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Manifold

Definition (Manifold)

M is a topological space, {Uα} α ∈ I is an open covering of M,
M ⊂∪αUα . For each Uα , φα : Uα → ℝ

n is a homeomorphism.
The pair (Uα ,φα) is a chart. Suppose Uα ∩Uβ ∕= /0, the
transition function φαβ : φα(Uα ∩Uβ )→ φβ (Uα ∩Uβ ) is smooth

φαβ = φβ ∘φ−1
α

then M is called a smooth manifold, {(Uα ,φα)} is called an
atlas.
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Manifold
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Holomorphic Function

Definition (Holomorphic Function)

Suppose f : ℂ→ ℂ is a complex function,
f : x + iy → u(x ,y)+ iv(x ,y), if f satisfies Riemann-Cauchy
equation

∂u
∂x

=
∂v
∂y

,
∂u
∂y

=−∂v
∂x

,

then f is a holomorphic function.

Denote
dz = dx + idy ,dz̄ = dx − idy ,

then the dual operators

∂
∂z

=
1
2
(

∂
∂x

− i
∂

∂y
),

∂
∂ z̄

=
1
2
(

∂
∂x

+ i
∂

∂y
)

then if ∂ f
∂ z̄ = 0, then f is holomorphic.
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biholomorphic Function

Definition (biholomorphic Function)

Suppose f : ℂ→ ℂ is invertible, both f and f−1 are holomorphic,
then then f is a biholomorphic function.

γ0

γ1

γ2

D0

D1
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Conformal Atlas

Definition (Conformal Atlas)

Suppose S is a topological surface, (2 dimensional manifold), A
is an atlas, such that all the chart transition functions
φαβ : ℂ→ ℂ are bi-holomorphic, then A is called a conformal
atlas.

Definition (Compatible Conformal Atlas)

Suppose S is a topological surface, (2 dimensional manifold),
A1 and A2 are two conformal atlases. If their union A1 ∪A2 is
still a conformal atlas, we say A1 and A2 are compatible.
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Conformal Structure

The compatible relation among conformal atlases is an
equivalence relation.

Definition (Conformal Structure)

Suppose S is a topological surface, consider all the conformal
atlases on M, classified by the compatible relation

{all conformal atlas}/∼

each equivalence class is called a conformal structure.

In other words, each maximal conformal atlas is a conformal
structure.
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Smooth map

Definition (Smooth map)

Suppose f : S1 → S2 is a map between two smooth manifolds.
For each point p, choose a chart of S1, (Uα ,φα), p ∈ Uα). The
image f (Uα)⊂ Vβ , (Vβ ,τβ ) is a chart of S2. The local
representation of f

τβ ∘ f ∘φ−1
α : φα(Uα)→ τβ (Vβ )

is smooth, then f is a smooth map.
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Map between Manifolds

f

z w
τβ ◦ f ◦ φ−1

α

Uα Vβ

φα τβ

S1 ⊂ {(Uα, φα)} S2 ⊂ {(Vβ , τβ)}
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Riemannian Metric

Definition (Riemannian Metric)

A Riemannian metric on a smooth manifold M is an assignment
of an inner product gp : TpM ×TpM → ℝ, ∀p ∈ M, such that

1 gp(a1X1 +a2X2,b1Y1 +b2Y2) = ∑2
i ,j=1 aibjgp(Xi ,Yj).

2 gp(X ,Y ) = gp(Y ,X )

3 gp is non-degenerate.
4 ∀p ∈ M, there exists local coordinates {x i}, such that

gij = gp(
∂

∂xi
, ∂

∂xj
) are C∞ functions.
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Pull back Riemannian Metric

Definition (Pull back Riemannian metric)

Suppose f : (M,g)→ (N,h) is a smooth mapping between two
Riemannian manifolds, ∀p ∈ M, f∗ : TpM → Tf (p)N is the tangent
map. The pull back metric f ∗h induced by the mapping f is
given by

f ∗h(X1,X2) := h(f∗X1, f∗X2),∀X1,X2 ∈ TpM.

Local representation of the pull back metric is given by

f ∗h =

(

∂u
∂x

∂v
∂x

∂u
∂y

∂v
∂y

)

(

h11 h12

h21 h22

)

(

∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
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Conformal Structure

Definition (Conformal equivalent metrics)

Suppose g1,g2 are two Riemannian metrics on a manifold M, if

g1 = e2ug2,u : M → ℝ

then g1 and g2 are conformal equivalent.

