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Fundamental Problems

Shapes

How to model the space of all shapes?

Mapping

How to model the space of all mappings between two shapes?
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Outline

Main Topics

1 Discrete Surface Ricci flow
2 Discrete Optimal Mass Transportation
3 Quasi-Conformal Geometry
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Klein’s Program

Klein’s Erlangen Program

Different geometries study the invariants under different
transformation groups.

Geometries

Topology - homeomorphisms

Conformal Geometry - Conformal Transformations

Riemannian Geometry - Isometries

Differential Geometry - Rigid Motion
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Transformation Groups

Suppose a mapping ϕ : (S1,g1)→ (S2,g2) is given,
1 Homeomorphism: ϕ is continuous, bijective, ϕ−1 is also

continuous.
2 Conformal: angle preserving
3 Area preserving mapping
4 Isometry: length preserving
5 Rigid motion: rotation and translation in ℝ

3.
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Angle Preserving Mapping

�
�

The angle between γ1 and γ2 equals to that between φ(γ1) and
φ(γ2).
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Area Preserving Mapping

Ω

�(Ω)

For any Borel set Ω⊂ S1, the area of Ω equals to that of φ(Ω).
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General Diffeomorphisms
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Mapping Space

angle preserving area preserving

general ℎomeomorpℎism

isometry

angle preserving mapping - surface Ricci flow

area preserving mapping - optimal mass transport

general mapping - quasi-conformal mapping
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Hierarchy

The transformation groups have the relation:

{rigid motion}⊲{isometry}⊲{conformal}⊲{homeomorphism}

The corresponding shape spaces

S /{rigid motion}⊳S /{isometry}⊳S /{conformal}⊳S /{homeomor

where
S = { compact orientatable metric surfaces embedded in E

3}.

David Gu Surface Geometry



Topology

Definition (Topologically Equivalence)

Two surfaces are topologically equivalent, if there exists a
homeomorphism between them.

Definition (Topological Invariants)

Orientability, genus, number of boundaries. Fundamental
group, homology group, cohomology group.
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Conformal Geometry

Definition (Conformal Equivalence)

Two surfaces are conformal equivalent, if there exists a
conformal mapping between them.

Definition (Conformal Invariants)

Conformal module, uniformization domain:

S/Γ−∪n
i=1C(ci , ri),

1 S is a constant curvature space, the unit sphere S
2, the

Euclidean plane E
2 and the hyperbolic plane ℍ

2.
2 Γ is a fixed point free subgroup of the rigid motion group of

S.
3 C(ci , ri) is a geodesic circle on S/Γ with center ci and

radius ri .
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Canonical Conformal Representations

Theorem (Poincar é Uniformization Theorem)

Let (Σ,g) be a compact 2-dimensional Riemannian manifold.
Then there is a metric g̃ = e2λ g conformal to g which has
constant Gauss curvature.
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Uniformization of Open Surfaces

Definition (Circle Domain)

A domain in the Riemann sphere ℂ̂ is called a circle domain if
every connected component of its boundary is either a circle or
a point.

Theorem

Any domain Ω in ℂ̂, whose boundary ∂Ω has at most countably
many components, is conformally homeomorphic to a circle
domain Ω∗ in ℂ̂. Moreover Ω∗ is unique upto Möbius
transformations, and every conformal automorphism of Ω∗ is
the restriction of a Möbius transformation.
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Conformal Canonical Representations

Definition (Circle Domain in a Riemann Surface)

A circle domain in a Riemann surface is a domain, whose
complement’s connected components are all closed geometric
disks and points. Here a geometric disk means a topological
disk, whose lifts in the universal cover or the Riemann surface
(which is ℍ

2, ℝ2 or S2 are round.

Theorem

Let Ω be an open Riemann surface with finite genus and at
most countably many ends. Then there is a closed Riemann
surface R∗ such that Ω is conformally homeomorphic to a circle
domain Ω∗ in R∗. More over, the pair (R∗,Ω∗) is unique up to
conformal homeomorphism.
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Uniformization of Open Surfaces

Spherical Euclidean Hyperbolic
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Riemannian Geometry

Definition (Isometric Equivalence)

Two surfaces are isometric equivalent, if there exists an
isometric mapping between them.

Definition (Isometric Invariants)

Suppose the surface (M,g) has the canonical conformal
representation S/Γ−∪n

i=1C(ci , ri), the Riemannnian metric of
M is given by

g = e2λ gS,

where λ is the conformal factor, gS is the spherical, Euclidean,
or hyperbolic metric.

Therefore, a compact, orienatable metric surface has the
representation

(S/Γ−∪n
i=1C(ci , ri ),λ )
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Differential Geometry in E3

Suppose two compact surfaces embedded in E
3, (S1,g1) and

(S2,g2) differ by a rigid motion, if and only if they share the
same

1 conformal representation S/Γ−∪n
i=1C(ci , ri),

2 conformal factor λ ,
3 mean curvature H.
4 conformal factor and mean curvature satisfies

Gauss-Codazzi equations

(logλ )zz̄ =
µµ̄
λ 2 −

λ 2

4
H2,

µz̄ =
λ 2

2
Hz ,

µzz̄ =
1
2

λ (2λzHz +λHzz).

