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Definition of Manifold

A manifold of dimension n is a connected Hausdorfff space M for which every point has
a neighbourhood U that is homeomorphic to an open subset V of Rn. Such a
hemeomorphism

φ : U → V

is called a coordinate chart. An atlas is a family of charts {Uα, φα} for which Uα

constitute an open covering of M .

Uα Uβ

R2

S

φα(Uα) φβ(Uβ)
φαβ

φα φβ

Figure 1: Manifold. chart, atlas.
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Differential Manifold

• Transition function: Suppose {Uα, φα} and {Uβ , φβ} are two charts on a manifold
S, Uα ∩ Uβ 6= , the chart transition is

φαβ : φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ)

• Differentiable Atlas: An atlas {Uα, φα} on a manifold is called differentiable if all
charts transitions are differentiable of class C∞.

• Differential Structure: A chart is called compatible with a differentiable atlas if
adding this chart to the atlas yields again a differentiable atlas. Taking all charts
compatible with a given differentiable atlas yieds a differentiable structure.

• differentiable manifold : A differentiable manifold of dimension n is a manifold of
dimension n together with a differentiable structure.
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Differential Map

• Differential Map:A continuous map h : M →M ′ between differential manifolds M
and M ′ with charts {Uα, φα} and {U ′

α, φ
′
α} is said to be differentiable if all the

maps φ′β ◦ hφ−1
α are differentiable of class C∞ wherever they are defined.

• Diffeomorphism: If h is a homeomorphism and if both h and h−1 are differentiable,
then h is called a diffeomorphism.
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Regular Surface Patch

Suppose D = {(u, v)} is a planar domain, a map r : D → R3,

r(u, v) = (x(u, v), y(u, v), z(u, v)),

satisfying

1. x(u, v), y(u, v), z(u, v) are differentiable of class C∞.

2. ru and rv are linearly independent, namely

ru = (
∂x

∂u
,
∂y

∂u
,
∂z

∂u
), rv = (

∂x

∂v
,
∂y

∂v
,
∂z

∂v
),
∂z

∂u
), ru × rv 6= 0,

is a surface patch in R3, (u, v) are the coordinates parameters of the surface r.
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Regular Surface Patch

ru
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v

Π

r(u, v)
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n

S

Figure 2: Surface patch.
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Different parameterizations

Surface r can have different parameterizations. Consider a surface

r(u, v) : D → R3,

and parametric transformation

σ : (ū, v̄) ∈ D̄ → (u, v) ∈ D,

namely σ : D̄ → D is bijective and the Jacobin

∂(u, v)

∂(ū, v̄)
=

����� ∂u(ū,v̄)
∂ū

∂v(ū,v̄)
∂ū

∂u(ū,v̄)
∂v̄

∂v(ū,v̄)
∂v̄

����� 6= 0.

then we have new parametric representation of the surface r,

r(ū, v̄) = r ◦ σ(ū, v̄) = r(u(ū, v̄), v(ū, v̄)) : D̄ → R3.
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First fundamental form

Given a surface S in R3, r = r(u, v) is its parametric representation, denote

E =< ru, ru >,F =< ru, rv >,G =< rv, rv >,

the quadratic differential form

I = ds2 = Edu · du+ 2Fdu · dv +Gdv · dv,

is called the first fundamental form of S.
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Invariant property of the first fundamental form

• The first fundamental form of a surface S is invariant under parametric
transformation,

Edu2 + 2Fdudv +Gdv2 = Ēdū2 + 2F̄ dūdv̄ + Ḡdv̄2.

• The first fundamental form of a surface S is invariant under the rigid motion of S.
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Second fundamental form

Suppose a surface S has parametric representation r = r(u, v), ru, rv are coordinate
tangent vectors of S, then the unit normal vector of S is

n =
ru × rv

|ru × rv|
,

the second fundamental form of S is defined as

II = − < dr, dn > .

Define functions

L = < ruu,n >= − < ru,nu >(1)

M = < ruv,n >= − < ru,nv >= − < rv ,nu >(2)

N = < rvv,n >= − < rv ,nu >(3)

then the second fundamental form is represented as

II = Ldu2 + 2Mdudv + 2Ndv2.
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normal curvature

Suppose w = ǫru + ηrv is a tangent vector at point S = r(u, v), a plane Π through
normal n and w, the planar curve Γ = S ∩ Π has curvature kn at point r(u, v), which is
called the normal curvature of S along the tangent vector w.

