Geometric Algorithm for Optimal Transportation Map

David Gu
Yau Mathematics Science Center
Tsinghua University
Computer Science Department
Stony Brook University
gu@cs.stonybrook.edu

November 5, 2020

Convex Geometric View

Monge Problem

Monge Problem

Given planar domains with probability measures (Ω, μ) and $\left(\Omega^{*}, \nu\right), \Omega$ is convex, total measures are equal $\mu(\Omega)=\nu\left(\Omega^{*}\right)$, the density functions are bounded $d \mu=f(x) d x$ and $d \nu=g(y) d y$, the transportation cost function is $c(x, y)=\frac{1}{2}|x-y|$, the Monge problem aims at finding the optimal transportation map,

$$
\min _{T_{\# \mu=\nu}} \int_{\Omega} c(x, y) d \mu(x)
$$

Brenier Theorem

Theorem (Brenier)

Given the above conditions, assume the density functions satisfy appropriate regularity conditions, $f, g \in L^{1}\left(\mathbb{R}^{d}, \Omega, \Omega^{*}\right.$ are compact, then the optimal transportation map exists and is unique, it is the gradient of a convex function $u: \Omega \rightarrow \mathbb{R}, T=\nabla u$, where u is the Brenier potential function.

The Brenier potential satisfies the Monge-Ampere equation,

$$
\operatorname{det}\left(D^{2} u\right)=\frac{f(x)}{g \circ \nabla u(x)}
$$

with boundary condition $\nabla u(\Omega)=\Omega^{*}$.

Semi-Discrete Optimal Transportation Problem

Problem (Semi-discrete OT)

Given a compact convex domain Ω in \mathbb{R}^{d}, and $y_{1}, y_{2}, \cdots, y_{k}$ and weights $\nu_{1}, \nu_{2}, \cdots, \nu_{k}>0$, find a transport map $T: \Omega \rightarrow\left\{y_{1}, \ldots, y_{k}\right\}$, such that $\operatorname{vol}\left(T^{-1}\left(p_{i}\right)\right)=\nu_{i}$, so that T minimizes the transportation cost:

$$
\mathcal{C}(T):=\frac{1}{2} \int_{\Omega}|x-T(x)|^{2} d x
$$

Semi-Discrete Optimal Transportation Map

$\left(\Omega^{*}, \nu\right)$ is discretized as $\left\{\left(y_{i}, \nu_{i}\right)\right\}_{i=1}^{k}$. Each sample y_{i} corresponds to a plane $\pi_{i}(x)=\left\langle x, y_{i}\right\rangle-h_{i}$, the Brenier potential is

$$
u_{h}(x):=\max _{i=1}^{k}\left\{\left\langle x, y_{i}\right\rangle-h_{i}\right\},
$$

where the height vector $h=\left(h_{1}, h_{2}, \cdots, h_{k}\right) . u_{h}^{*}$ is the Legendre dual of

Semi-Discrete Optimal Transportation Map

u_{h} is the upper envelope of plane $\pi_{i}{ }^{\prime}$'s; u_{h}^{*} is the convex hull of points $\left\{\left(y_{i}, h_{i}\right)\right\}_{i=1}^{k}$; the projection of u_{h}^{*} is a power Delaunay triangulation of $\left\{y_{i}\right\}_{i=1}^{k}$; the projection of u_{h} is the dual power diagram of Ω.

Variational Proof

Theorem (Gu-Luo-Sun-Yau 2013)

Ω is a compact convex domain in $\mathbb{R}^{n}, y_{1}, \cdots, y_{k}$ distinct in \mathbb{R}^{n}, μ a positive continuous measure on Ω. For any $\nu_{1}, \cdots, \nu_{k}>0$ with $\sum \nu_{i}=\mu(\Omega)$, there exists a vector $\left(h_{1}, \cdots, h_{k}\right)$ so that

$$
u(\mathbf{x})=\max \left\{\left\langle\mathbf{x}, \mathbf{p}_{i}\right\rangle+h_{i}\right\}
$$

satisfies $\mu\left(W_{i} \cap \Omega\right)=\nu_{i}$, where $W_{i}=\left\{\mathbf{x} \mid \nabla f(\mathbf{x})=\mathbf{p}_{i}\right\}$. Furthermore, \mathbf{h} is the maximum point of the concave function

$$
E(\mathbf{h})=\sum_{i=1}^{k} \nu_{i} h_{i}-\int_{0}^{\mathbf{h}} \sum_{i=1}^{k} w_{i}(\eta) d \eta_{i}
$$

where $w_{i}(\eta)=\mu\left(W_{i}(\eta) \cap \Omega\right)$ is the μ-volume of the cell.
The energy $E(\mathbf{h})$ is called the Alexandrov's energy.

