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Abstract. Finding meaningful 1-1 correspondences between hippocam-
pal (HP) surfaces is an important but difficult problem in computational
anatomy. Unless high-field imaging is used, there are no well-defined
anatomical features on the HP that can be used as landmark constraints,
so defining meaningful registrations between HP surfaces is challenging.
Here we developed a new algorithm to automatically register HP surfaces
with complete geometric matching, avoiding the need to manually label
landmark features. A good registration depends on a reasonable choice
of shape energy that measures the dissimilarity between surfaces. In our
algorithm, we first propose a complete shape index using the Beltrami
coefficient and curvatures, which measures subtle local differences. The
proposed shape energy is zero if and only if two shapes are identical up
to a rigid motion. We then seek the best surface registration by mini-
mizing the shape energy. We propose a simple representation of surface
diffeomorphisms using Beltrami coefficients, which simplifies the opti-
mization process. We then iteratively minimize the shape energy using
the Beltrami Holomorphic flow (BHF) method introduced in this paper.
Experimental results on 212 HP of normal and diseased (Alzheimer’s dis-
ease) subjects show our proposed algorithm is effective in registering HP
surfaces with complete geometric matching. The proposed shape energy
can also capture local shape differences between HP, for shape analysis
in Alzheimer’s disease, schizophrenia and epilepsy.

1 Introduction
The hippocampus(HP) is an important subcortical structure of the human brain
that plays a key role in long-term memory and spatial navigation. Surface-based
shape analysis is commonly used to study local changes of HP surfaces due
to pathologies such as Alzheimer disease (AD), schizophrenia and epilepsy[11].
When comparing data on two anatomical surfaces, a 1-1 correspondence must
be computed to register one surface nonlinearly onto the other. On HP surfaces,
there are no well-defined anatomical landmark features that can be used as a
constraint to establish good correspondences. High-field structural or functional
imaging, where discrete cellular fields are evident [15], is still not routinely used.
Finding meaningful registrations between HP surfaces becomes challenging. In-
accuracies in shape analysis are often introduced due to incorrect registrations.
In fact, shape analysis and surface registration are closely related. The results of
shape analysis can be highly affected by the registration, but a good registration
depends largely on the appropriate choice of shape measure that captures dis-
similarities between surfaces. Therefore, it is of utmost importance to combine
the two processes and define a suitable shape measure to drive the registration.

Here we developed an algorithm to automatically register HP surfaces with
complete geometric matching, avoiding the need to manually label landmark



2

features. We first propose a complete shape index using the Beltrami coefficient
(BC) and curvatures, which measures subtle local differences. It can be proven
that the proposed shape energy is identically zero if and only if two shapes are
equal up to a rigid motion. We then minimize the shape energy to obtain the
best surface registration with complete geometric matching. We propose a sim-
ple representation of surface diffeomorphisms using BCs, which simplifies the
optimization. We then optimize the shape energy using the Beltrami Holomor-
phic flow (BHF) method introduced in this paper. The optimal shape energy
obtained may also be used to measure local shape differences across subjects or
time.

2 Related work
Surface registration has been studied extensively. Conformal or quasi-conformal
surface registration is commonly used [4, 5, 14], and gives a parameterization
minimizing angular distortions. However, it cannot guarantee the matching of
geometric information such as curvature across subjects. Landmark-based diffeo-
morphisms are often used to compute, or adjust, cortical surface parameteriza-
tions [3, 6, 12]. For example, Glaunes et al.[3] proposed to generate large deforma-
tion diffeomorphisms of the sphere onto itself, given the displacements of a finite
set of template landmarks. Leow et al.[6] proposed a level-set based approach
to match different types of features, including points and 2D or 3D curves rep-
resented as implicit functions. These methods provide good registrations when
corresponding landmark points on the surfaces can be labeled in advance. It is,
however, difficult for HP surfaces on which there are no well-defined anatomical
landmarks. Some authors have proposed driving features into correspondence
based on shape information. Lyttelton et al. [8] computed surface parameteri-
zations that match surface curvature. Fischl et al. [1] improved the alignment
of cortical folding patterns by minimizing the mean squared difference between
the average convexity across a set of subjects and that of the individual. Wang
et al. [13] computed surface registrations that maximize the mutual information
between mean curvature and conformal factor maps across subjects. Lord et al.
[7] matched surfaces by minimizing the deviation from isometry. The shape in-
dices that drive the registration process in these approaches are not complete
shape measurements and do not capture shape differences completely. There are
cases when two different surfaces might have the same shape value. This could
lead to inaccurate registration results.