S

Π w

n

Γ

r(u, v)

Figure 3: normal curvature.
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Normal curvature

Suppose a surface S, a tangent vector w = ǫru + ηrv , the normal curvature along w is

kn(w) =
II(w,w)

I(w,w)
=
Lǫ2 + 2Mǫη +Nη2

Eǫ2 + 2Fǫη +Gη2

On convex surface patch, the normal curvature along any directions are positive. On
saddle surface patch, the normal curvatures may be positive and negative, or zero.

k1 > 0

k2 > 0

k2 > 0

k1 < 0

n

n

Figure 4: Convex surface patch and saddle sur-
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Gauss Map

Suppose S is a surface with parametric representation r(u, v), the normal vector at point
(u, v) is n(u, v), the mapping

g : S → S2, r(u, v) → n(u, v),

is called the Gauss map of S.

S
S2

g

n

n

Figure 5: Gauss map.
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Weingarten Transform

The differential map W of Gauss map g is called the Weingarten transform. W is a
linear map from the tangent space of S to the tangent space of S2,

W : TpS → TpS
2

v = λru + µrv → W(v) = −(λnu + µnv).

The properties of Weingarten transform

• Weingarten transform is independent of the choice of the parameters.

• Suppose v is a unit tangent vector of S, the normal curvature

kn(v) =< W(v),v > .

• Weingarten transform is a self-conjugate transform from the tangent plane to itself.

< W(v),w >=< v,W(w) > .
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Principle Curvature

The eigen values of Weingarten transformation are called principle curvatures. The
eigen directions are called principle directions, namely

W(e1) = k1e1,W(e2) = k2e2,

where e1 and e2 are unit vectors. Because Weingarten map is self conjugate, it is
symmetric. Therefore, the principle directions are orthogonal.
Suppose an arbitrary unit tangent vector v = cos θe1 + sin θe2, then the normal
curvature along v is

kn(v) =< W(v), v >= cos2 θk1 + sin2 θk2,

therefore, normal curvature reaches its maximum and minimum at the principle
curvatures.

nn

k1

k1

k2

k2
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Weingarten Transformation

Weingarten transformation coefficients matrix is 

L M

M N

! 

E F

F G

!−1

=
1

EG− F 2

 
LG−MF ME − LF

MG−NF NE −MF

!

Principle curvatures satisfy the quadratic equation

k2 − LG− 2MF +NE

EG− F 2
k +

LN −M2

EG− F 2
= 0.

Locally, a surface can be approximated by a quadratic surface8><>: x = u,

y = v,

z = 1
2
(k1u2 + k2v

2).
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Mean curvature and Gaussian curvature

The mean curvature is defined as

H =
1

2
(k1 + k2) =

1

2

LG− 2MF +NE

EG− F 2
,

the Gaussian curvature is defined as

K =
LN −M2

EG− F 2

Mean curvature is related the area variation of the surface.
Suppose D is a region on S including point P , g(D) is the image of D under Gauss map
g. The Gaussian curvature is the limit of the area ratio between D and g(D),

K(p) = lim
D→p

Area(g(D))

Area(D)
.
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Gauss Equation

The first fundamental form E,F,G and the second fundamental form are not
independent, they satisfy the following Gauss equation

− 1√
EG

{( (
√
E)v√
G

)v + (
(
√
G)u√
E

)u}

Codazzi equations are8<: ( L√
E

)v − ( M√
E

)u −N
(
√

E)v

G
−M

(
√

G)u√
EG

= 0

( N√
G

)u − ( M√
G

)v − L
(
√

G)u

E
−M

(
√

E)v√
EG

= 0

Discrete interpretation.
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Fundamental theorem in differential geometry

Suppose D is a planar domain, given functions E(u, v), F (u, v), G(u, v) and
L(u, v),M(u, v), N(u, v) satisfying the Gauss equation and Codazzi equations, then for
any (u, v) ∈ D, there exists a neighborhood U ⊂ D, and a surface R(u, v) : U → R3,
such that E,F,G and L,M,N are the first and the second fundamental forms of r.
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Fundamental Theorem

Suppose D = {(u1, u2} is a planar region, φ = gαβdu
αduβ and ψ = bαβdu

αduβ are
differential forms defined on D, (gαβ) and (bαβ) are symmetric, (gαβ is positive definite.

