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Manifold

Definition (Manifold)

M is a topological space, {Uy} a €1 is an open covering of M,
M C UqUgq. For each Uy, @ : Ug — R" is a homeomorphism.
The pair (Uq, @) is a chart. Suppose Uy NUg # 0, the
transition function @, : ¢ (Ua NUp) — @s(Ua NUg) is smooth

Pop = Po @

then M is called a smooth manifold, {(Uq, @)} is called an
atlas.
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Manifold

¢s (Up)
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Holomorphic Function

Definition (Holomorphic Function)

Suppose f : C — C is a complex function,

f:x+iy = u(x,y)+iv(x,y), if f satisfies Riemann-Cauchy
equation

du_ovou v
ox ady'dy  ox’
then f is a holomorphic function.

Denote
dz =dx +idy,dz = dx —idy,

then the dual operators
9 10 0,0 10 0
0z 2'0x 0y’’0z 2'9x dy

then if 9L =0, then f is holomorphic.
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biholomorphic Function

Definition (biholomorphic Function)

Suppose f : C — C is invertible, both f and f~* are holomorphic,
then then f is a biholomorphic function.
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Conformal Atlas

Definition (Conformal Atlas)

Suppose S is a topological surface, (2 dimensional manifold), A
is an atlas, such that all the chart transition functions

@qp : C — C are bi-holomorphic, then A is called a conformal
atlas.

Definition (Compatible Conformal Atlas)

Suppose S is a topological surface, (2 dimensional manifold),
20, and A, are two conformal atlases. If their union A; UA; is
still a conformal atlas, we say 2(; and 2(, are compatible.
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Conformal Structure

The compatible relation among conformal atlases is an
equivalence relation.

Definition (Conformal Structure)

Suppose S is a topological surface, consider all the conformal
atlases on M, classified by the compatible relation

{all conformal atlas}/ ~

each equivalence class is called a conformal structure.

In other words, each maximal conformal atlas is a conformal
structure.
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Smooth map

Definition (Smooth map)

Suppose f : S; — S, is a map between two smooth manifolds.
For each point p, choose a chart of S, (Ug, @), p € Ug). The
image f(Uq) C Vg, (Vg,Tg) is a chart of S;. The local
representation of f

Tgofogy: gu(Ug) — 15(Vp)

is smooth, then f is a smooth map.
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Map between Manifolds

S1 C {(Ua7¢a)} Sz C {(V57Tﬁ)}

S 3
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NENERE RV =

Definition (Riemannian Metric)

A Riemannian metric on a smooth manifold M is an assignment
of an inner product gp : ToM x T,M — R, Vp € M, such that

0 gp(alxl +axXz, b1Y1+ szz) = Ziz,jzl aj bjgp(Xi,Yj).
g gp(X,Y) = gp(Yax)
© gp is non-degenerate.

Q VpeM, there exists local coordinates {x'}, such that
gij gp([,X % 9.) are C* functions.
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Pull back Riemannian Metric

Definition (Pull back Riemannian metric)

Suppose f : (M,g) — (N, h) is a smooth mapping between two
Riemannian manifolds, vp € M, f, : ToM — Tt (N is the tangent
map. The pull back metric f*h induced by the mapping f is
given by

f*h(Xl,Xz) = h(f*xl,f*XZ),Vxl,Xz € TpM.

Local representation of the pull back metric is given by

ou  ov h h du du

f * h _ X Pl 11 12 X ay
— | du ov h h v av

dy dy 21 22 ox oy

<X
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Conformal Structure
Definition (Conformal equivalent metrics)

Suppose g1,0, are two Riemannian metrics on a manifold M, if

g1 =e?g,,u:M - R

then g, and g, are conformal equivalent.

Definition (Conformal Structure)

Consider all Riemannian metrics on a topological surface S,
which are classified by the conformal equivalence relation,

{Riemannian metrics on S}/ ~,

each equivalence class is called a conformal structure.
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Isothermal Coordinates

Relation between conformal structure and Riemannian metric

Isothermal Coordinates

A surface M with a ]
Riemannian metric g, a

local coordinate system &‘E:l‘
(u,v) is an isothermal 3
coordinate system, if 88

g = e UV)(du? +dv?).
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Riemannian metric vs Conformal Structure

Definition (Isothermal coordinates)

Suppose (S,Qg) is a metric surface, (Uq, @) is a coordinate
chart, (x,y) are local parameters, if

g = e?(dx? +dy?),
then we say (x,y) are isothermal coordinates.

