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Motivation
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Motivation

3D geometric data acquisition technology becomes mature.
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Motivation

Our group has developed high speed 3D scanner, which can
capture dynamic surfaces 180 frames per second.
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Motivation

Conformal geometry has been applied for studying surface
deformation. The following image shows an isometric
deformation, which is conformal.
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Motivation

In reality, most deformations are quasi-conformal.Same face
with different expressions have different conformal moduli.
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Motivation

Generalize computational algorithms for conformal mappings to
quasi-conformal mappings.
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Theoretic Background
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Theoretic Background

Definition (Conformal Atlas)

suppose S is a surface covered by a collection of open sets
A = {Uα}, S ⊂

⋃
Uα . A chart is (Uα ,φα), where φα : Uα → C is

a homeomorphism. The chart transition function
φαβ : φα(Uα ∩Uβ ) → φα(Uα ∩Uβ), φαβ = φβ ◦φ−1

α . If all transition
functions are holomorphic, then the atlas A is a conformal
atlas.

φα
φβ

Uα Uβ

S

φαβ

φα (Uα) φβ (Uβ)
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Theoretic Background

Theorem (Riemann Surface)

Any metric surfaces can be covered by conformal atlas, such
that each local coordinate system is isothermal.

Isothermal Coordinates

A surface Σ with a
Riemannian metric g, a
local coordinate system
(u,v) is an isothermal
coordinate system, if

g = e2λ(u,v)(du2 +dv2).
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Theoretic Background

Definition (Conformal Map)

suppose S1 and S2 are two
Riemann surfaces with
conformal atlas {(Uα ,φα} and
{(Vβ ,τβ} respectively,
f : S1 → S2 is a
homeomorphism. If the local
representation of f

τβ ◦ f ◦φ−1
α : φα(Uα) → τβ (Vβ )

is holomorphic, then f is a
conformal map.

f

z w
τβ ◦ f ◦ φ−1

α

Uα Vβ

φα τβ

S1 ⊂ {(Uα, φα)} S2 ⊂ {(Vβ , τβ)}
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Theoretic Background

Definition (Quasi-Conformal
Map)

If f is a diffeomorphism, locally

df = fzdz + fz̄dz̄.

Let Beltrami coefficient µ(z) be

µ(z) =
fz̄
fz

.

If |µ(z)| < ∞, then f is a
quasi-conformal map. µ(z) ≡ 0
iff f is conformal.

f

z w
τβ ◦ f ◦ φ−1

α

Uα Vβ

φα τβ

S1 ⊂ {(Uα, φα)} S2 ⊂ {(Vβ , τβ)}
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Theoretic Background

Property

A Conformal mapping maps infinitesimal circles to infinitesimal
circles; a quasi-conformal mapping maps circles to ellipses.
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Theoretic Background

Geometric Meaning

The argument of µ(z) is
determined by the orientation
of the ellipse; the norm of µ(z)
is determined by the eccentric
rate of the ellipse.

1 + |µ|

1 − |µ|

K =
1+|µ|
1−|µ|

θ

θ =
1

2
argµ
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Theoretic Background

Beltrami Equation

Suppose Ω ⊂ C, given a complex valued measurable function
µ(z) : Ω → C, such that ‖ µ(z) ‖∞< 1 almost everywhere on Ω,
then the Beltrami equation is

∂̄ f (z) = µ(z)∂ f (z),

where f : Ω → C.

Theorem

Let µ be a measurable function in Ω ⊂ C and suppose
‖ µ ‖∞< 1. Then there is a homeomorphic solution g : Ω → C to
the Beltrami equation.
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Theoretic Background

Central Result

Suppose S is a topological surface, A1 and A2 are two
conformal structures on S. Suppose the local complex
parameters of (S,A1) and (S,A2) are z and w . The identity
map is a quasi-conformal map, with Beltrami coefficient µ(z),

∂w
∂ z̄

= µ(z)
∂w
∂z

.