Denote (gαβ) = (gαβ)−1, bβα = gβγbγα, construct Christoffel symbols

Γγ
αβ

=
1

2
gγη{∂gαη

∂uβ
+
∂gβη

∂uα
− ∂gαβ

∂uη
}

Then consider the first order partial differential equation with r, r1, r2,n as unknowns,8><>: ∂r

∂uα = rα,
∂rα

∂uβ = Γγ
αβ

rγ + bαβn,
∂n

∂uβ = −bγ
β
rγ , α, β = 1, 2.

This partial differential equation is to solve the motion equations of the natural frame of
the surface. The sufficient and necessary conditions for the equation group to be
solvable (equivalent to Gauss Codazzi equations )are

∂

∂uβ ( ∂r

∂uα ) = ∂
∂uα ( ∂r

∂uβ ),
∂

∂uγ ( ∂rα

∂uβ ) = ∂

∂uβ ( ∂rα
∂uγ ),

∂

∂uβ ( ∂n

∂uα ) = ∂
∂uα ( ∂n

∂uβ )
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Isometry

• Isometry: Suppose S and S̃ are two surfaces in R3, σ is a bijection from S to S̃.
An arbitrary curve C on S is mapped to curve C̃ on S̃, C̃ = σ(C). If C and C̃ have
the same length, then σ is an isometry.

• Suppose the parametric representations of S and S̃ are r = r(u, v), (u, v) ∈ D

and r = r̃(ũ, ṽ), (ũ, ṽ) ∈ D̃, their first fundamental forms are

I(u, v) = Edu2 + 2Fdudv +Gdv2 and Ĩ(ũ, ṽ) = Ẽdũ2 + 2F̃ dũdṽ + G̃dṽ2.
Suppose the parametric representation of the isometry σ is(

ũ = ũ(u, v)

ũ = ũ(u, v)

then
ds2(u, v) = ds̃2(ũ, ṽ).

namely, 
E F

F G

!
= Jσ

 
Ẽ F̃

F̃ G̃

!

JT
σ , where Jσ =

 

∂ũ
∂u

∂ṽ
∂u

∂ũ
∂v

∂ṽ
∂v

!
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Tangent Map

Suppose v = aru + brv ∈ TpS is a tangent vector at point p on S, take a curve
γ(t) = r(u(t), v(t)) on S such that

γ(0) = p,
γ

dt
|t=0 = ru

du

dt
(0) + rv

dv

dt
(0) = aru + brv,

then γ̃(t) is a curve on S̃, γ̃(0) = σ(p), the tangent vector at t = 0 is

ṽ = dγ̃
dt

(0) = γ̃ũ
dũ
dt

(0) + γ̃ṽ
dṽ
dt

(0)

= γ̃ũ(a ∂ũ
∂u

+ b ∂ũ
∂v

)|t=0 + γ̃ṽ(a ∂ṽ
∂u

+ b ∂ṽ
∂v

)|t=0
.

Tangent vector tildev only depends on σ and v, and is independent of the choice of
curve γ.
This induces a map between the tangent spaces on S and S̃,

σ∗ : TpS → Tσ(p)S̃

v → ṽ = σ∗(v)

σ∗ is called the tangent map of σ.
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Tangent Map

Under natural frame, the tangent map is represented as 

σ∗(ru)

σ∗(rv)

!

=

 

∂ũ
∂u

∂ṽ
∂u

∂ũ
∂v

∂ṽ
∂v

! 

r̃ũ

r̃ṽ

!
= Jσ

 
r̃ũ

r̃ṽ

!
A bijection σ between surfaces S and S̃ is an isometry if and only if for any two tangent
vectors v,w,

< σ∗(v), σ∗(w) >=< v,w > .
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Conformal Map

A bijection σ : S → S̃ is a conformal map, if it preserves the angles between arbitrary
two intersecting curves.
The sufficient and necessary condition of σ to be conformal is there exists a positive
function λ, such that the first fundamental forms of S and S̃ satisfy

Ĩ = λ2 · I.
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Isothermal Coordinates

• (S S Chern): For an arbitrary point p on a surface S, there exists a neighborhood
Up, such that it can be conformally mapped to a planar region.

