but the movie was excellent!
I feel terrible about what happened to Stark but the movie was excellent!
Sentiment Analysis:
Example Application of Single Representation of document

I feel terrible about what happened to Stark but the movie was excellent!
Encoder

A representation of input.

(Eisenstein, 2018)
Encoder-Decoder

Representing input and converting to output

(Eisenstein, 2018)
Encoder-Decoder

(Eisenstein, 2018)
Encoder-Decoder

\[y(0) \]

\[y(1) \]

\[y(2) \]

\[y(3) \]

Softmax

\[h_{m-1}^{(s,D)} \]

\[h_{m}^{(s,D)} \]

\[h_{m+1}^{(s,D)} \]

\[x_{m-1}^{(s)} \]

\[x_{m}^{(s)} \]

\[x_{m+1}^{(s)} \]

\[<go> \]
Encoder-Decoder

A representation of input.
Encoder-Decoder

A representation of input.

essentially a language model conditioned on the final state from the encoder.
Encoder-Decoder

When applied to new data...

essentially a language model conditioned on the final state from the encoder.
Encoder-Decoder

A representation of input.
Encoder-Decoder

“seq2seq” model

Language 1: (e.g. Chinese)

Language 2: (e.g. English)
Encoder-Decoder

Challenge:

- Long distance dependency when translating:
Encoder-Decoder

Challenge:

- Long distance dependency when translating:
Encoder-Decoder

Challenge:

- Long distance dependency when translating:

 $x_0 \rightarrow x_1 \rightarrow x_2 \rightarrow \ldots <\text{go}> y_0 \rightarrow y_1 \rightarrow y_2 \rightarrow y_3 \rightarrow y_4$

 Kayla kicked the ball.

 The ball was kicked by kayla.
Encoder-Decoder

Challenge:

- Long distance dependency when translating:

 \[
 y(0) \rightarrow y(1) \rightarrow y(2) \rightarrow \ldots
 \]

 A lot of responsibility put fixed-size hidden state passed from encoder to decoder.

 \textit{The ball was kicked by kayla.}

 \textit{Kayla kicked the ball.}
Long Distance / Out of order dependencies

A lot of responsibility put fixed-size hidden state passed from encoder to decoder
Long Distance / Out of order dependencies

\[\text{Softmax} \]

\[
\begin{align*}
\mathbf{y}(0) & \rightarrow \mathbf{h}_{m-1}^{(s,D)} & \rightarrow \mathbf{h}_m^{(s,D)} & \rightarrow \mathbf{h}_{m+1}^{(s,D)} \\
\vdots & \rightarrow \mathbf{h}_{m-1}^{(s,2)} & \rightarrow \mathbf{h}_m^{(s,2)} & \rightarrow \mathbf{h}_{m+1}^{(s,2)} \\
\vdots & \rightarrow \mathbf{h}_{m-1}^{(s,1)} & \rightarrow \mathbf{h}_m^{(s,1)} & \rightarrow \mathbf{h}_{m+1}^{(s,1)} \\
\mathbf{x}_{m-1}^{(s)} & \rightarrow \mathbf{h}_m^{(s)} & \rightarrow \mathbf{h}_{m+1}^{(s)} \\
\mathbf{x}_m^{(s)} & \rightarrow \mathbf{h}_m^{(s)} & \rightarrow \mathbf{h}_{m+1}^{(s)} \\
\mathbf{x}_{m+1}^{(s)} & \rightarrow \mathbf{h}_m^{(s)} & \rightarrow \mathbf{h}_{m+1}^{(s)}
\end{align*}
\]
Attention

\[
\begin{align*}
&y_0, y_1, y_2, y_3, \ldots \\
&\text{Softmax}
\end{align*}
\]
Attention

Analogy: random access memory

\[
\text{Softmax}
\]

\[
y^{(0)}, y^{(1)}, y^{(2)}, y^{(3)}
\]

\[
x^{(s)}_{m-1}, x^{(s)}_m, x^{(s)}_{m+1}
\]

\[
h^{(s,1)}_{m-1}, h^{(s,1)}_m, h^{(s,1)}_{m+1}
\]

\[
h^{(s,2)}_{m-1}, h^{(s,2)}_m, h^{(s,2)}_{m+1}
\]
Attention

attention layer

Softmax

...
Attention

Softmax

\[y^{(0)} \]
\[y^{(1)} \]
\[y^{(2)} \]
\[y^{(3)} \]