David Gu Surface Geometry



Shape Space

Canonical Representation

Suppose (M,g) is a compact, orientable, metric surface
embedded in E

3, then its representation is a triple

(S/Γ−∪n
i=1C(ci , ri),λ ,H).

where S is one of three canonical spaces S
2,E2,ℍ2, Γ is a

subgroup of isometries of the canonical space, λ the conformal
factor, H the mean curvature, furthermore λ and H satisfy
Gauss-Codazzi equations.
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Mappings Space

Intuition
1 All diffeomorphisms between two compact Riemann

surfaces are quasi-conformal.
2 Each quasi-conformal mapping corresponds to a unique

Beltrami differential.
3 The space of diffeomorphisms equals to the space of all

Beltrami differentials.
4 Variational calculus can be carried out on the space of

diffeomorphisms.
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Quasi-Conformal Map

Most homeomorphisms are quasi-conformal, which maps
infinitesimal circles to ellipses.
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Beltrami-Equation

Beltrami Coefficient

Let φ : S1 → S2 be the map, z,w are isothermal coordinates of
S1, S2, Beltrami equation is defined as ∥µ∥∞ < 1

∂φ
∂ z̄

= µ(z)
∂φ
∂z
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Mapping Space

Mapping Representation

Given two genus zero metric surface with a single boundary,

{Diffeomorphisms} ∼=
{Beltrami Coefficient}

{Mobius}
.
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Quasi-Conformal Map Examples

D0

D1

D2D3

p
q p q

D0

D1

D2D3

p
q
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Quasi-Conformal Map Examples
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Solving Beltrami Equation
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Direct Applications
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Geometric Approximation
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Meshing

Theorem

Suppose S is a surface with a Riemannian metric. Then there
exist meshing method which ensures the convergence of
curvatures.

Key idea: Delaunay triangulations on uniformization domains.
Angles are bounded, areas are bounded.

David Gu Surface Geometry



Meshing
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Curvature Measure Convergence

Theorem

Let M be a compact Riemannian surface embedded in E
3 with

the induced Euclidean metric, T the triangulation generated by
Delaunay refinement on conformal uniformization domain, with
circumradius bound ε . If B is the relative interior of a union of
triangles of T , then

∣φG
T (B)−φG

M (π(B))∣ ≤ K ε
∣φH

T (B)−φH
M (π(B))∣ ≤ K ε

where π : T → M is the closest point projection, φH ,φG are the
mean and Gaussian curvature measures, where

K = O(area(B))+O(length(∂B)).

H. Li, W. Zeng, J. Morvan, L. Chen and X. Gu, “Surface
Meshing with Curvature Convergence” IEEE TVCG 2013.
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Computational Topology

David Gu Surface Geometry



Computational Topology Application

Canonical Homotopy Class Representative

Under hyperbolic metric, each homotopy class has a unique
geodesic, which is the representative of the homotopy class.

Γ

γ

γ

Γ
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Shortest Word Problem

Shortest word Problem (NP Hard):

a1

b1

a2

b2

a3

b3




γ = a1b1a−1
1 b−1

1 a2b2a−1
2 b−1

2 = (a3b3a−1
3 b−1

3 )−1
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Loop Lifting
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Loop Lifting
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Hyperbolic Ricci Flow
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Birkoff Curve Shorting

Birkoff curve shortening deforms a loop to a geodesic.
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Computing Shortest Word

Solving Shortest Word

1 Compute the uniformization metric using Ricci flow.
2 Compute the geodesic loop by Birkoff curve shortening.
3 Lift the geodesic loop to the universal covering space.
4 Trace the lifted loop to compute the word.

X. Yin, Y. Li, W. Han, F. Luo, X. Gu and S.-T. Yau, “Computing
Shortest Words via Shortest Loops on Hyperbolic Surfaces”,
Computer-Aided Design (CAD), 43(11), 2011.
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Shape Analysis
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Heat Kernel

Theorem

Discrete heat kernel determines the discrete Riemannian
metric.

W. Zeng, R. Guo, F. Luo and X. Gu, “Discrete Heat Kernel
Determines Discrete Reimannian Metric”, Graphical Models,
2012.
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Geometric Modeling
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Geometric Modeling Application: Manifold Spline

Manifold Spline

Convert scanned polygonal surfaces to smooth spline
surfaces.

Conventional spline scheme is based on affine geometry.
This requires us to define affine geometry on arbitrary
surfaces.

This can be achieved by designing a metric, which is flat
everywhere except at several singularities (extraordinary
points).