• Under conformal parameterization, the first fundamental form is represented as

I = λ2(u, v)(du2 + dv2), λ > 0,

then (u, v) is called the isothermal coordinates.
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using isothermal coordinates

Isothermal coordinates is useful to simplify computations.

• Gaussian curvature is

K = − 1

λ2
(
∂2

∂u2
+

∂2

∂v2
) lnλ

• Mean curvature

2Hn =
1

λ2
(
∂2

∂u2
+

∂2

∂v2
)r
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Complex Representation

For convenience, we introduce the complex coordinates z = u+ iv, let

∂

∂z
=

1

2
(
∂

∂u
− i

∂

∂v
),
∂

∂z̄
=

1

2
(
∂

∂u
+ i

∂

∂v
)

then

K = − 4

λ2

∂2

∂z∂z̄
lnλ.

David Gu, Computer Science Department, Stony Brook University, http://www.cs.sunysb.edu/˜gu – p. 27/97



Laplace Operator

The Laplace operator on surface

∆Sf =
1

λ2
(fuu + fvv).

The Green formula isZ Z

U

f∆SgdA+

Z Z
U

< ∇f,∇g > dA =

Z
C

f
∂g

∂v
,

where C is the boundary of U , ∂U = C, v is outward normal of U .
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λ,H representation

Suppose (u, v) is the isothermal coordinates, then

< rz , rz > = 1
4
< ru − irv , ru − irv >

=
(
<

ru, ru > − < rv , <r >v> −2i < ru, rv >)

because (u, v) is isothermal,

< ru, ru >=< rv , rv >,< ru, rv >= 0

we can get

< rz , rz >= 0, < rz̄ , rz̄ >= 0, < rz , rz̄ >=
λ2

2
, < n,n >= 1, < rz ,n >=< rz̄ ,n >= 0.

therefore

rzz̄ =
λ2

2
Hn.

Let Q =< rzz ,n >, then Q is a locally defined function on S.
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λ,H representation

Differentiate above equations, we get

< rz , rzz >=< rz , rzz̄ >= 0, < rzz , rz̄ >= λλz , < nz , rz >= − < rzz ,n >= Q,< nz , rz̄ =<

Therefore, the motion equation for the frame {rz , rz̄ ,n} is8><>: rzz = 2
λ
λzrz +Qn

rzz̄ = λ2

2
Hn

nz = −Hrz − 2λ−2Qrz̄

From rzz̄z = rzzz̄ , we get the Gauss-Codazzi equation in complex form

(lnλ)zz̄ =
|Q|2
λ2 − λ2

4
H2 (Gauss equation)

Qz̄ = λ2

2
Hz (Codazzi equation)
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λ,H representation

Given a planar domain D ⊂ R2, (u, v) are parameters, and 2 functions λ(u, v) and
H(u, v) satisfying Gauss-Codazzi equations, with appropriate boundary condition, then
there exists a unique surface S, such that, (u, v) is its isothermal parameter, H(u, v) is
its mean curvature function, and the surface first fundamental form is

ds2 = λ(u, v)2(du2 + dv2).

From Codazzi equation, Q can be reconstructed, then the motion equation of the natural
frame {rz , rz̄ ,n} can be solved out.
The quadratic differential form

Ψ = − < rz ,nz > dz2 = Qdz2

is called the Hopf differential. It has the following speical properties

• If all points on a surface S are umbilical points, then Hopf differential is zero.

• Surface S has constant mean curvature if and only if Hopf differential is
holomorphic quadratic differentials.
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Isothermal Coordinates

Figure 7: Isothermal coordinates on surfaces.
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Fundamental Group

Two continuous maps f1, f2 : S →M between manifolds S and M are homotopic, if
there exists a continuous map

F : S × [0, 1] →M

with

F |S×0 = f1,

F |S×1 = f2.

we write f1 ∼ f2.
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fundamental group

Let γi : [0, 1] → S, i = 1, 2 be curves with

γ1(0) = γ2(0) = p0

γ1(1) = γ2(1) = p1

we say γ1 and γ2 are homotopic, if there exists a continuous map

G : [0, 1] × [0, 1] → S,

such that

G|{0}×[0,1] = p0 G|{1}×[0,1] = p1,

G|[0,1]×{0} = γ1 G|[0,1]×{1} = γ2.

we write γ1 ∼ γ2.