Definition (Conformal Structure)

Consider all Riemannian metrics on a topological surface S,
which are classified by the conformal equivalence relation,

{Riemannian metrics on S}/∼,

each equivalence class is called a conformal structure.
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Isothermal Coordinates

Relation between conformal structure and Riemannian metric

Isothermal Coordinates

A surface M with a
Riemannian metric g, a
local coordinate system
(u,v) is an isothermal
coordinate system, if

g = e2λ(u,v)(du2 +dv2).

David Gu Surface Geometry



Riemannian metric vs Conformal Structure

Definition (Isothermal coordinates)

Suppose (S,g) is a metric surface, (Uα ,φα) is a coordinate
chart, (x ,y) are local parameters, if

g = e2u(dx2 +dy2),

then we say (x ,y) are isothermal coordinates.

Theorem

Suppose S is a compact metric surface, for each point p, there
exits a local coordinate chart (U,φ), such that p ∈ U, and the
local coordinates are isothermal.
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Riemannian metric and Conformal Structure

Corollary

For any compact metric surface, there exists a natural
conformal structure.

Definition (Riemann surface)

A topological surface with a conformal structure is called a
Riemann surface.

Theorem

All compact metric surfaces are Riemann surfaces.
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Smooth Surface Ricci Flow
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Isothermal Coordinates

Relation between conformal structure and Riemannian metric

Isothermal Coordinates

A surface M with a
Riemannian metric g, a
local coordinate system
(u,v) is an isothermal
coordinate system, if

g = e2λ(u,v)(du2 +dv2).
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Gaussian Curvature

Gaussian Curvature

Suppose ḡ = e2λ g is a conformal metric on the surface, then
the Gaussian curvature on interior points are

K =−Δgλ =− 1
e2λ Δλ ,

where

Δ=
∂ 2

∂u2 +
∂ 2

∂v2
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Conformal Metric Deformation

Definition

Suppose M is a surface with a
Riemannian metric,

g =

(

g11 g12

g21 g22

)

Suppose λ : Σ→ ℝ is a
function defined on the surface,
then e2λ g is also a Riemannian
metric on Σ and called a
conformal metric. λ is called
the conformal factor.

g → e2λ g

Conformal metric deformation.

Angles are invariant measured
by conformal metrics.
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Curvature and Metric Relations

Yamabi Equation

Suppose ḡ = e2λ g is a conformal metric on the surface, then
the Gaussian curvature on interior points are

K̄ = e−2λ (K −Δgλ ),

geodesic curvature on the boundary

k̄g = e−λ (kg −∂g,nλ ).
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Uniformization

Theorem (Poincar é Uniformization Theorem)

Let (Σ,g) be a compact 2-dimensional Riemannian manifold.
Then there is a metric g̃ = e2λ g conformal to g which has
constant Gauss curvature.

David Gu Surface Geometry



Uniformization of Open Surfaces
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Surface Ricci Flow
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Surface Ricci Flow

Key Idea

K =−Δgλ ,

Roughly speaking,
dK
dt

=Δg
dλ
dt

Let dλ
dt =−K ,

dK
dt

=ΔgK +K 2

Heat equation!
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Surface Ricci Flow

Definition (Hamilton’s Surface Ricci Flow)

A closed surface S with a Riemannian metric g, the Ricci flow
on it is defined as

dgij

dt
=

(

4πχ(S)

A(0)
−2K

)

gij .

where χ(S) is the Euler characteristic number of S, A(0) is the
initial total area.

The ricci flow preserves the total area during the flow, converge
to a metric with constant Gaussian curvature 4πχ(S)

A(0) .
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Ricci Flow

Theorem (Hamilton 1982)

For a closed surface of non-positive Euler characteristic, if the
total area of the surface is preserved during the flow, the Ricci
flow will converge to a metric such that the Gaussian curvature
is constant (equals to K̄ ) every where.

