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Fundamental Problems

How to model the space of all shapes?
Mapping
How to model the space of all mappings between two shapes?
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© Discrete Surface Ricci flow

@ Discrete Optimal Mass Transportation
© Quasi-Conformal Geometry
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Klein’s Program

Klein’s Erlangen Program

Different geometries study the invariants under different
transformation groups.

Geometries

@ Topology - homeomorphisms

@ Conformal Geometry - Conformal Transformations
@ Riemannian Geometry - Isometries

@ Differential Geometry - Rigid Motion
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Transformation Groups

Suppose a mapping ¢ : (S1,91) — (S2,92) is given,
© Homeomorphism: ¢ is continuous, bijective, ¢ 1 is also
continuous.

@ Conformal: angle preserving

© Area preserving mapping

© Isometry: length preserving

© Rigid motion: rotation and translation in R3.
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Angle Preserving Mapping

The angle between y; and y, equals to that between ¢(y;) and
@(¥2)-
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Area Preserving Mapping

For any Borel set Q C S;, the area of Q2 equals to that of ¢().
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General Diffeomorphisms

Surface Geometry



Mapping Space

general homeomorphism

isometry

@ angle preserving mapping - surface Ricci flow
@ area preserving mapping - optimal mass transport
@ general mapping - quasi-conformal mapping
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The transformation groups have the relation:

{rigid motion} < {isometry } < {conformal } <{homeomorphism}

The corresponding shape spaces

. /{rigid motion} . /{isometry } .7 /{conformal } .7 /{homeomo

where
. = { compact orientatable metric surfaces embedded in E3}.
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Topology

Definition (Topologically Equivalence)

Two surfaces are topologically equivalent, if there exists a
homeomorphism between them.

v

Definition (Topological Invariants)

Orientability, genus, number of boundaries. Fundamental
group, homology group, cohomology group.
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Conformal Geometry
Definition (Conformal Equivalence)

Two surfaces are conformal equivalent, if there exists a
conformal mapping between them.

Definition (Conformal Invariants)

Conformal module, uniformization domain:

S/r—ul,C(ci,r),

© S is a constant curvature space, the unit sphere S?, the
Euclidean plane E? and the hyperbolic plane H?.

@ T is a fixed point free subgroup of the rigid motion group of
S.

© C(ci,r) is a geodesic circle on S/I" with center ¢; and
radius r;.
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Canonical Conformal Representations

Theorem (Poincar &€ Uniformization Theorem)

Let (X,g) be a compact 2-dimensional Riemannian manifold.
Then there is a metric § = e?*g conformal to g which has
constant Gauss curvature.
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Uniformization of Open Surfaces

Definition (Circle Domain)

A domain in the Riemann sphere C is called a circle domain if
every connected component of its boundary is either a circle or
a point.

Any domain Q in C, whose boundary 92 has at most countably
many components, is conformally homeomorphic to a circle
domain Q* in C. Moreover Q* is unique upto Mobius
transformations, and every conformal automorphism of Q* is
the restriction of a Mobius transformation.
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Conformal Canonical Representations
Definition (Circle Domain in a Riemann Surface)

A circle domain in a Riemann surface is a domain, whose
complement’s connected components are all closed geometric
disks and points. Here a geometric disk means a topological
disk, whose lifts in the universal cover or the Riemann surface
(which is H?, R? or S? are round.

-

Theorem

Let Q2 be an open Riemann surface with finite genus and at
most countably many ends. Then there is a closed Riemann
surface R* such that Q is conformally homeomorphic to a circle
domain Q* in R*. More over, the pair (R*,Q*) is unique up to
conformal homeomorphism.
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Uniformization of Open Surfaces

Spherlcal Euclidean Hyperbolic
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Riemannian Geometry
Definition (Isometric Equivalence)

Two surfaces are isometric equivalent, if there exists an
isometric mapping between them.