γ
α

β

S

Figure 8: α is homotopic to β, not homotopic to γ.
David Gu, Computer Science Department, Stony Brook University, http://www.cs.sunysb.edu/˜gu – p. 34/97



fundamental group

Let γ1, γ2 : [0, 1] →M be curves with

γ1(1) = γ2(0),

the product of γ1γ2 := γ is defined by

γ(t) :=

(

γ1(2t) for t ∈ [0, 1
2
]

γ2(2t− 1) for t ∈ [ 1
2
, 1].

γ1 γ2

γ2γ1

p0

Figure 9: product of two closed curves.
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Fundamental Group

For any p0 ∈M , the fundamental group π1(M, _0) is the group of homotopy classes of
paths γ : [0, 1] →M with γ(0) = γ(1) = p0, i.e. closed paths with p0 as initial and
terminal point.
π1(M,p0) is a group with respect to the operation of multiplication of homotopy classes.
The identity element is the class of the constant path γ0 ≡ p0.
For any p0, p1 ∈M , the groups π1(M,p0) and π1(M,p1) are isomorphic.
If f : M → N be a continuous map, and q0 := f(p0), then f induces a homomorphism

f∗ : π1(M,p0) → π1(N, q0)

of fundamental groups.
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Canonical Fundamental Group Basis

For genus g closed surface, there exist canonical basis for π1(M,p0), we write the basis
as {a1, b1, a2, b2, · · · , ag, bg}, such that

ai · aj = 0, ai · bj = δ
j
i , bi · bj = 0,

where · represents the algebraic intersection number. Especially, through any point
p ∈M , we can find a set of canonical basis for π1(M), the surface can be sliced open
along them and form a canonical fundamental polygon

a1

a2

b1

b2 a1

a2

b1

b2

a−1
1

a−1
2

b−1
1

b−1
2

Figure 10: canonical basis of fundamental group
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Simplical Complex

Suppose k+ 1 points in the general positions in Rn, v0, v1, · · · , vk, the standard simplex
[v0, v1, · · · , vk] is the minimal convex set including all of them,

σ = [v0, v1, · · · , vk] = {x ∈ Rn|x =
kX

i=0

λivi,

kX
i=0

λi = 1, λi ≥ 0},

we call v0, v1, · · · , vk as the vertices of the simplex σ.
Suppose τ ⊂ σ is also a simplex, then we say τ is a facet of σ.
A simplicial complex K is a union of simplices, such that

1. If a simplex σ belongs to K, then all its facets also belongs to K.

2. If σ1, σ2 ⊂ K, σ1 ∩ σ2 6= , then the intersection of σ1 and σ2 is also a common
facet.

K

v0

v1 v2

v3
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Simplicial Homology

Associate a sequence of groups with a finite simplicial complex.
A k chain is a linear combination of all k simplicies in K,

σ =

X

i

λiσi, λi ∈ Z.

The n dimensional chain space is a linear space formed by all the n chains, we denote k
dimensional chain space as Cn(K)

The boundary operator defined on a simplex is

∂n[v0, v1, · · · , vn] =
nX

i=0

(−1)i[v0, · · · , vi−1, vi+1, · · · , vn],

The boundary operator acts on a chain is a linear operator

∂n : Cn → Cn−1, ∂n

X
i

λiσi =

X

i

λi∂nσi
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Simplicial Homology Group

A chain σ is called a closed chain, if it has no boundary, namely ∂σ = 0.
A chain σ is called a exact chain, if it is the boundary of some other chain, namely
σ = ∂τ .
It can be easily shown that all exact chains are closed. Namely

∂n−1 ◦ ∂n ≡ 0.

The topology of the surface is indicated by the differences between closed chains and
the exact chains. For example, on a genus zero surface, all closed chains are
boundaries (exact). But on a torus, there are some closed curves, which are not the
boundaries of any surface patch.

S2

T2

γ

α

β
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Simplicial Complex (Mesh)

Figure 13: Triangle mesh.

David Gu, Computer Science Department, Stony Brook University, http://www.cs.sunysb.edu/˜gu – p. 41/97



Simplicial Complex (Mesh)

Figure 14: Triangle mesh.
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Simplicial Homology

The n-th homology group Hk(M,Z) of a simplical complex K is

Hn(K,Z) =
ker∂n

img∂n+1
.