Theorem (Bennett Chow)

For a closed surface of positive Euler characteristic, if the total
area of the surface is preserved during the flow, the Ricci flow
will converge to a metric such that the Gaussian curvature is
constant (equals to K̄ ) every where.
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Summary

Surface Ricci Flow

Conformal metric deformation

g → e2ug

Curvature Change - heat diffusion

dK
dt

=ΔgK +K 2

Ricci flow
du
dt

= K̄ −K .
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Discrete Surface
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Generic Surface Model - Triangular Mesh

Surfaces are represented as polyhedron triangular
meshes.

Isometric gluing of triangles in E
2.

Isometric gluing of triangles in ℍ
2,S2.
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Generic Surface Model - Triangular Mesh

Surfaces are represented as polyhedron triangular
meshes.

Isometric gluing of triangles in E
2.

Isometric gluing of triangles in ℍ
2,S2.
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Discrete Generalization

Concepts

1 Discrete Riemannian Metric
2 Discrete Curvature
3 Discrete Conformal Metric Deformation
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Discrete Metrics

Definition (Discrete Metric)

A Discrete Metric on a triangular mesh is a function defined on
the vertices, l : E = {all edges}→ ℝ

+, satisfies triangular
inequality.

A mesh has infinite metrics.
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Discrete Curvature

Definition (Discrete Curvature)

Discrete curvature: K : V = {vertices} → ℝ
1.

K (v) = 2π −∑
i

αi ,v ∕∈ ∂M;K (v) = π −∑
i

αi ,v ∈ ∂M

Theorem (Discrete Gauss-Bonnet theorem)

∑
v ∕∈∂M

K (v)+ ∑
v∈∂M

K (v) = 2πχ(M).

α1 α2
α3

v α1
α2

v

David Gu Surface Geometry



Discrete Metrics Determines the Curvatures

vi vj

vk

li
lj

lk

θi

θk

θj

vi vj

vk

vi vj

vk

lili

lk
lk

ljlj

θi θi

θk θk

θjθj

R2 H2
S2

cosine laws

cos li =
cosθi +cosθj cosθk

sinθj sinθk
(1)

cosh li =
coshθi +coshθj coshθk

sinhθj sinhθk
(2)

1 =
cosθi +cosθj cosθk

sinθj sinθk
(3)
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Derivative cosine law

vi vj

vk

li

lk

lj

�i

�k

�j

Lemma (Derivative Cosine Law)

Suppose corner angles are the
functions of edge lengths, then

∂θi

∂ li
=

li
A

∂θi

∂ lj
= −∂θi

∂ li
cosθk

where A = lj lk sinθi .
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Discrete Conformal Structure
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Discrete Conformal Metric Deformation

Conformal maps Properties

transform infinitesimal circles to infinitesimal circles.

preserve the intersection angles among circles.

Idea - Approximate conformal metric deformation

Replace infinitesimal circles by circles with finite radii.
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Discrete Conformal Metric Deformation vs CP

David Gu Surface Geometry



Discrete Conformal Metric Deformation vs CP
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Discrete Conformal Metric Deformation vs CP
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Thurston’s Circle Packing Metric

Thurston’s CP Metric

We associate each vertex vi

with a circle with radius γi . On
edge eij , the two circles
intersect at the angle of Φij .
The edge lengths are

l2ij = γ2
i + γ2

j +2γiγj cosΦij

CP Metric (T ,Γ,Φ), T
triangulation,

Γ = {γi ∣∀vi},Φ= {φij ∣∀eij}

γk

γj

γi vi

vj vk

φki

φij

φjk

ljk
lij

lki
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Discrete Conformal Equivalence Metrics

Definition

Conformal Equivalence Two CP metrics (T1,Γ1,Φ1) and
(T2,Γ2,Φ2) are conformal equivalent, if they satisfy the following
conditions

T1 = T2 and Φ1 =Φ2.
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Power Circle

Definition (Power Circle)

The unit circle orthogonal to
three circles at the vertices
(vi ,γi), (vj ,γj ) and (vk ,γk ) is
called the power circle. The
center is called the power
center. The distance from the
power center to three edges
are denoted as hi ,hj ,hk

respectively.

vi vj

vk

li

lk

lj

�i

�k

�j

�jk
�ki

�ij

o

ℎk

ℎi

ℎj
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Derivative cosine law

Theorem (Symmetry)

dθi

duj
=

dθj

dui
=

hk

lk
dθj

duk
=

dθk

duj
=

hi

li
dθk

dui
=

dθi

duk
=

hj

lj

Therefore the differential 1-form
ω = θidui +θjduj +θkduk is
closed.

vi vj

vk

li

lk

lj

�i

�k

�j

�jk
�ki

�ij

o

ℎk

ℎi

ℎj
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Discrete Ricci Energy

Definition (Discrete Ricci Energy)

The functional associated with a CP metric on a triangle is

E(u) =
∫ (ui ,uj ,uk )

(0,0,0)
θi(u)dui +θj(u)duj +θk (u)duk .