Suppose S is a compact metric surface, for each point p, there
exits a local coordinate chart (U, @), such that p € U, and the
local coordinates are isothermal.
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Riemannian metric and Conformal Structure

Corollary

For any compact metric surface, there exists a natural
conformal structure.

Definition (Riemann surface)

| A\

A topological surface with a conformal structure is called a
Riemann surface.

All compact metric surfaces are Riemann surfaces.
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Smooth Surface Ricci Flow )
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Isothermal Coordinates

Relation between conformal structure and Riemannian metric

Isothermal Coordinates

A surface M with a ]
Riemannian metric g, a

local coordinate system &‘E:l‘
(u,v) is an isothermal 3
coordinate system, if 88

g = e UV)(du? +dv?).
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Gaussian Curvature

Gaussian Curvature

Suppose § = e? g is a conformal metric on the surface, then
the Gaussian curvature on interior points are
K=-AgA = = AA
= —Agh = ——7 A,
where
0? 0?
~ 9 gv2
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Conformal Metric Deformation

Suppose M is a surface with a
Riemannian metric,

9= ( 011 Q12 >
021 022
Suppose A : ¥ —+Risa
function defined on the surface,
then e?! g is also a Riemannian

metric on X~ and called a

conformal metric. A is called
the conformal factor. Angles are invariant measured
by conformal metrics.

g —e?g

Conformal metric deformation.
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Curvature and Metric Relations

Yamabi Equation

Suppose § = e?' g is a conformal metric on the surface, then
the Gaussian curvature on interior points are

K=e2"(K—AgA),

geodesic curvature on the boundary
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Uniformization

Theorem (Poincar &€ Uniformization Theorem)

Let (X,g) be a compact 2-dimensional Riemannian manifold.
Then there is a metric § = e?*g conformal to g which has
constant Gauss curvature.
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Uniformization of Open Surfaces
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Surface Ricci Flow

Key Idea
K == —Ag)\,
Roughly speaking,
dK _, dA
dt ~ ~9dt
dA
— = AgK +K?
dt g%+
Heat equation!
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Surface Ricci Flow

Definition (Hamilton’s Surface Ricci Flow)
A closed surface S with a Riemannian metric g, the Ricci flow

on it is defined as

dgi 4mx(S)
a = (Ao 2o

where x(S) is the Euler characteristic number of S, A(0) is the
initial total area.

The ricci flow preserves the total area during the flow, converge

to a metric with constant Gaussian curvature 42)((((,?).
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Theorem (Hamilton 1982)

For a closed surface of non-positive Euler characteristic, if the
total area of the surface is preserved during the flow, the Ricci
flow will converge to a metric such that the Gaussian curvature
is constant (equals to K) every where.

Theorem (Bennett Chow)

For a closed surface of positive Euler characteristic, if the total
area of the surface is preserved during the flow, the Ricci flow
will converge to a metric such that the Gaussian curvature is
constant (equals to K) every where.
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Summary

Surface Ricci Flow

@ Conformal metric deformation

g —e?g

@ Curvature Change - heat diffusion

dK
— = AqK +K?
dt gt
@ Ricci flow q
u -
— =K —K.
dt
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Discrete Surface )
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Generic Surface Model - Triangular Mesh

@ Surfaces are represented as polyhedron triangular
meshes.
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Generic Surface Model - Triangular Mesh

@ Surfaces are represented as polyhedron triangular
meshes.

@ Isometric gluing of triangles in E2.
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Generic Surface Model - Triangular Mesh

@ Surfaces are represented as polyhedron triangular
meshes.

@ Isometric gluing of triangles in E2.
@ Isometric gluing of triangles in H?,S?.
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Discrete Generalization

© Discrete Riemannian Metric

@ Discrete Curvature
© Discrete Conformal Metric Deformation
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Discrete Metrics

Definition (Discrete Metric)

A Discrete Metric on a triangular mesh is a function defined on
the vertices, | : E = {all edges} — R, satisfies triangular
inequality.