The position and indices of extraordinary points can be
fully controlled.
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Manifold Spline

ua ub

fa fb

fab

faua fbub

F

M

cafa cbfb

Z

Y. He, X. Gu, Y. He, and H. Qin, “Manifold splines”. Graphical
Models, 68(3):237-254, 2006.
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Manifold Spline

Converting scanned data to spline surfaces, the control points,
knot structure are shown.
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Manifold Spline

Converting scanned data to spline surfaces, the control points,
knot structure are shown.

David Gu Surface Geometry



Medical Imaging
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Conformal Brain Mapping

Brain Cortex Surface Spherical Mapping

X. Gu, Y. Wang, T. F. Chan, P. M. Thompson and S.-T. Yau,
“Genus Zero Surface Conformal Mapping and Its Application to
Brain Surface Mapping”, IEEE TMI, 23(8):949-958, 2004.
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Conformal Brain Mapping

Using conformal module to analyze shape abnormalities.

Brain Cortex Surface

Y. Wang, L. M. Lui, X. Gu, K. Hayashi, T. F. Chan, A. W. Toga, P.
M. Thompson and S.-T. Yau, “Brain Surface Conformal
Parameterization using Riemann Surface Structure”, IEEE TMI,
26(6):853-865, June 2007.
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Alzheimer Study
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Alzheimer Study

Conformal Mapping Optimal Transportation Map
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Virtual Colonoscopy

Colon cancer is the 4th killer for American males. Virtual
colonosocpy aims at finding polyps, the precursor of cancers.
Conformal flattening will unfold the whole surface.
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Colon Flattening
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Virtual Colonoscopy

Supine and prone registration. The colon surfaces are scanned
twice with different postures, the deformation is not conformal.

W. Zeng, J. Marino, K. C. Gurijala, X. Gu and A. Kaufman,
“Supine and Prone Colon Registration Using Quasi-Conformal
Mapping”, IEEE TVCG, 16(6): 1348-1357, 2010.
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Colon Registration
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Computer Vision
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Surface Matching

3D surface matching is converted to image matching by using
conformal mappings.

f

f̄

φ1 φ2
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Face Surfaces with Different Expressions are Matched
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Face Surfaces with Different Expressions are Matched
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Face Expression Tracking

W. Zeng, D. Samaras and X. Gu, “Ricci Flow for 3D Shape
Analysis”. IEEE TPAMI, 32(4): 662-677, 2010.
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Face Expression Tracking

Y.Wang, M. Gupta, S.Zhang, S. Wang, Xianfeng Gu, Dimitris
Samaras, and P. Huang, “High Resolution Tracking of
Non-Rigid Motion of Densely Sampled 3D Data Using
Harmonic Maps”, IJCV, 76(3),2007.
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Surface Registration
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2D Shape Space-Conformal Welding

{2D Contours}∼=

{

Diffeomorphism on S1
}

∪{Conformal Module}
{Mobius Transformation}

L. M. Lui, W. Zeng, S.-T. Yau and X. Gu, “Shape Analysis of
Planar Multiply-connected Objects using Conformal Welding”,
IEEE TPAMI 2013.
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Computer Graphics
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Surface Parameterization

Map the surfaces onto canonical parameter domains
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Surface Parameterization

Applied for texture mapping.
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Non-photo-realistic rendering

Y. Lai, M. Jin, X. Xie, Y. He, J. Palacios, E. Zhang, S.-M.Hu and
X. Gu, “Metric Driven RoSy Field Design and Remeshing”,
IEEE TVCG, 16(1):95-108, 2009.
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n-Rosy Field Design

Convert the surface to knot structure using smooth vector fields.
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Visualization
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Normal Map
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Visualization

Conformal mapping Area-preserving mapping
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Visualization
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Visualization

X. Zhao, Z. Su, X. Gu, A. Kaufman, J. Sun, J. Gao, F. Luo,
“Area-preservation Mapping using Optimal Mass Transport”,
IEEE TVCG, 2013.
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Visualization
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Visualization
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Reading Materials
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Ricci Flow for Shape Analysis and Surface Registration

Book Cover

eBook

Book
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Books

The theory, algorithms and sample code can be found in the
following books.
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Resources

1 Detailed lecture notes can be found at:

http://www.cs.stonybrook.edu/˜gu/lectures/index.html

2 Source code, demos and data sets can be found at:

http://www.cs.stonybrook.edu/˜gu/software/index.html

3 Talk slides

http://www.cs.stonybrook.edu/˜gu/talks/index.html

4 Talk slides
http://saturno.ge.imati.cnr.it/ima/personal/patane/PersonalPage/
Patanes Home Page/Courses/Entries/2013/11/17 Surface-
and volume-

based techniques for shape modeling and analysis.html
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Source Code Library

Please email me gu@cs.stonybrook.edu for updated code
library on computational conformal geometry.
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Ricci Flow for Shape Analysis and Surface Registration

Book Cover

eBook

Book

David Gu Surface Geometry