Geometrical interpretation: the volume of a truncated
hyperbolic hyper-ideal tetrahedron.

vi vj

vk

li

lk

lj

�i

�k

�j

�jk
�ki

�ij

o

ℎk

ℎi

ℎj
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Generalized Circle Packing/Pattern

Definition (Tangential Circle Packing)

l2ij = γ2
i + γ2

j +2γiγj .

vi vj

vk

wk

wi
wj

dij dji

djk

dkjdki

dik

o

hk

hi

hj

ri rj

rk

Ci Cj

Ck

C0
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Generalized Circle Packing/Pattern

Definition (Inversive Distance Circle Packing)

l2ij = γ2
i + γ2

j +2γiγjηij .

where ηij > 1.

vi vj

vk

Ci
Cj

Ck

C0

o

dij dji

lij

hk

wk

wi
wj

djk

dkj

dik

dki

hi

hj

θjθi

θk

τij τij

τjk

τjk

τik

τik
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Generalized Circle Packing/Pattern

Definition (Discrete Yamabe Flow)

l2ij = 2γiγjηij .

where ηij > 0.

vi vj

vk

C0

o

dij dji

dkj

djk

dki

dik

wk

wiwj

hk

hj hi

τkj

τkj

τijτij

τik

τik

θk

θi θj
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Voronoi Diagram

Definition (Voronoi Diagram)

Given p1, ⋅ ⋅ ⋅ ,pk in ℝ
n, the Voronoi cell

Wi at pi is

Wi = {x∣∣x −pi ∣2 ≤ ∣x −pj∣2,∀j}.

The dual triangulation to the Voronoi
diagram is called the Delaunay
triangulation.
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Power Distance

Power Distance

Given p i associated with
a sphere (p i , ri) the
power distance from
q ∈ ℝ

n to p i is

pow(p i ,q)= ∣p i −q∣2−r2
i .

pi
q

pow(pi, q) ri
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Power Diagram

Definition (Power Diagram)

Given p1, ⋅ ⋅ ⋅ ,pk in ℝ
n and sphere

radii γ1, ⋅ ⋅ ⋅ ,γk , the power Voronoi
cell Wi at pi is

Wi = {x∣Pow(x,pi)≤Pow(x,pj),∀j}.

The dual triangulation to Power
diagram is called the Power
Delaunay triangulation.
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Voronoi Diagram Delaunay Triangulation

Definition (Voronoi Diagram)

Let (S,V ) be a punctured surface,
V is the vertex set. d is a flat cone
metric, where the cone
singularities are at the vertices.
The Voronoi diagram is a cell
decomposition of the surface,
Voronoi cell Wi at vi is

Wi = {p ∈ S∣d(p,vi)≤ d(p,vj),∀j}.

The dual triangulation to the
voronoi diagram is called the
Delaunay triangulation.
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Power Voronoi Diagram Delaunay Triangulation

Definition (Power Diagram)

Let (S,V ) be a punctured surface,
with a generalized circle packing
metric. The Power diagram is a cell
decomposition of the surface, a Power
cell Wi at vi is

Wi = {p ∈S∣Pow(p,vi)≤Pow(p,vj),∀j}.

The dual triangulation to the power
diagram is called the power Delaunay
triangulation.
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Edge Weight

Definition (Edge Weight)

(S,V ,d), d a generalized CP metric. D the Power diagram, T
the Power Delaunay triangulation. ∀e ∈ D, the dual edge ē ∈ T ,
the weight

w(e) =
∣e∣
∣ē∣ .
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Discrete Surface Ricci Flow
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Discrete Conformal Factor

Conformal Factor

Defined on each vertex u : V → ℝ,

ui =

⎧

⎨

⎩

logγi ℝ
2

logtanh γi
2 ℍ

2

logtan γi
2 S

2

David Gu Surface Geometry



Discrete Surface Ricci Flow

Definition (Discrete Surface Ricci Flow with Surgery)

Suppose (S,V ,d) is a triangle mesh with a generalized CP
metric, the discrete surface Ricci flow is given by

dui

dt
= K̄i −Ki ,

where K̄i is the target curvature. Furthermore, during the flow,
the Triangulation preserves to be Power Delaunay.