3 Theoretical background and definitions
Given two Riemann surfaces M and N , a map f : M → N is conformal if
it preserves the surface metric up to a multiplicative factor. One generaliza-
tion of conformal maps is the quasi-conformal maps, which are orientation-
preserving homeomorphisms between Riemann surfaces with bounded confor-
mality distortion, in the sense that their first order approximations takes small
circles to small ellipses of bounded eccentricity [2]. Thus, a conformal homeo-
morphism that maps a small circle to a small circle may also be regarded as
quasi-conformal. Mathematically, f : C → C is quasi-conformal if it satisfies the
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Beltrami equation: ∂f
∂z = µ(z)∂f∂z , for some complex valued function µ satisfy-

ing ||µ||∞ < 1. µ is called the Beltrami coefficient (BC), which is a measure of
non-conformality. In particular, the map f is conformal around a small neigh-
borhood of p when µ(p) = 0. From µ(p), we can determine the angles of the
directions of maximal magnification and shrinking and the amount of them as
well. Specifically, the angle of maximal magnification is arg(µ(p))/2 with mag-
nifying factor 1+ |µ(p)|; The angle of maximal shrinking is the orthogonal angle
(arg(µ(p)) − π)/2 with shrinking factor 1− |µ(p)|. The distortion or dilation is
given by: K = 1 + |µ(p)|/1− |µ(p)|.

4 Proposed model

4.1 A complete shape index

As discussed earlier, a good registration depends greatly on the appropriate
choice of a shape measure to capture dissimilarities between surfaces. It is there-
fore important to look for a good shape measure. We propose a complete shape
index Eshape using the Beltrami coefficient and curvatures, which measures sub-
tle local changes completely. Given two HP surfaces S1 and S2. Let f : S1 → S2

be a registration between S1 and S2. The complete shape index Eshape is defined
as follow:

Eshape(f) = α|µ|2 + β(H1 −H2(f))
2 + γ(K1 −K2(f))

2 (1)

where µ is the Beltrami coefficient of f ; H1, H2 are the mean curvatures on S1

and S2 respectively; and K1, K2 are the Gaussian curvatures. The first term
measures the conformality distortion of the surface registration. The second and
third terms measure the curvature mismatch. It turns out Eshape is a complete
shape index that measures subtle shape differences between two surfaces. It can
be proven that Eshape(f) = 0 if and only if S1 and S2 are equal up to a rigid
motion. Also, by adjusting the parameters (i.e., α, β and γ), Eshape can be made
equivalent to other existing shape indices. For example, when β = 0, Eshape is
equivalent to the isometric shape index; when α = 0, Eshape is equivalent to the
curvature index; when β = γ = 0, Eshape measures the conformality distortion.
In our work, we set α, β, γ ̸= 0 to measure complete shape changes.

We can now minimize Eshape to obtain the optimized surface map f̃ that best
matches the geometry. One advantage of using Eshape is that it can be defined
in the space of BCs. The space of BCs is a simple functional space, which makes
the optimization much easier.

4.2 Surface map representation using Beltrami Coefficients

Surface registration often involves an optimization process that minimizes an
energy functional. Surface registration is commonly parameterized using 3D co-
ordinate functions in R3. This representation is difficult to manipulate. For ex-
ample, the 3D coordinate functions have to satisfy certain constraints on the
Jacobian J (namely, J > 0), to preserve the 1-1 correspondence of the sur-
face maps. Enforcing this constraint adds extra difficulty in manipulating and
optimizing surface maps. The diffeomorphic property is often lost during the
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optimization. To tackle this, we propose a simple representation of surface dif-
feomorphisms using Beltrami coefficients (BCs). Fixing any 3 points on a pair
of surfaces, there is a 1-1 correspondence between the set of surface diffeomor-
phisms between them and the set of BCs on the source domain. Hence, every
bijective surface map can be represented by a unique BC.