Admissible Height Space

Definition (Admissible Height Space)

The admissible height space is defined as

$$
\mathcal{H}(Y):=\left\{\mathbf{h} \in \mathbb{R}^{k}: w_{i}(h)>0, i=1,2, \ldots, k\right\} \bigcap\left\{\sum_{i=1}^{k} h_{i}=1\right\} .
$$

The admissible height space is a non-empty convex space. The optimization is to maximize the energy $E(\mathbf{h})$ in the admissible height space \mathcal{H}, using Newton's method.

Geometric Interpretation

One can define a cylinder through $\partial \Omega$, the cylinder is truncated by the xy-plane and the convex polyhedron. The energy term $\int^{\mathbf{h}} \sum w_{i}(\eta) d \eta_{i}$ equals to the volume of the truncated cylinder.

Computational Algorithm

Definition (Alexandrov Potential)

The concave energy is

$$
E\left(h_{1}, h_{2}, \cdots, h_{k}\right)=\sum_{i=1}^{k} \nu_{i} h_{i}-\int_{0}^{\mathbf{h}} \sum_{j=1}^{k} w_{j}(\eta) d \eta_{j}
$$

Semi-Discrete Optimal Transportation Map

The gradient is $\nabla u_{h}=\left(\nu_{i}-w_{i}(\mathbf{h})\right)$; the element of the Hessian matrix is the ratio between the power voronoi edge length and the power Delaunay edge length,

$$
a_{i j}=-\frac{1}{\left|y_{i}-y_{j}\right|} \int_{W_{i} \cap W_{j}} f(x) d x
$$

and the diagonal element equals $a_{i i}=-\sum_{j \neq i} a_{i j}$.

Computational Algorithm

The Hessian of the energy is the length ratios of edge and dual edges,

$$
\frac{\partial w_{i}}{\partial h_{j}}=-\frac{\left|e_{i j}\right|}{\left|\bar{e}_{i j}\right|}
$$

Optimal Transport Map

Input: A set of distinct points $Y=\left\{y_{1}, y_{2}, \cdots, y_{k}\right\}$, and the weights $\left\{\nu_{1}, \nu_{2}, \cdots, \nu_{k}\right\} ;$ A convex domain $\Omega, \sum \nu_{j}=\operatorname{Vol}(\Omega)$;
Output: The optimal transport map $T: \Omega \rightarrow Y$
(1) Scale and translate Y, such that $Y \subset \Omega$;
(2) Initialize $\mathbf{h}^{0} \leftarrow \frac{1}{2}\left(\left|y_{1}\right|^{2},\left|y_{2}\right|^{2}, \cdots,\left|y_{k}\right|^{2}\right)^{T}$;
(3) Compute the Brenier potential $u\left(\mathbf{h}^{k}\right)$ (envelope of π_{i} 's) and its Legendre dual $u^{*}\left(\mathbf{h}^{k}\right)$ (convex hull of π_{i}^{*} 's);
(1) Project the Brenier potential and Legendre dual to obtain weighted Delaunay triangulation $\mathcal{T}\left(\mathbf{h}^{k}\right)$ and power diagram $\mathcal{D}\left(\mathbf{h}^{k}\right)$;

Optimal Transport Map

(5) Compute the gradient of the energy

$$
\nabla E(\mathbf{h})=\left(\nu_{1}-w_{1}(\mathbf{h}), \nu_{2}-w_{2}(\mathbf{h}), \cdots, \nu_{k}-w_{k}(\mathbf{h})\right)^{T} .
$$

(0) If $\left\|\nabla E\left(\mathbf{h}^{k}\right)\right\|$ is less than ε, then return $T=\nabla u\left(\mathbf{h}^{k}\right)$;
(3) Compute the Hessian matrix of the energy

$$
\frac{\partial w_{i}(\mathbf{h})}{\partial h_{j}}=-\frac{\left|e_{i j}\right|}{\left|\bar{e}_{i j}\right|}, \quad \frac{\partial w_{i}}{\partial h_{i}}=-\sum_{j} \frac{\partial w_{i}(\mathbf{h})}{\partial h_{j}}
$$

(8) Solve linear system

$$
\nabla E(\mathbf{h})=\operatorname{Hess}\left(\mathbf{h}^{k}\right) \mathbf{d}
$$

Optimal Transport Map

Damping Algorithm
(0) Set the step length $\lambda \leftarrow 1$;
(10) Construct the convex hull $\operatorname{Conv}\left(\mathbf{h}^{k}+\lambda \mathbf{d}\right)$;
(1) if there is any empty power cell, $\lambda \leftarrow \frac{1}{2} \lambda$, repeat step 3 and 4 , until all power cells are non-empty;
(12) set $\mathbf{h}^{k+1} \leftarrow \mathbf{h}^{k}+\lambda \mathbf{d}$;
(3) Repeat step 9 through 12 .