Theorem (Exponential Convergence)

The flow converges to the target curvature Ki(∞) = K̄i .
Furthermore, there exists c1,c2 > 0, such that

∣Ki(t)−Ki(∞)∣< c1e−c2t , ∣ui(t)−ui(∞)∣< c1e−c2t ,
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Discrete Conformal Metric Deformation

Properties

Symmetry
∂Ki

∂uj
=

∂Kj

∂ui
=−wij

Discrete Laplace Equation

dKi = ∑
[vi ,vj ]∈E

wij(dui −duj)

namely
dK =Δdu,
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Discrete Laplace-Beltrami operator

Definition (Laplace-Beltrami operator)

Δ is the discrete Lapalce-Beltrami operator, Δ= (dij), where

dij =

⎧

⎨

⎩

∑k wik i = j
−wij i ∕= j , [vi ,vj ] ∈ E
0 otherwise

Lemma

Given (S,V ,d) with generalized CP metric, if T is the Power
Delaunay triangulation, then Δ is positive definite on the linear
space ∑i ui = 0.

Because Δ is diagonal dominant.
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Discrete Surface Ricci Energy

Definition (Discrete Surface Ricci Energy)

Suppose (S,V ,d) is a triangle mesh with a generalized CP
metric, the discrete surface energy is defined as

E(u) =
∫ u

0

k

∑
i=1

(K̄i −Ki)dui .

1 gradient ∇E = K̄−K,
2 Hessian

(

∂ 2E
∂ui∂uj

)

=Δ,

3 Ricci flow is the gradient flow of the Ricci energy,
4 Ricci energy is concave, the solution is the unique global

maximal point, which can be obtained by Newton’s method.
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One Example: Discrete Yamabe Flow
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Delaunay Triangulation

Definition (Delaunay Triangulation)

Each PL metric d on (S,V ) has a Delaunay triangulation T ,
such that for each edge e of T ,

a+a′ ≤ π,

a

a
′

e

It is the dual of Voronoi decomposition of (S,V ,d)

R(vi) = {x ∣d(x ,vj)≤ d(x ,vj) for all vj}
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Discrete Conformality

Definition (Conformal change)

Conformal factor u : V → ℝ. Discrete conformal change is
vertex scaling.

l1

l2
l3

u1

u2

u3

vertex scaling

e
u2l1e

u3

e
u3l2e

u1e
u1l3e

u2

proposed by physicists Rocek and Williams in 1984 in the
Lorenzian setting. Luo discovered a variational principle
associated to it in 2004.
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Discrete Yamabe Flow

Definition (Discrete Yamabe Flow)

du(vi)

dt
= K̄ (vi)−K (vi)

Theorem (Luo)

The discrete Yamabe flow converge exponentially fast,
∃c1,c2 > 0, such that

∣ui(t)−ui(∞)∣< c1e−c2t , ∣Ki(t)−Ki(∞)∣< c1e−c2t ,
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Discrete Conformality

Definition (Discrete Conformal Equivalence)

PL metrics d ,d ′ on (S,V ) are discrete conformal,

d ∼ d ′

if there is a sequence d = d1,d2, ⋅ ⋅ ⋅ ,dk = d ′ and T1,T2, ⋅ ⋅ ⋅ ,Tk

on (S,V ), such that
1 Ti is Delaunay in di

2 if Ti ∕= Ti+1, then (S,di)∼= (S,di+1) by an isometry
homotopic to id

3 if Ti = Ti+1, ∃u : V → ℝ, such that ∀ edge e = [vi ,vj ],

ldi+1
(e) = eu(vi )ldi

eu(vj )
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Discrete Conformality

Discrete conformal metrics

a
b

c
v

v

ka
kb

kc
w

kc

y

x

mkc

my

mx w

diagonal switchvertex scale vertex scale
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Main Theorem

Theorem (Gu-Luo-Sun-Wu (2013))

∀ PL metrics d on closed (S,V ) and ∀K̄ : V → (−∞,2π), such
that ∑ K̄ (v) = 2πχ(S), ∃ a PL metric d̄ , unique up to scaling on
(S,V ), such that

1 d̄ is discrete conformal to d
2 The discrete curvature of d̄ is K̄ .