...\[y^{(N)} \]

i: current token of output
N: tokens of input

\[c_{hi} = \sum_{n=1}^{\mid s \mid} \alpha_{h_i \rightarrow s_n}s_n \]
Attention

\[c_{hi} = \sum_{n=1}^{\left|s\right|} \alpha_{h_i \rightarrow s_n} s_n \]
Attention

Z is the vector to be attended to (the value in memory). It is typically hidden states of the input (i.e. s_n) but can be anything.

$$c_{hi} = \sum_{n=1}^{\lvert s \rvert} \alpha_{h_i \rightarrow s_n} z_n$$
Attention

\[c_{hi} = \sum_{n=1}^{\left| s \right|} \alpha_{h_i \rightarrow s_n} s_n \]
Attention

\[\alpha_{h_i \rightarrow s} = \text{softmax}(\psi(h_i, s)) \]

\[c_{h_i} = \sum_{n=1}^{\left| s \right|} \alpha_{h_i \rightarrow s_n} s_n \]
Attention

\[\alpha_{h_i \rightarrow s} \]

Score function:
\[\psi(h_i, s) = v^T \tanh(W_h h_i + W_s s) \]
\[\alpha_{h_i \rightarrow s} = \text{softmax}(\psi(h_i, s)) \]
\[c_{h_i} = \sum_{n=1}^{\vert s \vert} \alpha_{h_i \rightarrow s_n} s_n \]
A useful abstraction is to make the vector attended to (the “value vector”, Z) separate than the “key vector” (s).
A useful abstraction is to make the vector attended to (the “value vector”, Z) separate than the “key vector” (s).

Score function:

$$\psi(h_i, s) = v^T \tanh(W_h h_i + W_s s)$$

$$\alpha_{h_i \rightarrow s} = \text{softmax}(\psi(h_i, s))$$

$$c_{h_i} = \sum_{n=1}^{\vert s \vert} \alpha_{h_i \rightarrow s_n} z_n$$
Attention

Alternative Scoring Functions

\[\psi_{\text{add}}(h_i, s) = v^T \tanh(W_h h_i + W_s s) \]

\[\psi_{\text{dp}}(h_i, s) = s^T h_i \]

\[\psi_{\text{mult}}(h_i, s) = s^T W h_i \]
If variables are standardized, matrix multiply produces a similarity score.

Alternative Scoring Functions

\[
\psi_{\text{add}}(h_i, s) = v^T \tanh(W_h h_i + W_s s) \\
\psi_{\text{dp}}(h_i, s) = s^T h_i \\
\psi_{\text{mult}}(h_i, s) = s^T W h_i
\]
Attention

I am a student <s> Je suis étudiant </s>

context vector

attention vector

attention weights

0.5 0.3 0.1 0.1

Je suis étudiant

("synced", 2017)
Attention

\[c_{h_i} = \sum_{n=1}^{\|s\|} \alpha_{h_i \rightarrow s_n} s_n \]

\[\alpha_{h_i \rightarrow s} = \text{softmax}(\psi(h_i, s)) \]

(“synced”, 2017)
Attention

\[c_{h_i} = \sum_{n=1}^{s} \alpha_{h_i\rightarrow s_n} s_n \]

(Bahdanau et al., 2015)

\[\alpha_{h_i\rightarrow s} = \text{softmax}(\psi(h_i, s)) \]

The agreement on the European Economic Area was signed in August 1992.

("synced", 2017)
Attention

\[c_{h_i} = \sum_{n=1}^{|s|} \alpha_{h_i \rightarrow s_n} s_n \]

\(\alpha_{h_i \rightarrow s} = \text{softmax}(\psi(h_i, s)) \)

(Bahdanau et al., 2015)
Machine Translation

Why?

- $40 billion/year industry
- A center piece of many genres of science fiction
- A fairly “universal” problem:
 - Language understanding
 - Language generation
- Societal benefits of inter-cultural communication
Machine Translation

Why?