Optimal Transportation Map

Figure: Optimal transportation map.

Optimal Transportation Map

Figure: Optimal transportation map.

Computational Geometric Algorithms

File Format

- $\left(\Omega^{*}, \nu\right)$ is represented as a triangle mesh (obj format), each vertex has both (x, y, z) coordinates and (u, v) parameters. Each vertex v_{i} represents a sample $y_{i}=\left(u_{i}, v_{i}\right),\left(u_{i}, v_{i}\right)$ specify the planar position in Ω^{*}. The summation of the areas of all triangular faces adjacent to v_{i} is treated as ν_{i}, (after normalization).
- (Ω, μ) is represented as another triangle mesh (obj format), its boundary gives the boundary of Ω. For current version, μ is the uniform distribution.

File IO

(a) Y and ν

(b) planar positions $\left\{y_{i}\right\}$

(c) convex Ω

Figure: Input files.

Data Structure \& Algorithms

(1) The combinatorial data structure to represent the Delaunay triangulation and the dual voronoi diagram is either half-edge or Dart data structure;
(2) The linear numerical solver is Eigen library;
(3) The geometric computation is based on adaptive arithmetic method.
(0) The power Delaunay is based on Lawson's edge flip algorithm.
(5) The polygon clipping is based on Sutherland-Hodgman algorithm.
(0) The optimization of Alexandrov energy is based on damping algorithm.

Edge Local Power Delaunay

Given an edge e in a planar triangulation \mathcal{T}, find the two neighboring faces, lift the four vertices to the convex hull φ, suppose vertex v_{i} is represented as $p_{i}\left(u_{i}, v_{i}, \varphi\left(u_{i}, v_{i}\right)\right)$, compute the volume of the tetrahedron [$p_{0}, p_{1}, p_{2}, p_{3}$]. If the volume is positive, then e is locally powerd Delaunay, if the volume is negative, then e is non-locally-power-Delaunay.

Edge Flippable

Given an edge $e=\left[v_{0}, v_{1}\right]$ in a planar triangulation \mathcal{T}, if $\left[v_{0}, v_{3}, v_{2}\right]$ or [v_{1}, v_{2}, v_{3}] is clockwise, then the edge is not flippable.

Lawson Edge Flip Algorithm

Input is a set of points S on the plane with the powers, the output is the power Delaunay triangulation.
(1) Construct an arbitrary triangulation of the point set S;
(2) Push all non-locally intrior edges of \mathcal{T} on stack and mark them;
(3) While the stack is non-empty do
(1) $e \leftarrow \operatorname{pop}()$;
(2) unmark e;
(3) if e is locally power Delaunay then continue;
(1) if e can't be flipped then continue;

- 0 flip edge e;
© push other four edges of the two triangles adjacent to e into the stack if unmarked;
(9) If there is an edge e, which is not local power Delaunay, then there is some point p_{i} that is not on the convex hull of all p_{k} 's.

Lawson Edge Flip for Convex Hull

Figure: Construct convex hull of the graph of φ, using Lawson Edge Flip algorithm.

Legendre Dual

Given a convex hull, which is the graph of a convex function φ, we compute its Legendre dual φ^{*}. Each point $p_{i}=\left(a_{i}, b_{i}, c_{i}\right)$ on the convex hull represents a plane π_{i},

$$
\pi(x, y)=a_{i} x+b_{i} y-c_{i}
$$

Each face $\left[p_{i}, p_{j}, p_{k}\right]$ is dual to a point (x, y, z) satisfying the linear equation group,

$$
\left(\begin{array}{c}
c_{i} \\
c_{j} \\
c_{k}
\end{array}\right)=\left(\begin{array}{ccc}
a_{i} & b_{i} & -1 \\
a_{j} & b_{j} & -1 \\
a_{k} & b_{k} & -1
\end{array}\right)\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right)
$$

Upper Envelope-Brenier Potential

Given the convex hull $\left\{p_{1}, p_{2}, \cdots, p_{k}\right\}$, where $p_{i}\left(u_{i}, v_{i}, \varphi\left(u_{i}, v_{i}\right)\right)$, add one more point as infinity point $(0,0,-h), h$ is big enough to be above all other points. Each face f_{α} is dual to a point f_{α}^{*}; each vertex v_{i} is dual to a supporting plane v_{i}^{*}.

Figure: Legendre dual of the convex hull is the upper envelope.

Sutherland-Hodgman algorithm

Given a subject polygon S and a convex clipping polygon C, we use C to clip S. Each time, we use one edge e of C to cut off a corner of S.