A mesh has infinite metrics.
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Discrete Curvature

Definition (Discrete Curvature)

Discrete curvature: K : V = {vertices} — R%.

K(v):ZH—Zai,v ZOM;K(v) = n—Zai,v € oM

Theorem (Discrete Gauss-Bonnet theorem)

z K(v)+ Z K(v)=2mx(M).

VoM veoM
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Discrete Metrics Determines the Curvatures

cosine laws
cos 6 + cos @ cos 6,
| = i
cosf sin 6 sin 6 @)
_ cosh 6 +cosh 6 cosh 6
coshly = sinh § sinh 6 @)
cos 6 + cos @ cos
1 = | Feos§cosb (3)
sin g sin 6
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Derivative cosine law

Lemma (Derivative Cosine Law)

Suppose corner angles are the
functions of edge lengths, then

o6 _ k
a, A
L
o, — g, oo

where A = ;I sin 6.
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Discrete Conformal Structure )
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Discrete Conformal Metric Deformation

Conformal maps Properties

@ transform infinitesimal circles to infinitesimal circles.
@ preserve the intersection angles among circles.

Idea - Approximate conformal metric deformation
Replace infinitesimal circles by circles with finite radii.
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Discrete Conformal Metric Deformation vs CP
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Thurston’s Circle Packing Metric

Thurston’s CP Metric

We associate each vertex v;
with a circle with radius . On
edge ej;, the two circles
intersect at the angle of ;.
The edge lengths are

Iij2 = V,Z—FVJZ—FZMMCOSQDH

CP Metric (T,I,®), T
triangulation,

M= {xWi},® = {gve;}

> B,
“/“/'%‘5“9»’ -‘ % ﬁ‘
\wz"“"-"v

TN

LY,
‘!,l)
%

W
s
Si

3%

\
L _

pegliaNy
LN
&

%

9
&
S
i
e

Y,

Ve
“-I
Ao
S
Qﬁn
£

%
o
|
SV
Xy
A
VS
Nl

)
%

i
D
e
e
N\
da;
Y
s

1
1

W

X
il

I
‘D

Y
e

RN T
Viaw

7

7\
5]
LA
S
2
1

David Gu

Surface Geometry



Discrete Conformal Equivalence Metrics

Definition

Conformal Equivalence Two CP metrics (T1,l1,$1) and

(T2,I2, ) are conformal equivalent, if they satisfy the following
conditions

Tl = T2 and Cbl = q)z.
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Power Circle

Definition (Power Circle)

The unit circle orthogonal to
three circles at the vertices
(Vi, %), (v, %) and (vic, k) is
called the power circle. The
center is called the power
center. The distance from the
power center to three edges
are denoted as h;, h;, hy
respectively.
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Derivative cosine law

Theorem (Symmetry)

d6  dg hy
duf — du I
dg  d6& h
o " oy
de. de,_h,-
W @

Therefore the differential 1-form
w = 6,du; + GJde + B duy is
closed.
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Discrete Ricci Energy

Definition (Discrete Ricci Energy)

The functional associated with a CP metric on a triangle is

(i, uj,uk)
E(u) :/(000) 6 (u)du; + 8 (u)du; + B (u)duy.

Geometrical interpretation: the volume of a truncated
hyperbolic hyper-ideal tetrahedron.
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Generalized Circle Packing/Pattern

Definition (Tangential Circle Packing)

¥ = V2 + ¥+ 2yy.
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Generalized Circle Packing/Pattern

Definition (Inversive Distance Circle Packing)

IF = V2 + % + 2y
where n;; > 1.
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Generalized Circle Packing/Pattern

Definition (Discrete Yamabe Flow)

Iij2 = ZMyjr)”
where nj > 0.
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Voronoi Diagram

Definition (Voronoi Diagram)

Given pq,---,pk in R", the Voronoi cell
W; at p; is

Wi = {x|)x —pi|* < [x — p;|?, ¥ }.