Suppose S1 and S2 are both either genus 0 closed surfaces or simply con-
nected open surfaces. Let f : S1 → S2, and given 3 point correspondences, S1

and S2 can be conformally parameterized with a global patch D. Denote the
parameterizations by ϕ1 : S1 → D and ϕ2 : S2 → D. Now, we can compute the
Beltrami coefficient µf associated uniquely to f to represent f (See Figure 1).
The Beltrami coefficient µf can be computed by considering the composition

map f̃ = ϕ2 ◦ f ◦ ϕ−1
1 : D → D. Mathematically, µf is given by the following

formula: µf = ∂f̃
∂z /

∂f̃
∂z = 1

2 (
∂f̃
∂x +

√
−1∂f̃

∂y )/
1
2 (

∂f̃
∂x −

√
−1∂f̃

∂y ).
The space of BCs is a simple functional space. There are no restrictions on

µ that it has to be 1-1, surjective or satisfy some constraints on the Jacobian.
Using the Beltrami representation makes the optimization process of surface
maps much easier.

4.3 Optimized surface registration matching the geometry

Eshape gives us a complete shape index which measures local dissimilarities be-
tween two surfaces. Specifically, Eshape(f) = 0 if and only if S1 and S2 are
equal up to a rigid motion. Therefore, the surface map f minimizing Eshape(f)
is the best registration that matches the geometric information as far as possi-
ble. Given two HP surfaces S1 and S2. We propose to find f : S1 → S2 that
minimizes E =

∫
EShape(f). To simplify the computation, we can conformally

parameterize S1 and S2 onto the parameter domain D. So, all computations are
carried out on the simple domain D. By representing surface maps with Beltrami
coefficients µ, we can define the energy on the space of BCs - a much simpler
functional space for the optimization process. Mathematically, the compound
energy E can be written with respect to µ as:

E(µ) =

∫
D

α|µ|2 + β(H1 −H2(f
µ))2 + γ(K1 −K2(f

µ))2 (2)

The variation of fµ under the variation of µ can be expressed explicitly. Suppose
µ̃(z) = µ(z) + tν(z) + O(t2). Then, f µ̃(z)(w) = fµ(w) + tV (fµ, ν)(w) + O(t2),
where

V (fµ, ν)(w) = −fµ(w)(fµ(w)− 1)

π

∫
D

ν(z)(fµ
z (z))

2dxdy

fµ(z)(fµ(z)− 1)(fµ(z)− fµ(w))
. (3)

Using the variational formula, we can derive the Euler-Lagrange equation of
Equation 2 with respect to µ easily. Specifically, we can minimize E(µ) by the
following iterative scheme:

µn+1 − µn = −2(αµn −
∫
z

[(βH̃n + γK̃n) ·Gn,det(βH̃n + γK̃n, Gn)] )dt (4)
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where
∫
w
• :=

∫
D
• dw and

∫
z
• :=

∫
D
• dz is defined as the integral over the

variable w and z respectively; H̃ := (H1 − H2(f
µ))∇H2(f

µ); K̃ := (K1 −
K2(f

µ))∇K2(f
µ); det(a, b) is the determinant of the 2 by 2 matrix or equiva-

lently, the norm of the cross product of a and b.
We call this iterative algorithm the Beltrami Holomorphic flow (BHF). Dur-

ing the BHF process, the maps are guaranteed to be diffeomorphic and are
holomorphic in t. The detailed computational algorithm is as follows:

Algorithm 1. BHF Surface Registration
Input: Hippocampal surfaces S1 and S2, step length dt, threshold ϵ
Output: Geometric matching registration fµ and the shape index E(fµ)

1. Compute the conformal parameterizations of S1 and S2. Denote them by
ϕ1 : S1 → D and ϕ2 : S2 → D

2. Set φ0 := Id : D → D and n = 0.
3. Compute the Beltrami coefficient µn

φ of φn
i (e.g. µ0

φ = 0). Update µn+1
φ by

Equation 4.
4. Compute: V n = F (µn+1

φ − µn
φ) using Equation 3. Let φn+1 = φn + V n. Set

n = n+1.
5. Repeat Step 3 to Step 5. If |E(µn+1

φ )− E(µn
φ)| < ϵ, Stop.