- $40\text{billion/}year \text{ industry}
- A center piece of many genres of science fiction
- A fairly “universal” problem:
 - Language understanding
 - Language generation
- Societal benefits of inter-cultural communication

(Douglas Adams)
Machine Translation

Why Neural Network Approach works? (Manning, 2018)

- Joint end-to-end training: learning all parameters at once.
- Exploiting distributed representations (embeddings)
- Exploiting variable-length context
- High quality generation from deep decoders - stronger language models (even when wrong, make sense)
Machine Translation

As an optimization problem (Eisenstein, 2018):

$$\hat{w}^{(t)} = \arg\max_{w^{(t)}} \Psi(w^{(s)}, w^{(t)})$$
Attention

\[c_{h_i} = \sum_{n=1}^{|s|} \alpha_{h_i \rightarrow s_n} s_n \]

\[\alpha_{h_i \rightarrow s} = \text{softmax}(\psi(h_i, s)) \]

(“synced”, 2017)
Attention

Analogy: *random access memory*
Do we even need all these RNNs?
(Vaswani et al., 2017: *Attention is all you need*)
A useful abstraction is to make the vector attended to (the “value vector”, Z) separate than the “key vector” (s).
A useful abstraction is to make the vector attended to (the "value vector", Z) separate than the "key vector" (s).

(Eisenstein, 2018)
The Transformer: “Attention-only” models

Attention as weighting a value based on a query and key:

(Eisenstein, 2018)
The Transformer: “Attention-only” models

(Eisenstein, 2018)
The Transformer: “Attention-only” models

(Eisenstein, 2018)
The Transformer: “Attention-only” models
The Transformer: “Attention-only” models

Output

α

ψ

b

w_{i-1}

w_i

w_{i+1}

w_{i+2}

FFN

h_{i-1}

h_i

h_{i+1}

h_{i+2}

v

q

k
The Transformer: “Attention-only” models
The Transformer: “Attention-only” models

\[
\begin{align*}
\alpha & \\
\psi & \\
b & \\
h_{i-1} & \quad h_i & \quad h_{i+1} & \quad h_{i+2} \\
\uparrow & \quad \uparrow & \quad \uparrow & \quad \uparrow \\
y_{i-1} & \quad y_i & \quad y_{i+1} & \quad y_{i+2} \\
\end{align*}
\]
The Transformer: “Attention-only” models

Attend to all hidden states in your “neighborhood”.

Output

\[y_{i-1} \quad y_i \quad y_{i+1} \quad y_{i+2} \]

\[h_{i-1} \quad h_i \quad h_{i+1} \quad h_{i+2} \]

\[w_{i-1} \quad w_i \quad w_{i+1} \quad w_{i+2} \]

\[y_{i-1} \quad y_i \quad y_{i+1} \quad y_{i+2} \]
The Transformer: “Attention-only” models

\[\psi_{dp}(h, s) = s^T h_i \]

\[k^T q \]
The Transformer: “Attention-only” models

\[\psi_{dp}(k,q) = (k^t q) \sigma \]
The Transformer: “Attention-only” models

\[\psi_{dp} (k,q) = (k^t q) \sigma \]

Linear layer:
\[W^T X \]

One set of weights for each of for K, Q, and V
The Transformer: “Attention-only” models

Why?
- Don’t need complexity of LSTM/GRU cells
- Constant num edges between words (or input steps)
- Enables “interactions” (i.e. adaptations) between words
- Easy to parallelize -- don’t need sequential processing.
The Transformer

Limitation (thus far): Can’t capture multiple types of dependencies between words.
The Transformer

Solution: Multi-head attention
Multi-head Attention

Scaled Dot-Product Attention

MatMul

SoftMax

Mask (opt.)

Scale

MatMul

Q K V

Concat

Linear

Scaled Dot-Product Attention

h

Linear

Linear

Linear

V K Q
Transformer for Encoder-Decoder
Transformer for Encoder-Decoder

Stage 1
- **Positional Encoding**
- **Embeddings**
 - Input: je, suis
 - E1: 0 0 1 1
 - E2: 0.84 0.001 0.54 1

Stage 2
- **Add & Norm**
- **Multi-Head Attention**
- **Input Embedding**

Sequence index (t)
Transformer for Encoder-Decoder
Transformer for Encoder-Decoder