For example, two closed curves γ1, γ2 are homologous if and only if their difference is a
boundary of some 2dimensional patch, γ1 − γ2 = ∂1Σ,Σ ⊂ S.
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Simplicial Cohomology

A k cochain is a linear function
ω : Ck → Z.

The k cochain space Ck(M,Z) is linear space formed by all linear functionals defined
on Ck(M,Z). The k-cochain is also called k form.
The coboundary operator δk : Ck(M,Z) → Ck+1(M,Z) is a linear operator, such that

δkω := ω ◦ ∂k+1, ω ∈ Ck(M,Z).

For example, ω is a 1-form, then δ1ω is a 2-form, such that

δ1ω([v0, v1, v2]) = ω(∂2[v0, v1, v2])

= ω([v0, v1]) + ω([v1, v2]) + ω([v2, v0])
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Simplicial Cohomology Group

A k-form ω is called a closed k-form, if δω = 0. If there is a k − 1-form τ , such that
δk−1τ = ω, then ω is exact.
The set of all closed k-forms is the kernal of δk, denoted as kerδk; the set of all exact
k-forms is the image set of δk−1, denoted as imgδk−1.

The k-th cohomology group Hk(M,Z) is defined as the quotient group

Hk(M,Z) =
kerδk

imgδk−1
.
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Different one-forms

Suppose S is a surface with a differential structure {Uα, φα} with (uα, vα), then a real
different one-form ω has the parametric representation on local chart

ω = fα(uα, vα)duα + g(uα, vα)dvα,

where fα, gα are functions with C∞ continuity.
On different chart {Uβ , φβ},

ω = fβ(uβ , vβ)duβ + g(uβ , vβ)dvβ

then

(fα, gα)

0� ∂uα
∂uβ

∂uα
∂vβ

∂vα
∂uβ

∂vα
∂vβ

1A = (fβ , gβ)
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Exterior Differentiation

A special operator ∧ can be defined on differential forms, such that

f ∧ ω = fω

ω ∧ ω = 0

ω1 ∧ ω2 = −ω2 ∧ ω1

The so called exterior differentiation operator d can be defined on differential forms, such
that

df(u, v) = ∂f
∂u
du+ ∂f

∂v
dv

d(ω1 ∧ ω2) = dω1 ∧ ω2 + ω1 ∧ dω2

The exterior differential operator d is the generalization of curlex and divergence on
vector fields.
It can be verified that d ◦ d ≡ 0,e.g,

d ◦ df = d( ∂f
∂u
du+ ∂f

∂v
dv)

= ( ∂2f
∂v∂u

− ∂2f
∂u∂v

)dv ∧ du

David Gu, Computer Science Department, Stony Brook University, http://www.cs.sunysb.edu/˜gu – p. 47/97



de Rham Cohomology Group

• A closed 1-form ω satisfies
dω ≡ 0.

• An exact 1-form ω satisfies

ω = df, f : S → R.

• All exact 1-forms are closed.
• The first de Rham cohomology group is defined as the quotient group

H1(S,R) =
closed forms

exact forms
=
Ker d

Img d

• Two closed 1-forms ω1 and ω2 are cohomologous, if and only if the difference
between them is a gradient of some function f :

ω1 − ω2 = df.

• de Rham cohomology groups are isomorphic to simplicial cohomology groups.
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Pull back metric

Two surfaces M and N with Riemannian metrics, ds2M and ds2N . Suppose (u, v) is a
local parameter of M , (ũ, ṽ) of N . A map φ : M → N , represented as

(ũ, ṽ) = φ(u, v),

then the metrics on M and N are

ds2M = E(u, v)du2 + 2F (u, v)dudv +G(u, v)dv2,

ds2N = Ẽ(ũ, ṽ)dũ2 + 2F̃ (ũ, ṽ)dũdṽ +G(ũ, ṽ)dṽ2

The so called pull back metric on M induced by φ is denoted as φ∗ds2N 

dũ

dṽ

!
= φ∗

 
du

dv

!
=

 
∂ũ
∂u

∂ũ
∂v

∂ṽ
∂u

∂ṽ
∂v

! 

du

dv

!
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pull back metric

Then the parametric representation of pull back metric is

φ∗ds2N (u, v) = (du dv)(φ∗)T

 

Ẽ(φ(u, v)) F̃ (φ(u, v))

F̃ (φ(u, v)) G̃(φ(u, v))
!

φ∗
 

du

dv

!
.