Definition (Isometric Invariants)

Suppose the surface (M,g) has the canonical conformal
representation S/I' — U, C(c;, r;), the Riemannnian metric of
M is given by

g =e*gs,

where A is the conformal factor, gs is the spherical, Euclidean,
or hyperbolic metric.

Therefore, a compact, orienatable metric surface has the
representation
(S/T—UL,C(ci,ri),A)
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Differential Geometry in E3

Suppose two compact surfaces embedded in E3, (S1,91) and
(S2,92) differ by a rigid motion, if and only if they share the
same

@ conformal representation S/ — U, C(c;,I;),
@ conformal factor A,
© mean curvature H.

© conformal factor and mean curvature satisfies
Gauss-Codazzi equations

HE A%,
(|09/\)zZ:A—2*TH )
)\2
U227Hz,
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Hzz = 5/\ (2)\sz +/\sz)-
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Shape Space

Canonical Representation

Suppose (M, g) is a compact, orientable, metric surface
embedded in E3, then its representation is a triple

(S/F—Ui”:lC(ci,ri),A,H).

where S is one of three canonical spaces S?,E2, H?, I is a
subgroup of isometries of the canonical space, A the conformal
factor, H the mean curvature, furthermore A and H satisfy
Gauss-Codazzi equations.
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Mappings Space

O All diffeomorphisms between two compact Riemann
surfaces are quasi-conformal.

@ Each quasi-conformal mapping corresponds to a unique
Beltrami differential.

© The space of diffeomorphisms equals to the space of alll
Beltrami differentials.

@ Variational calculus can be carried out on the space of
diffeomorphisms.
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Quasi-Conformal Map

Most homeomorphisms are quasi-conformal, which maps
infinitesimal circles to ellipses.
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Beltrami-Equation

A1 |Ju]
arg(1)/2

Beltrami Coefficient

Let ¢:S; — S, be the map, z,w are isothermal coordinates of
S1, Sy, Beltrami equation is defined as ||u||o < 1

oy _

20
oz  H%3;

u( 37

David Gu Surface Geometry



Mapping Space

Mapping Representation
Given two genus zero metric surface with a single boundary,

{Beltrami Coefficient}

{Diffeomorphisms} = ERI
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Quasi-Conformal Map Exampl
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Direct Applications |
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Geometric Approximation )
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Suppose S is a surface with a Riemannian metric. Then there
exist meshing method which ensures the convergence of
curvatures.

Key idea: Delaunay triangulations on uniformization domains.
Angles are bounded, areas are bounded.

-
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Curvature Measure Convergence

Theorem

Let M be a compact Riemannian surface embedded in E3 with
the induced Euclidean metric, T the triangulation generated by
Delaunay refinement on conformal uniformization domain, with
circumradius bound €. If B is the relative interior of a union of
triangles of T, then

S (B)— @5(m(B))] < Ke
|of(B)— g} (n(B))] < Ke

where 11: T — M is the closest point projection, ¢, ¢® are the
mean and Gaussian curvature measures, where

K = O(area(B))+ O(length(dB)).

H. Li, W. Zeng, J. Morvan, L. Chen and X. Gu, “Surface
Meshing with Curvature Convergence” IEEE TVCG 2013.
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Computational Topology |
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Canonical Homotopy Class Representative

Under hyperbolic metr
geodesic, which

ic, each homotopy class has a unigue
the representative of the homotopy class.

IS

KPR
Avavd
RGN
X
QALY
:

D

NESER £
ORERRERREK )
RERSRSS R AR

NYavi3 Pava =

NGORG52
Nt oo
NS0 \Vav) Y4
| N
\ vy TAVAVAVAYS
R avavarari.
\Navav RaYavavali|
SAO08

Vs VAYAS > AN %)
AN Sk
RERSEANG
RERRRZAHRR
\ S
RS

7 v,
4 L7
(TS
(AR
?Eruuvruwr ¢

%

VAV

i
i
R
X

A

T
X

i
0
fl
S
L

2
7
q
=

a9

0

A
A

o7

1N
N : Avmay X
N VAL % AN
NI URGVISANS
& R
S s

&
Y4

7AV4
V4

PSR
ST ST
SSOTRSIAVAVAY
a«m,»,umwmmmu:mt
RNRE

QN I
S
NSRS
S

44)7
N

b
REEPET
Y
%) N7




Shortest Word Problem

Shortest word Problem (NP Hard):
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Birkoff Curve Shorting

Birkoff curve shortening deforms a loop to a geodesic. ]
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Computing Shortest Word

Solving Shortest Word

@ Compute the uniformization metric using Ricci flow.