The dual triangulation to the Voronoi
diagram is called the Delaunay
triangulation.
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Power Distance

Power Distance

Given p; associated with
a sphere (pj,r;) the
power distance from

g €R"topjis

pow (pi,a) = [pi —q|* 1. |
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Definition (Power Diagram)

Given pq,---,px in R" and sphere
radii y4,--- , i, the power Voronoi
cell W; at p; is

Wi - {X|P0W(Xapi) < POW(Xap])vvj}

AR
Bydb SARv
The dual triangulation to Power U= Sl 756
diagram is called the Power

Delaunay triangulation.
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Voronoi Diagram Delaunay Triangulation

Definition (Voronoi Diagram)

Let (S,V) be a punctured surface,
V is the vertex set. d is a flat cone
metric, where the cone
singularities are at the vertices.
The Voronoi diagram is a cell
decomposition of the surface,
Voronoi cell W, at v; is

Wi ={peSidpw) <d(p.vi). ¥}

The dual triangulation to the
voronoi diagram is called the
Delaunay triangulation.
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Power Voronoi Diagram Delaunay Triangulation

Definition (Power Diagram)

Let (S,V) be a punctured surface,
with a generalized circle packing
metric. The Power diagram is a cell
decomposition of the surface, a Power
cell W; atv; is

Wi = {p € S‘POW(p,Vi) < POW(p,Vj),Vj .

The dual triangulation to the power
diagram is called the power Delaunay
triangulation.

David Gu Surface Geometry



Edge Weight

Definition (Edge Weight)

(S,V.d), d a generalized CP metric. D the Power diagram, T
the Power Delaunay triangulation. Ve € D, the dualedge e € T,
the weight




Discrete Surface Ricci Flow ]
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Discrete Conformal Factor

Conformal Factor
Defined on each vertex u : V — R,

logy, R2
ui=< logtanh¥  H?2

logtan 4 S?
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Discrete Surface Ricci Flow

Definition (Discrete Surface Ricci Flow with Surgery)

Suppose (S,V,d) is a triangle mesh with a generalized CP
metric, the discrete surface Ricci flow is given by

where Ki is the target curvature. Furthermore, during the flow,
the Triangulation preserves to be Power Delaunay.

Theorem (Exponential Convergence)

The flow converges to the target curvature K; () = K;.
Furthermore, there exists ¢;,c, > 0, such that

[Ki(t) — Ki ()| < cre™", |ui(t) —uj()| < c1e~",

-
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Discrete Conformal Metric Deformation

@ Symmetry

oK; 0K "
0Uj B au; B IJ
@ Discrete Laplace Equation
dKi = Z Wij(dui *de)

[vi,vi]€eE

namely

dK = Adu,
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Discrete Laplace-Beltrami operator
Definition (Laplace-Beltrami operator)

A is the discrete Lapalce-Beltrami operator, A = (dj;), where

>k Wik l Zj
dj=< —w; i#j,[vi,v]€E
0 otherwise

Lemma

Given (S,V,d) with generalized CP metric, if T is the Power
Delaunay triangulation, then A is positive definite on the linear
space y;u; =0.

Because A is diagonal dominant.
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Discrete Surface Ricci Energy
Definition (Discrete Surface Ricci Energy)

Suppose (S,V,d) is a triangle mesh with a generalized CP
metric, the discrete surface energy is defined as

u k
E(u):/o 3 (K~ Ki)du,

@ gradient JE =K —K,

© Hessian
0%E \ _ A
0Ui0Uj -

@ Ricci flow is the gradient flow of the Ricci energy,

@ Ricci energy is concave, the solution is the unique global
maximal point, which can be obtained by Newton’s method.
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One Example: Discrete Yamabe Flow )
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Delaunay Triangulation

Definition (Delaunay Triangulation)

Each PL metric d on (S,V) has a Delaunay triangulation T,
such that for each edge e of T,

at+a <m,

a

It is the dual of Voronoi decomposition of (S,V,d)

R(vi) = {x]d(x,v;) < d(x,v;) for all v;}

David Gu Surface Geometry



Discrete Conformality

Definition (Conformal change)

Conformal factor u : V — R. Discrete conformal change is
vertex scaling.