Intuitively, a curve segment γ ⊂ M is mapped to a curve segment φ(γ) ⊂ N , the length
of γ on M is defined as the length of φ(γ) on N , this metric is the pull back metric.

PHI

M
N

γ
φ(γ)
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Conformal Map

Two surfaces M and N with Riemannian metrics, ds2M and ds2N . A map φ : M → N is

conformal, if the pull back metric φ∗ds2N satisfies

ds2M = λ2φ∗ds2N ,

where λ is a positive function λ : M → R+.
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Harmonic map

Suppose a smooth map f : M → N is a map, N is embedded in R3, then
f = (f1, f2, f3), the map is harmonic, if it minimizes the following harmonic energy

E(f) =

X

k

Z

M

< ∇fk,∇fk > dAM

David Gu, Computer Science Department, Stony Brook University, http://www.cs.sunysb.edu/˜gu – p. 52/97



Equivalence between harmonic maps and conformal maps,

g = 0

A map f : M → N , where M and N are genus zero closed surfaces, f is harmonic if
and only if f is conformal.
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Stereo graphic projection

The stereo graphic projection φ : S2 → R2 is a conformal map(

u = 2
1−z

x

v = 2
1−z

y

N

S

(x, y, z)

(u, v)
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Möbius Transformation Group

All the conformal map from sphere to sphere φ : S2 → S2 form a 6 dimensional Möbius
group. Suppose S2 is mapped to the complex plane using stereo-graphic projection.
Then each map can be represented as

φ(z) =
az + b

cz + d
, ad− bc = 1.0,

where a, b, c, d and z are complex numbers.
The conformal map from disk to disk form a 3 dimensional Möbius transformation group,

φ(z) =
az + b

cz + d
, ad− bc = 1.0,

where a, b, c, are real numbers.
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Conformal map of topological disk

Figure 15: Conformal Map.
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Mobius Transformation

Figure 16: Conformal Map.
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Mobius Transformation

Figure 17: Mobius Transformation.
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Analytic function

A function φ : C → C
f : (x, y) → (u, v)

is analytic, if it satisfies the Riemann-Cauchy equation

∂u
∂x

= ∂v
∂y

∂u
∂y

= − ∂v
∂x
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holomorphic differentials on the plane

Figure 18: w = z2.
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Conformal Atlas

A manifold M with an atlas A = {Uα, φα}, if all chart transition functions

φαβ = φβ ◦ φ−1
α : φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ)

are holomorphic, then A is a conformal atlas for M .
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Conformal Structure

A chart {Uα, φα} is compatible with an atlas A, if the union A∪ {Uα, φα} is still a
conformal atlas.
Two conformal atlas are compatible if their union is still a conformal atlas.
Each conformal compatible equivalent class is a conformal structure.
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Riemann surface

A surface S with a conformal structure A = {Uα, φα} is called a Riemann surface.
The definition domains of holomorphic functions and differential forms can be
generalized from the complex plane to Riemann surfaces directly.
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Harmonic Function

A function f : S → R is harmonic, if it minimizes the harmonic energy

E(f) =

Z

M

< ∇f,∇f > dA.
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Harmonic one-form

A differential one-form ω is harmonic, if and only if for each point p ∈M , there is a
neighborhood of p, Up, there is a harmonic function

f : Up → R,

such that
ω = ∇f

on Up.
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Hodge Theorem

There exists a unique harmonic one-form in each cohomology class in H1(S,R).

David Gu, Computer Science Department, Stony Brook University, http://www.cs.sunysb.edu/˜gu – p. 66/97



Holomorphic one-forms

A holomorphic one-form is a differential form ω, on each chart {Uα, φα} with complex
coordinates zα,

ω = fα(zα)dzα,

where fα is a holomorphic function. On a different chart {Uβ , φβ} with complex
coordinates zβ ,

ω = fβ(zβ)dzβ

= fβ(zβ(zα))
dzβ

dzα
dzα.

then fβ
dzβ

dzα
is still a holomorphic function.
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Holomorphic differentials on surface

Figure 19: Holomorphic 1-forms on surfaces.
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Holomorphic 1-form , Hodge Star Operator

Suppose ω is a holomorphic 1-form, then

ω = τ +
√
−1 ∗τ,

where τ is a real harmonic 1-form, τ = f(u, v)du+ g(u, v)dv, ∗τ is a harmonic 1-form
conjugate to τ ,

∗τ = −g(u, v)du+ f(u, v)dv

the operate ∗ is called the Hodge Star Operator. If we illustrate the operator intuitively
as follows:

OMEGATAU

N

S
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Zero Points

A holomorphic 1-form ω, on one local coordinates ω = f(zα)dzα on a surface, if at point
p ∈ S, f(p) = 0, then point p is called a zero point.