Residualized Connections

Stage 1: Positional Encoding
- Input Embedding
- Inputs

Stage 2: \(N_x\)
- Add & Norm
- Multi-Head Attention

Stage 3
- Add & Norm
- Feed Forward

Embedding lookup

\[Y^{(0)}, Y^{(1)}, Y^{(2)} \]
Transformer for Encoder-Decoder

Residualized Connections

Stage 1
- Positional Encoding
- Input Embedding
- Inputs

Stage 2
- Add & Norm
- Multi-Head Attention
- Feed Forward
- \(N \times\)

Stage 3
- Add & Norm
- Feed Forward
- \(Y_0, Y_1, Y_2\)
- \(Y'_0, Y'_1, Y'_2\)

Embedding lookup

residuals enable positional information to be passed along

With residuals

Without residuals
Transformer for Encoder-Decoder
Transformer for Encoder-Decoder

essentially, a language model
Transformer for Encoder-Decoder

essentially, a language model

Decoder blocks out future inputs
Transformer for Encoder-Decoder

Add conditioning of the LM based on the encoder

essentially, a language model
Transformer for Encoder-Decoder
Transformer (as of 2017)

“WMT-2014” Data Set. BLEU scores:

<table>
<thead>
<tr>
<th></th>
<th>EN-DE</th>
<th>EN-FR</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNMT (orig)</td>
<td>24.6</td>
<td>39.9</td>
</tr>
<tr>
<td>ConvSeq2Seq</td>
<td>25.2</td>
<td>40.5</td>
</tr>
<tr>
<td>Transformer*</td>
<td>28.4</td>
<td>41.8</td>
</tr>
</tbody>
</table>
Transformer

- Utilize Self-Attention
- Simple att scoring function (dot product, scaled)
- Added linear layers for Q, K, and V
- Multi-head attention
- Added positional encoding
- Added residual connection
- Simulate decoding by masking
Transformer

Why?
- Don’t need complexity of LSTM/GRU cells
- Constant num edges between words (or input steps)
- Enables “interactions” (i.e. adaptations) between words
- Easy to parallelize -- don’t need sequential processing.

Drawbacks:
- Only unidirectional by default
- Only a “single-hop” relationship per layer (multiple layers to capture multiple)
Why?
● Don't need complexity of LSTM/GRU cells
● Constant num edges between words (or input steps)
● Enables "interactions" (i.e. adaptations) between words
● Easy to parallelize -- don't need sequential processing.

Drawbacks of Vanilla Transformers:
● Only unidirectional by default
● Only a “single-hop” relationship per layer
 (multiple layers to capture multiple)

BERT

Bidirectional Encoder Representations from Transformers

Produces contextualized embeddings
(or pre-trained contextualized encoder)
Why?

- Don’t need complexity of LSTM/GRU cells
- Constant number of edges between words (or input steps)
- Enables “interactions” (i.e., adaptations) between words
- Easy to parallelize — don’t need sequential processing.

Drawbacks of Vanilla Transformers:

- Only unidirectional by default
- Only a “single-hop” relationship per layer (multiple layers to capture multiple interactions)

BERT

Bidirectional Encoder Representations from Transformers

Produces contextualized embeddings
(or pre-trained contextualized encoder)

- Bidirectional context by “masking” in the middle
- A lot of layers, hidden states, attention heads.
BERT

Bidirectional Encoder Representations from Transformers

Produces contextualized embeddings
(or pre-trained contextualized encoder)

- Bidirectional context by “masking” in the middle
- A lot of layers, hidden states, attention heads.

She saw the man on the hill with the telescope.

She [mask] the man on the hill [mask] the telescope.
BERT

Bidirectional Encoder Representations from Transformers

Produces contextualized embeddings (or pre-trained contextualized encoder)

- Bidirectional context by “masking” in the middle
- A lot of layers, hidden states, attention heads.

She saw the man on the hill with the telescope.

She [mask] the man on the hill [mask] the telescope.

Mask 1 in 7 words:
- Too few: expensive, less robust
- Too many: not enough context
BERT

Bidirectional Encoder Representations from Transformers

Produces contextualized embeddings
(or pre-trained contextualized encoder)

- Bidirectional context by “masking” in the middle
- A lot of layers, hidden states, attention heads.