@ Compute the geodesic loop by Birkoff curve shortening.
© Lift the geodesic loop to the universal covering space.
@ Trace the lifted loop to compute the word.

X.Yin, Y. Li, W. Han, F. Luo, X. Gu and S.-T. Yau, “Computing
Shortest Words via Shortest Loops on Hyperbolic Surfaces”,
Computer-Aided Design (CAD), 43(11), 2011.
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Shape Analysis )
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Heat Kernel

Discrete heat kernel determines the discrete Riemannian

metric.

W. Zeng, R. Guo, F. Luo and X. Gu, “Discrete Heat Kernel
Determines Discrete Reimannian Metric”, Graphical Models,
2012.

David Gu Surface Geometry



Geometric Modeling |
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Geometric Modeling Application: Manifold Spline

Manifold Spline

@ Convert scanned polygonal surfaces to smooth spline
surfaces.

@ Conventional spline scheme is based on affine geometry.
This requires us to define affine geometry on arbitrary
surfaces.

@ This can be achieved by designing a metric, which is flat
everywhere except at several singularities (extraordinary
points).

@ The position and indices of extraordinary points can be
fully controlled.
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Manifold Spline

Y. He, X. Gu, Y. He, and H. Qin, “Manifold splines”. Graphical
Models, 68(3):237-254, 2006.
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Manifold Spline

Converting scanned data to spline surfaces, the control points,
knot structure are shown.
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Manifold Spline

Converting scanned data to spline surfaces, the control points,
knot structure are shown.
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Medical Imaging )
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Conformal Brain Mapping

Brain Cortex Surface Spherical Mapping

X. Gu, Y. Wang, T. FE Chan, P. M. Thompson and S.-T. Yau,
“Genus Zero Surface Conformal Mapping and Its Application to
Brain Surface Mapping”, IEEE TMI, 23(8):949-958, 2004.

David Gu Surface Geometry



Conformal Brain Mapping

Using conformal module to analyze shape abnormalities.

Brain Cortex Surface

Y. Wang, L. M. Lui, X. Gu, K. Hayashi, T. F Chan, A. W. Toga, P.
M. Thompson and S.-T. Yau, “Brain Surface Conformal

Parameterization using Riemann Surface Structure”, IEEE TMI,
26(6):853-865, June 2007.
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Caudal Middle Frontal
Pre-Central
Post

Superior Frontal .

Superior Parietal
Pars Ope kel
Restrol Middle nferjor Paricta

Supra Marginal

Pars Oribitia

Pars Triangil
Oribitals mmz/

Unlabelled Subcortical Region

Lateral Occipital

\ Inferior Temporal
Superior Temporal \

Banks Superior Temporal
Middle Temporal

Postarial Cingulate

sthipus
Totigt CA Cingulate

ParaCentyal Lobuia
\ Superior Frontal

Pre-Cungus
rerungy RA Cing

Cuneus

Fusiform
Medical Orbital Frontal
Lingal

ParaHippocamal Bt

nporal Pole

Unlabelled Subcortical Region

David G Surface Geometry



Alzheimer Study

Conformal Mapping Optimal Transportation Map
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Virtual Colonoscopy

Colon cancer is the 4th killer for American males. Virtual
colonosocpy aims at finding polyps, the precursor of cancers.
Conformal flattening will unfold the whole surface.

)

m— l
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Colon Flattening
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Virtual Colonoscopy

Supine and prone registration. The colon surfaces are scanned
twice with different postures, the deformation is not conformal.