Figure 21: The zero point of a holomorphic 1-

form.
The definition of zero point doesn’t depend on the choice of the local coordinates.
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Holomorphic differentials

Figure 22: All holomorphic 1-forms on a Riemann
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Holomorphic quadratic differential forms

A holomorphic quadratic form is a differential form ω, on each chart {Uα, φα} with
complex coordinates zα,

ω = fα(zα)dz2α,

where fα is a holomorphic function. On a different chart {Uβ , φβ} with complex
coordinates zβ ,

ω = fβ(zβ)dzβ

= fβ(zβ(zα))(
dzβ

dzα
)2dz2α.

then fβ(
dzβ

dzα
)2 is still a holomorphic function.
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Holomorphic Trajectories

Suppose ω is a holomorphic 1-form on a Riemann surface S,

• A curve γ is called a horizontal trajectory, if along γ, ω2 > 0.

• A curve γ is called a vertical trajectory, if along γ, ω2 < 0.

• The trajectories through zero points are called critical trajectories.
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Trajectories

Figure 23: The red curves are the horizontal tra-

jectories, the blue curves are vertical trajectories.
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Finite Trajectories

A trajectory is finite, if its total length is finite. A finite trajectory is

• either a closed circle.
• finite curve segment connecting zero points.

• finite curve segment intersecting boundaries.

• finite curve segment connecting zero point and a boundary.
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Finite Curve System

If all the horizontal of a holomorphic quadratic form ω2 are finite, then they are called
finite curve system.
The horizontal trajectories through zero points, and the zero points form the so called
critical graph.
If the critical graph is finite, then the curve system is finite.

David Gu, Computer Science Department, Stony Brook University, http://www.cs.sunysb.edu/˜gu – p. 76/97



Holomorphic differentials on surface

Figure 24: Holomorphic 1-forms on surfaces.
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Decomposition Theorem

Suppose a Riemann surface S with a quadratic holomorphic form φdz2, which induces a
finite curve system, then the critical horizontal trajectories partition the surface to
topological disks and cylinders, each segment can be conformally mapped to a
parallelogram by integrating

w(p) =

Z p

p0

p
φdz.
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Decomposition

Figure 25: Critical graph of a finite curve sys-

tem will partition the surface to topological disks,

each segment is conformally mapped to a paral-

lelogram.
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Decomposition

Figure 26: Critical graph of a finite curve sys-

tem will partition the surface to topological disks,

each segment is conformally mapped to a paral-

lelogram.
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Decomposition

Figure 27: Critical graph of a finite curve sys-

tem will partition the surface to topological disks,

each segment is conformally mapped to a paral-

lelogram.
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Global structure of finite circle system

Different parallelograms are glued together along their edges, and different patches are
met at the zero points. The edges and zero points form the critical points.
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Global structure of finite circle system

Figure 28: Different parallelograms are glued to-
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Global structure of finite circle system

Figure 29: The ciritical graph partition the surface
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Global structure of finite circle system

Figure 30: The ciritical graph partition the surface

to 6 segments, each segment is conformally pa-

rameterized by a rectangle.
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Global structure of finite circle system

Figure 31: The ciritical graph partition the surface

to 6 segments, each segment is a cylinder.
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Global structure of finite circle system

Figure 32: The ciritical graph partition the surface

to 2 segments, each segment is a cylinder, and

can be conformally mapped to a rectangle.
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Applications
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Medical Imaging-Conformal Brain Mapping

Figure 33: Thanks Yalin wang
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Medical Imaging-Colon Flattening

Figure 34: Thanks Wei Hong, Miao Jin
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Manifold Spline

Figure 35: Thanks Ying
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Manifold Spline

Figure 36: Thanks Ying
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Manifold TSpline
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Surface Matching
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Surface Matching
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Texture Synthesis

Figure 39: Thanks Lujin Wang, Miao Jin
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Texture Synthesis

Figure 40: Thanks Lujin Wang, Miao Jin
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