5 Experimental results

We tested our algorithm on 212 HP surfaces automatically extracted from 3D
brain MRI scans with a validated algorithm [9]. Scans were acquired from nor-
mal and diseased (AD) elderly subjects at 1.5 T (on a GE Signa scanner). Ex-
perimental results show our proposed algorithm is effective in registering HP
surfaces with geometric matching. The proposed shape energy can also be used
to measure local shape difference between HPs.

Figure 1 shows the Beltrami representations of bijective surface maps. The
left column shows the bijective surface maps of the HP surfaces and cortical
surfaces. The middle column shows the Beltrami (BC) representations of the
maps. The right column shows the reconstruction of surface maps from their
BCs. The reconstructed maps closely resemble the original maps, meaning that
BCs can effectively represent bijective surface maps.

Figure 2(A) shows two different HP surfaces. They are registered using our
proposed BHF algorithm with geometric matching. The registration is visualized
using a grid map and texture map, which shows a smooth 1-1 correspondence.
The optimal shape index Eshape is plotted as colormap in (B). Eshape effectively
captures the local shape difference between the surfaces. (C) shows the shape
energy in each iteration. With the BHF algorithm, the shape energy decreases
as the number of iterations increases. (D) shows the curvature mismatch energy
(E =

∫
β(H1 −H2(f))

2 + γ(K1 −K2(f))
2). It decreases as the number of iter-

ations increases, meaning that the geometric matching improves. (E) shows the
Beltrami coefficient of the map in each iteration, which shows the conformality
distortion of the map. Some conformality is intentionally lost to allow better
geometric matching.
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Fig. 1. Representation of surface registration using Beltrami Coefficients

Fig. 2. Shape registration with geometric matching using Beltrami Holomorphic flow
(BHF).
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Figure 3 shows the BHF registration between two normal HPs. The com-
plete shape index Eshape is plotted as colormap on the right. Again, Eshape can
accurately capture local shape differences between the normal HP surfaces.

Figure 4 shows the BHF hippocampal registrations between normal elderly
subjects and subjects with Alzheimer’s disease. The BHF registrations give
smooth 1-1 correspondences between the HP surfaces. We can use the com-
plete shape index Eshape to detect local shape differences between healthy and
unhealthy subjects.

Fig. 3. BHF registration between two normal subjects. The shape index Eshape is
plotted on the right, which captures local shape differences.

We also study the temporal shape changes of normal and AD HP surfaces,
as shown in Figure 5. For each subject, we compute the deformation pattern
of its HP surfaces measured at time = 0 and time = 12 Months (see [10] for
longitudinal scanning details). The left two panels show the temporal deforma-
tion patterns for two normal subjects. The middle two panels show the temporal
deformation patterns for two AD subjects. The last column shows the statistical
significance p-map measuring the difference in the deformation pattern between
the normal (n=47) and AD (n=53) groups, plotted on a control HP. The deep
red color highlights regions of significant statistical difference. This method can
be potentially used to study factors that influence brain changes in AD.

6 Conclusion and future work

We developed an algorithm to automatically register HP surfaces with complete
geometric matching, avoiding the need for manually-labeled landmark features.
We did this by defining a complete shape index that measures subtle shape
differences and we used it to drive the registration. Experimental results on 212
HP surfaces from normal and diseased (Alzheimer’s) subjects show our proposed
algorithm is effective in registering HP surfaces over time and across subjects,
with complete geometric matching. The proposed shape energy can also capture
local shape differences between HPs, which may be useful for shape analysis in
Alzheimer’s disease, schizophrenia and epilepsy. In future, we will use the BHF
algorithm to register more HP surfaces and systematically study their local shape
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differences and factors that affect deformation patterns between normal and AD
subjects.

Fig. 4. BHF registration between normal subjects and subjects with Alzheimer’s dis-
ease. Their local shape differences are captured by Eshape.

Fig. 5. Temporal hippocampal shape changes of normal and subjects with Alzheimer’s
disease.
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