W. Zeng, J. Marino, K. C. Gurijala, X. Gu and A. Kaufman,
“Supine and Prone Colon Registration Using Quasi-Conformal
Mapping”, IEEE TVCG, 16(6): 1348-1357, 2010.
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Colon Registration
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Computer Vision )
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Surface Matching

3D surface matching is converted to image matching by using
conformal mappings.
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Face Surfaces with Different Expressions are Matched
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Face Surfaces with Different Expressions are Matched
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Face Expression Tracking

W. Zeng, D. Samaras and X. Gu, “Ricci Flow for 3D Shape
Analysis”. IEEE TPAMI, 32(4): 662-677, 2010.
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Face Expression Tracking
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Y.Wang, M. Gupta, S.Zhang, S. Wang, Xianfeng Gu, Dimitris
Samaras, and P. Huang, “High Resolution Tracking of

Non-Rigid Motion of Densely Sampled 3D Data Using
Harmonic Maps”, IJCV, 76(3),2007.
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Surface Registratio

(c) APP map #1 (d) APP map #2

(e) Conformal map #1 (f) Conformal map #2
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2D Shape Space-Conformal Welding

- { Diffeomorphism on S*} U {Conformal Module}

2D Contours : -
{ {Mobius Transformation}

Signature

Conformal mapping

(A) (B)

L. M. Lui, W. Zeng, S.-T. Yau and X. Gu, “Shape Analysis of
Planar Multiply-connected Objects using Conformal Welding”,
IEEE TPAMI 2013.
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Computer Graphics )
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Surface Parameterization

Map the surfaces onto canonical parameter domains
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Surface Parameterization

Applied for texture mapping.
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Non-photo-realistic rendering

Y. Lai, M. Jin, X. Xie, Y. He, J. Palacios, E. Zhang, S.-M.Hu and
X. Gu, “Metric Driven RoSy Field Design and Remeshing”,
IEEE TVCG, 16(1):95-108, 2009.
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n-Rosy Field Desig

Convert the surface to knot structure using smooth vector fieIds.J
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Visualization )
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Normal Map
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Visualization

Conformal mapping Area-preserving mapping
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Visualization
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Visualization

X. Zhao, Z. Su, X. Gu, A. Kaufman, J. Sun, J. Gao, F. Luo,
“Area-preservation Mapping using Optimal Mass Transport”,
IEEE TVCG, 2013.
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Visualization
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Visualization
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Reading Materials )
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Ricci Flow for Shape Analysis and Surface Registration

SPRINGER BRIEFS IN MATHEMATICS

Xianfen David Gu

Ricci Flow for

~ Shape Analysis
and Surface
Registration
Theories, Algorithms
M and Applications

@ Springer

Book Cover
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The theory, algorithms and sample code can be found in the
following books.

Computational Conformal Variational Principles for
Geometry Discrete Surfaces

oo Oaad G - ShogTung oy Th gorithms

--------------
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Resources

© Detailed lecture notes can be found at:
http://www.cs.stonybrook.edu/"gu/lectures/index.html

©@ Source code, demos and data sets can be found at:
http://www.cs.stonybrook.edu/ gu/software/index.html

© Talk slides

http://www.cs.stonybrook.edu/ gu/talks/index.html

O Talk slides
http://saturno.ge.imati.cnr.it/ima/personal/patane/PersonalPage/

Patanes_ Home _Page/Courses/Entries/2013/11/17 Surface-
_and_volume-

based_technigues_for_shape_modeling_and_analysis.html
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Source Code Library

Please email me gu@cs.stonybrook.edu for updated code
library on computational conformal geometry.
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Ricci Flow for Shape Analysis and Surface Registration

SPRINGER BRIEFS IN MATHEMATICS

Xianfen David Gu

Ricci Flow for

~ Shape Analysis
and Surface
Registration
Theories, Algorithms
M and Applications

@ Springer

Book Cover
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