Furthermore, d̄ can be found from d from a discrete curvature
flow.

Remark

K̄ = 2πχ(S)
∣V ∣ , discrete uniformization.
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Main Theorem

1 The uniqueness of the solution is
obtained by the convexity of
discrete surface Ricci energy and
the convexity of the admissible
conformal factor space (u-space).

2 The existence is given by the
equivalence between PL metrics
on (S,V ) and the decorated
hyperbolic metrics on (S,V ) and
the Ptolemy identity.

X. Gu, F. Luo, J. Sun, T.
Wu, ”A discrete
uniformization theorem
for polyhedral surfaces”,
arXiv:1309.4175.
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Algorithm

Input: a closed triangle mesh M, target curvature K̄ , step length
δ , threshold ε
Output:a PL metric conformal to the original metric, realizing K̄ .

1 Initialize ui = 0, ∀vi ∈ V .
2 compute edge length, corner angle, discrete curvature Ki

3 update to Delaunay triangulation by edge swap
4 compute edge weight wij .
5 u+= δΔ−1(K̄ −K)

6 normalize u such that the mean of ui ’s is 0.
7 repeat step 2 through 6, until the max ∣K̄i −Ki ∣< ε .
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Genus One Example
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Hyperbolic Discrete Surface Yamabe Flow

Discrete conformal metric deformation:

l1

l2
l3

u1

u2

u3

y1

y2y3

θ1

θ2

θ3

conformal factor
yk
2 = eui lk

2 euj ℝ
2

sinh yk
2 = eui sinh lk

2 euj ℍ
2

sin yk
2 = eui sin lk

2 euj S
2

Properties: ∂Ki
∂uj

=
∂Kj
∂ui

and dK =Δdu.
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Hyperbolic Discrete Surface Yamabe Flow

Unified framework for both Discrete Ricci flow and Yamabe flow

Curvature flow
du
dt

= K̄ −K ,

Energy

E(u) =
∫

∑
i

(K̄i −Ki)dui ,

Hessian of E denoted as Δ,

dK =Δdu.
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Genus Two Example
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Genus Three Example
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Computational Algorithms
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Topological Quadrilateral
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Topological Quadrilateral

p1 p2

p3p4

Figure: Topological quadrilateral.
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Topological Quadrilateral

Definition (Topological Quadrilateral)

Suppose S is a surface of genus zero with a single boundary,
and four marked boundary points {p1,p2,p3,p4} sorted
counter-clock-wisely. Then S is called a topological
quadrilateral, and denoted as Q(p1,p2,p3,p4).

Theorem

Suppose Q(p1,p2,p3,p4) is a topological quadrilateral with a
Riemannian metric g, then there exists a unique conformal map
φ : S → ℂ, such that φ maps Q to a rectangle, φ(p1) = 0,
φ(p2) = 1. The height of the image rectangle is the conformal
module of the surface.
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Algorithm: Topological Quadrilateral

Input: A topological quadrilateral M
Output: Conformal mapping from M to a planar rectangle
φ : M → D

1 Set the target curvatures at corners {p0,p1,p2,p3} to be π
2 ,

2 Set the target curvatures to be 0 everywhere else,
3 Run ricci flow to get the target conformal metric ū,
4 Isometrically embed the surface using the target metric.
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Topological Annulus
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Topological Annulus

Figure: Topological annulus.
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Topological Annulus

Definition (Topological Annulus)

Suppose S is a surface of genus zero with two boundaries, the
S is called a topological annulus.