Uy

l vertex scaling
2 . €u1l36u2 eug lg@ul

ug

Us i
2 ll euzlleuj

proposed by physicists Rocek and Williams in 1984 in the
Lorenzian setting. Luo discovered a variational principle
associated to it in 2004.
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Discrete Yamabe Flow

Definition (Discrete Yamabe Flow)

du(vi)
dt

=K(vi) —K(v)

Theorem (Luo)

The discrete Yamabe flow converge exponentially fast,
3Jcq,c, > 0, such that

|ui(t) — ui(e0)| < cre™ %, Ki(t) — Ki(e)| < c1e™,
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Discrete Conformality

Definition (Discrete Conformal Equivalence)

PL metrics d,d’ on (S,V) are discrete conformal,
d~d’

if there is a sequence d =d;,dy,--- ,dy =d’ and Ty, Ty, -+, Tk
on (S,V), such that
O T, is Delaunay in d
Q if T; # Ti11, then (S,d;i) = (S, d;1) by an isometry
homotopic to id
Q ifTi =Tiyq, Ju:V — R, such that vV edge e = [v;, V],

Idi+l (e) — eu(Vi)|dieu(Vj)
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Discrete Conformality

Discrete conformal metrics

e mkc
@ w
—
y my
vertex scale diagonal switch vertex scale
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Theorem (Gu-Luo-Sun-Wu (2013))

V PL metrics d on closed (S,V) and YK :V — (—o,27), such
that  K(v) = 2mx(S), 3 a PL metric d, unique up to scaling on
(S,V), such that

© d is discrete conformal to d
@ The discrete curvature of d is K.

Furthermore, d can be found from d from a discrete curvature
flow.

K = 2”‘)\(/(|S), discrete uniformization.
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© The uniqueness of the solution is
obtained by the convexity of
discrete surface Ricci energy and
the convexity of the admissible

conformal factor space (u-space).

@ The existence is given by the
equivalence between PL metrics
on (S,V) and the decorated
hyperbolic metrics on (S,V) and
the Ptolemy identity.

X. Gu, F. Luo, J. Sun, T.
Wau, "A discrete
uniformization theorem
for polyhedral surfaces”,
arXiv:1309.4175.
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Algorithm

Input: a closed triangle mesh M, target curvature K, step length
J, threshold ¢ B
Output:a PL metric conformal to the original metric, realizing K.

O Initialize u; =0, Vv; € V.

@ compute edge length, corner angle, discrete curvature K;
© update to Delaunay triangulation by edge swap

© compute edge weight wj;.

Q ut=3A"1K-K)

© normalize u such that the mean of u;’s is 0.

@ repeat step 2 through 6, until the max |K; — K| < €.
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Genus One Example
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Hyperbolic Discrete Surface Yamabe Flow

Discrete conformal metric deformation:

conformal factor

Yo — elikey R?
sinh¥% = elsinhkeY K2
sindc = eYsinkey §?

Properties: Z—E = Z—E and dK = Adu.

o
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Hyperbolic Discrete Surface Yamabe Flow

Unified framework for both Discrete Ricci flow and Yamabe flow
@ Curvature flow

@ Energy

@ Hessian of E denoted as A,

dK = Adu.
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Computational Algorithms |
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Topological Quadrilateral |
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Topological Quadrilateral

Figure: Topological quadrilateral.
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Topological Quadrilateral

Definition (Topological Quadrilateral)

Suppose S is a surface of genus zero with a single boundary,
and four marked boundary points {p1,p2,p3, P4} sorted
counter-clock-wisely. Then S is called a topological
quadrilateral, and denoted as Q(p1,p2,p3,p4).

Suppose Q(p1,p2,p3,p4) is a topological quadrilateral with a
Riemannian metric g, then there exists a unique conformal map
@:S — C, such that @ maps Q to a rectangle, ¢(p;) =0,

®(p2) = 1. The height of the image rectangle is the conformal
module of the surface.
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Algorithm: Topological Quadrilateral

Input: A topological quadrilateral M
Output: Conformal mapping from M to a planar rectangle
o:M—D
© Set the target curvatures at corners {po,p1,p2,p3} to be J,
@ Set the target curvatures to be 0 everywhere else,
© Run ricci flow to get the target conformal metric 4
© Isometrically embed the surface using the target metric.
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Topological Annulus )
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Topological Annulus

Figure: Topological annulus.
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Topological Annulus

Definition (Topological Annulus)

Suppose S is a surface of genus zero with two boundaries, the
S is called a topological annulus.