Sutherland-Hodgman algorithm

foreach Edge clipEdge in clipPolygon do

List inputList \leftarrow outputList;
outputList.clear();
foreach Edge $\left[p_{k-1}, p_{k}\right.$] in inputList do
Point $\mathrm{q} \leftarrow$ Computelntersection $\left(p_{k-1}, p_{k}\right.$, clipEdge);
if p_{k} inside clipEdge then
if p_{k-1} not inside clipEdge then outputList.add(q);
end
outputList.add $\left(p_{k}\right)$;
end
else if p_{k-1} inside clipEdge then outputList.add(q)
end
end

Upper Envelope - Brenier Potential

Figure: Brenier potential obtained by clipping the Legendre dual.

Cell Clipping

Figure: Boundary cell clipping.

Power Diagram Algorithm

(1) Compute the convex hull using Lawson edge flipping, add the infinity vertex $(0,0,-h)$; project the convex hull to power Delaunay triangulation \mathcal{T};
(2) Compute the upper envelope using Legendre dualalgorithm and the, project to the power diagram \mathcal{D};
(3) Clip the power cells using Sutherland-Hodgman algorithm;

Damping Algorithm

(1) Initialize the step length λ;
(2) $\varphi \leftarrow \varphi+\lambda d$;
(3) Compute the convex hull using Lawson edge flipping, add the infinity vertex $(0,0,-h)$; project the convex hull to power Delaunay triangulation \mathcal{T};
(9) If the convex hull misses any vertex, then $\lambda \leftarrow \frac{1}{2} \lambda$, repeat step 2 and step 3;
(5) Compute the upper envelope using Legendre dual algorithm, project to the power diagram \mathcal{D};
(0) Clip the power cells using Sutherland-Hodgman algorithm;
(3) If any power cell is empty, then $\lambda \leftarrow \frac{1}{2} \lambda$, repeat step 5 and step 6 ;

Newton's Method

(1) Initialize ϕ as $\phi(u, v)=\frac{1}{2}\left(u^{2}+v^{2}\right)$;
(2) Call the power diagram algorithm;
(3) Compute the gradient ∇E, the target area minus the current power cell area;
(9) Compute the Hessian matrix H, using the power diagram edge length;
(3) Compute the update direction $H d=\nabla E$;
(0) Call the damping algorithm, set $\phi \leftarrow \phi+\lambda d$, such that ϕ is admissible;
(3 Repeat step 2 through step 6 , until the gradient is close to 0 .

Transportation Map

Figure: Transportation map.

Optimal Transportation Map

Figure: Optimal transportation map.

Instruction

Dependencies

(1) 'DartLib' or 'MeshLib', a general purpose mesh library based on Dart data structure.
(2) 'Eigen', numerical solver.
(3) 'freeglut', a free-software/open-source alternative to the OpenGL Utility Toolkit (GLUT) library.

Commands and Hot keys

- Command: -target target_mesh -source source_mesh
- '!': Newton's method
- ' m ': Compute the mass center of power cells
- 'W': output the Legendre dual mesh and the optimal transportation map mesh
- 'L': Edit the lighting
- 'd': Show convex hull or upper envelope; power Delaunay or diagram
- ' g ': Show 3D view or 2D view
- 'e': Show edges
- 'c': Show cell centers
- 'o': Take a snapshot
- '?': Help information

PowerDynamicMesh class

Compute the Power Delaunay and Power Diagram.
(1) CPDMesh :: _Lawson_edge_swap Lawson edge swap algorithm to compute convex hull u_{h}^{*}, Power Delaunay triangulation;
(2) CPDMesh :: _Legendre_transform Legendre dual transformation compute upper envelope u_{h}, Power voronoi diagram;
(3) CPDMesh :: _power_cell_clip Clip power cells, based on Sutherland-Hodgman algorithm;

COMTDynamicMesh class

Compute the Optimal Mass Transportation Map.
(1) COMTMesh :: _update_direction compute the update direction, based on Newton's method;
(2) COMTMesh :: _calculate_gradient calculate the gradient of the Alexandrov energy;
(3) COMTMesh :: _calculate_hessian calculate the Hessian matrix of the Alexandrov energy;
((COMTMesh :: _edge_weight calculate the edge weight

Directory Structure

- 3rdparty/DartLib or 3rdparty/MeshLib, header files for mesh;
- MeshLib/algorithms/OMT, the header files for Power Diagram Mesh and Optimal Mass Transportation Map Mesh;
- OT/src, the source files for optimal transportation map;
- CMakeLists.txt, CMake configuration file;

Configuration

Before you start, read README.md carefully, then go three the following procedures, step by step.
(1) Install [CMake](https://cmake.org/download/).
(2) Download the source code of the C++ framework.
(3) Configure and generate the project for Visual Studio.
(9) Open the .sln using Visual Studio, and complie the solution.
(6) Finish your code in your IDE.
(6) Run the executable program.

Configure and generate the project

(1) open a command window
(2) cd ot-homework3_skeleton
(3) mkdir build
(9) cd build
(3) cmake ..
(6) open OTHomework.sIn inside the build directory.