Theorem

Suppose S is a topological annulus with a Riemannian metric
g, the boundary of S are two loops ∂S = γ1 − γ2, then there
exists a conformal mapping φ : S → ℂ, which maps S to the
canonical annulus, φ(γ1) is the unit circle, φ(γ2) is another
concentric circle with radius γ . Then − logγ is the conformal
module of S. The mapping φ is unique up to a planar rotation.
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Algorithm: Topological Annulus

Input: A topological annulus M, ∂M = γ0 − γ1

Output: a conformal mapping from the surface to a planar
annulus φ : M → A

1 Set the target curvature to be 0 every where,
2 Run Ricci flow to get the target metric,
3 Find the shortest path γ2 connecting γ0 and γ1, slice M

along γ2 to obtain M̄,
4 Isometrically embed M̄ to the plane, further transform it to

a flat annulus

{z∣r ≤ Re(z)≤ 0}/{z → z +2k
√
−1π}

by planar translation and scaling,
5 Compute the exponential map z → exp(z), maps the flat

annulus to a canonical annulus.
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Riemann Mapping
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Conformal Module

Simply Connected Domains
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Topological Disk

Definition (Topological Disk)

Suppose S is a surface of genus zero with one boundary, the S
is called a topological disk.

Theorem

Suppose S is a topological disk with a Riemannian metric g,
then there exists a conformal mapping φ : S → ℂ, which maps
S to the canonical disk. The mapping φ is unique up to a
Möbius transformation,

z → eiθ z −z0

1− z̄0z
.
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Algorithm: Topological Disk

Input: A topological disk M, an interior point p ∈ M
Output: Riemann mapping φ : M → mathbbD, maps M to the
unit disk and p to the origin

1 Punch a small hole at p in the mesh M,
2 Use the algorithm for topological annulus to compute the

conformal mapping.
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Multiply connected domains
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Multiply-Connected Annulus

Definition (Multiply-Connected Annulus)

Suppose S is a surface of genus zero with multiple boundaries,
then S is called a multiply connected annulus.

Theorem

Suppose S is a multiply connected annulus with a Riemannian
metric g, then there exists a conformal mapping φ : S → ℂ,
which maps S to the unit disk with circular holes. The radii and
the centers of the inner circles are the conformal module of S.
Such kind of conformal mapping are unique up to Möbius
transformations.

David Gu Surface Geometry



Algorithm: Multiply-Connected Annulus

Input: A multiply-connected annulus M,

∂M = γ0 − γ1, ⋅ ⋅ ⋅ ,γn.

Output: a conformal mapping φ : M → A, A is a circle domain.
1 Fill all the interior holes γ1 to γn

2 Punch a hole at γk , 1 ≤ k ≤ n
3 Conformally map the annulus to a planar canonical

annulus
4 Fill the inner circular hole of the canonical annulus
5 Repeat step 2 through 4, each round choose different

interior boundary γk . The holes become rounder and
rounder, and converge to canonical circles.
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Koebe’s Iteration - I

Figure: Koebe’s iteration for computing conformal maps for multiply
connected domains.
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Koebe’s Iteration - II

Figure: Koebe’s iteration for computing conformal maps for multiply
connected domains.
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Koebe’s Iteration - III

Figure: Koebe’s iteration for computing conformal maps for multiply
connected domains.
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Convergence Analysis

Theorem (Gu and Luo 2009)

Suppose genus zero surface has n boundaries, then there
exists constants C1 > 0 and 0 < C2 < 1, for step k, for all z ∈ ℂ,

∣fk ∘ f−1(z)−z∣ < C1C
2[ k

n ]

2 ,

where f is the desired conformal mapping.

W. Zeng, X. Yin, M. Zhang, F. Luo and X. Gu, ”Generalized
Koebe’s method for conformal mapping multiply connected
domains”, Proceeding SPM’09 SIAM/ACM Joint Conference on
Geometric and Physical Modeling, Pages 89-100.
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Topological Torus
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Topological torus

Figure: Genus one closed surface.
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Algorithm: Topological Torus

Input: A topological torus M
Output: A conformal mapping which maps M to a flat torus
ℂ/{m+nα ∣m,nℤ}

1 Compute a basis for the fundamental group π1(M), {γ1,γ2}.
2 Slice the surface along γ1,γ2 to get a fundamental domain

M̄,
3 Set the target curvature to be 0 everywhere
4 Run Ricci flow to get the flat metric
5 Isometrically embed S̃ to the plane
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Hyperbolic Ricci Flow

Computational results for genus 2 and genus 3 surfaces.
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Hyperbolic Koebe’s Iteration

M. Zhang, Y. Li, W. Zeng and X. Gu. ”Canonical conformal
mapping for high genus surfaces with boundaries”, Computer
and Graphics, Vol 36, Issue 5, Pages 417-426, August 2012.
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