Suppose S is a topological annulus with a Riemannian metric
g, the boundary of S are two loops dS = y1 — y», then there
exists a conformal mapping @ : S — C, which maps S to the
canonical annulus, ¢(y1) is the unit circle, ¢(y,) is another
concentric circle with radius y. Then —logy is the conformal
module of S. The mapping @ is unique up to a planar rotation.
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Algorithm: Topological Annulus

Input: A topological annulus M, dM =y — w1
Output: a conformal mapping from the surface to a planar
annulus : M — A

© Set the target curvature to be 0 every where,
@ Run Ricci flow to get the target metric,

© Find the shortest path y, connecting y, and y;, slice M
along y to obtain M,

© Isometrically embed M to the plane, further transform it to
a flat annulus

{z|r <Re(z) <0}/{z =z +2kv—1m}

by planar translation and scaling,

@ Compute the exponential map z — exp(z), maps the flat
annulus to a canonical annulus.
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Riemann Mapping )
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Conformal Module

Simply Connected Domains
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Topological Disk
Definition (Topological Disk)

Suppose S is a surface of genus zero with one boundary, the S
is called a topological disk.

Suppose S is a topological disk with a Riemannian metric g,
then there exists a conformal mapping ¢ : S — C, which maps
S to the canonical disk. The mapping @ is unique up to a
Mobius transformation,

iog Z— 2o

zZ—e —.
1-2z4z
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Algorithm: Topological Disk

Input: A topological disk M, an interior pointp € M
Output: Riemann mapping @ : M — mathbbD, maps M to the
unit disk and p to the origin

© Punch a small hole at p in the mesh M,

@ Use the algorithm for topological annulus to compute the
conformal mapping.
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Multiply connected domains ]

David Gu Surface Geometry



Multiply-Connected Annulus

Definition (Multiply-Connected Annulus)

Suppose S is a surface of genus zero with multiple boundaries,
then S is called a multiply connected annulus.

Suppose S is a multiply connected annulus with a Riemannian
metric g, then there exists a conformal mapping ¢ : S — C,
which maps S to the unit disk with circular holes. The radii and
the centers of the inner circles are the conformal module of S.
Such kind of conformal mapping are unique up to Mobius
transformations.
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Algorithm: Multiply-Connected Annulus

Input: A multiply-connected annulus M,

oM =YY%,

Output: a conformal mapping ¢ : M — A, A is a circle domain.
© Fill all the interior holes y; to y,
@ Punchaholeaty,1<k<n

© Conformally map the annulus to a planar canonical
annulus

© Fill the inner circular hole of the canonical annulus

© Repeat step 2 through 4, each round choose different
interior boundary Y. The holes become rounder and
rounder, and converge to canonical circles.
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Koebe’s Iteration - |

Figure: Koebe’s iteration for computing conformal maps for multiply
connected domains.
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Koebe’s Iteration - Il

Figure: Koebe’s iteration for computing conformal maps for multiply
connected domains.
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Koebe’s Iteration - Il
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Figure: Koebe’s iteration for computing conformal maps for multiply
connected domains.
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Convergence Analysis

Theorem (Gu and Luo 2009)

Suppose genus zero surface has n boundaries, then there
exists constants C; > 0 and 0 < C, < 1, for step k, for all z € C,

k
f of~2(2) — 2| < C 20,

where f is the desired conformal mapping.

W. Zeng, X. Yin, M. Zhang, F. Luo and X. Gu, "Generalized
Koebe’s method for conformal mapping multiply connected
domains”, Proceeding SPM’'09 SIAM/ACM Joint Conference on
Geometric and Physical Modeling, Pages 89-100.
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Topological Torus )
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Topological torus

Figure: Genus one closed surface.




Algorithm: Topological Torus

Input: A topological torus M
Output: A conformal mapping which maps M to a flat torus
C/{m+najm,nZ}

© Compute a basis for the fundamental group (M), {y1,)-}.

Qo Slice the surface along y1, y» to get a fundamental domain
M,

© Set the target curvature to be 0 everywhere
© Run Ricci flow to get the flat metric
@ Isometrically embed S to the plane
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Hyperbolic Ricci Flow

Computational results for genus 2 and genus 3 surfaces.
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Hyperbolic Koebe’s Iteration

M. Zhang, Y. Li, W. Zeng and X. Gu. "Canonical conformal
mapping for high genus surfaces with boundaries”, Computer
and Graphics, Vol 36, Issue 5, Pages 417-426, August 2012.
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