- BERT-Base, Cased:
 12-layer, 768-hidden, 12-heads, 110M parameters
BERT

Bidirectional Encoder Representations from Transformers

Produces contextualized embeddings
(or pre-trained contextualized encoder)

- Bidirectional context by “masking” in the middle
- **A lot of layers, hidden states, attention heads.**

- **BERT-Base, Cased:**
 12-layer, 768-hidden, 12-heads, 110M parameters
- **BERT-Large, Cased:**
 24-layer, 1024-hidden, 16-heads, 340M parameters
- **BERT-Base, Multilingual Cased:**
 104 languages, 12-layer, 768-hidden, 12-heads, 110M parameters
BERT

(Devlin et al., 2019)
Differences from previous state of the art:

- Bidirectional transformer (through masking)
- Directions jointly trained at once.

(Devlin et al., 2019)
Differences from previous state of the art:

- Bidirectional transformer (through masking)
- Directions jointly trained at once.
- Capture sentence-level relations

(Devlin et al., 2019)
BERT

Sentence A = The man went to the store.
Sentence B = He bought a gallon of milk.
Label = IsNextSentence

Sentence A = The man went to the store.
Sentence B = Penguins are flightless.
Label = NotNextSentence

Differences from previous state of the art:

- Bidirectional transformer (through masking)
- Directions jointly trained at once.
- Capture sentence-level relations

(Devlin et al., 2019)
BERT

Sentence A = The man went to the store.
Sentence B = He bought a gallon of milk.
Label = IsNextSentence

Sentence A = The man went to the store.
Sentence B = Penguins are flightless.
Label = NotNextSentence

(Devlin et al., 2019)
BERT

Sentence A = The man went to the store.
Sentence B = He bought a gallon of milk.
Label = IsNextSentence

Sentence A = The man went to the store.
Sentence B = Penguins are flightless.
Label = NotNextSentence

(Devlin et al., 2019)
BERT

Differences from previous state of the art:

- Bidirectional transformer (through masking)
- Directions jointly trained at once.
- Capture sentence-level relations
 (Devlin et al., 2019)

Tokenize into “word pieces”

(Devlin et al., 2019)
BERT Performance: e.g. Question Answering

GLUE scores evolution over 2018-2019

- Single generic models
- 2018 Task-specific-SOTA
- Human performance

- BILSTM+ELMo: 71
- GPT: 75.2
- BERT: 79.6
- BERT Big: 81.2
- BigBird: 82.2

https://rajpurkar.github.io/SQuAD-explorer/
Bert: Attention by Layers

https://colab.research.google.com/drive/1vI0J1hdujVjH857hyYKldKPTD9Kid8

(Vig, 2019)
BERT: Pre-training; Fine-tuning

Classification Layer: Fully-connected layer + GELU + Norm

Transformer encoder
12 or 24 layers
BERT: Pre-training; Fine-tuning

Transformer encoder
12 or 24 layers
BERT: Pre-training; Fine-tuning

Novel classifier
(e.g. sentiment classifier; stance detector...etc..)

Transformer encoder
12 or 24 layers
BERT: Pre-training; Fine-tuning

[CLS] vector at start is supposed to capture meaning of whole sequence.

Novel classifier (e.g. sentiment classifier; stance detector...etc..)
BERT: Pre-training; Fine-tuning

[CLS] vector at start is supposed to capture meaning of whole sequence.

Average of top layer (or second to top) also often used.

Novel classifier (e.g. sentiment classifier; stance detector...etc..)
Extra Material:
BERT for Machine Translation:

(Lample & Conneau, Facebook, 2019)
BERT for Machine Translation:

(Lample & Conneau, Facebook, 2019)
BERT for Machine Translation:

Use as a pre-trained model for feeding into a machine translation system.

(Lample & Conneau, Facebook, 2019)
BERT for Machine Translation:

Use as a pre-trained model for feeding into a machine translation system.

(Lample & Conneau, Facebook, 2019)

Table 3: **Results on supervised MT.** BLEU scores on WMT’16 Romanian-English. The previous state-of-the-art of Sennrich et al. (2016) uses both back-translation and an ensemble model. ro ↔ en corresponds to models trained on both directions.
Neural Machine Translation

Where does neural approach fall short? (Manning, 2018)

- Translation process is mostly a black box -- can’t answer “why” for reordering, word choice decisions
- No direct use of semantic or syntactic structures
- Not modeling discourse structure -- only rough sense of how sentences relate to each other. Doesn’t model long distance anaphora.