Then we construct another conformal atlas ˜A1. For each chart
(Uα ,zα) ∈ A1, convert it to (Uα , z̃α), such that

dz̃α = dzα + µ(z)dz̄α .

Theorem

The atlas ˜A1 is a conformal atlas. The Riemann surface (S, ˜A1)
is conformal equivalent to (S,A2).
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Theoretic Background

Converting quasi-conformal mappings to conformal mappings

Given a surface (S,g) and Beltrami coefficient µ , ‖ µ ‖∞< 1,
find a map f : S → C, such that ∂̄ f = µ∂ f .

1 Compute a conformal mapping φ : (S,g) → C, such that

g = e2λ(z)dzdz̄.

2 Construct a new metric

g̃ = |dz + µ(z)dz̄|2

3 Find a conformal map f : (S, g̃) → C, then f is the solution.
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Theoretic Background

Solveing Beltrami Equation

Given metric surfaces (S1,g1) and (S2,g2), let z,w be
isothermal coordinates of S1,S2,w = φ(z).

g1 = e2u1dzdz̄ (1)

g2 = e2u2dwdw̄, (2)

Then

φ : (S1,g1) → (S2,g2), quasi-conformal with Beltrami
coefficient µ .

φ : (S1,φ∗g2) → (S2,g2) is isometric

φ∗g2 = eu2|dw |2 = eu2|dz + µdd̄z|2.

φ : (S1, |dz + µdd̄z|2) → (S2,g2) is conformal.
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Discrete Computational Method

Discrete Algorithm
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Generic Surface Model - Triangular Mesh

Surfaces are represented as polyhedron triangular
meshes.

Isometric gluing of triangles in E
2.

Isometric gluing of triangles in H
2,S2.
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Discrete Forms

Definition (Chain Space)

linear combination of splices

Ck = {∑
i

λiσ k
i |λi ∈ Z}

Definition (Boundary Operator on a simplex)

∂n[v0,v1, · · · ,vn] = ∑
k

(−1)k [v0, · · · ,vk−1,vk+1, · · · ,vn]

Definition (Boundary Operator on a k-chain)

∂k : Ck → Ck−1

∂k ∑
i

λiσ k
i = ∑

i

λi∂k σ k
i .
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Homology Group

Definition (Homology Group)

linear combination of splices

Hk =
Ker∂k

Img∂k+1
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Cochain Space

Definition (Cochain)

A k-form ω is a linear functional on Ck

ω : Ck → R.

Definition (Cochain Space)

A k-cochain space Ck is the dual space of Ck

Ck = {ω |ω k − form}

Definition (Exterior Differentiation)

dk : Ck → Ck+1 linear operator

(dk ω)(σ) = ω(∂k σ),ω ∈ Ck
,σ ∈ Ck+1.
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Cohomology Group

Definition (Cohomology Group)

Hk =
Kerdk

Imgdk−1
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Laplace Beltrami Operator

Definition (Edge Weight)

Given an edge [vi ,vj ] adjacent to two faces [vi ,vj ,vk ] and
[vj ,vi ,vl ], then the edge weight is defined as

wij = cotθk
ij +cotθ l

ji .

Given an 1-form ω

∆ω(vi) = ∑
j

wijω([vi ,vj ]).

Definition (Harmonic 1-form)

Let ω be a 1-form, ω is harmonic if

∆ω = 0.
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Hodge Theory

Theorem (Hodge)

All the harmonic 1-forms form a group, which is isomorphic to
H1(M).

Harmonic 1-form

Each cohomologous class has a unique harmonic 1-form,
which represents a vortex free, source-sink free flow field.
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Harmonic 1-form

Harmonic 1-form Basis
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Harmonic 1-form

Conjugate Harmonic 1-form
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Holomorphic 1-form

Holomorphic 1-form Basis
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Holomorphic 1-form

Holomorphic 1-form Basis
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Holomorphic 1-form

Holomorphic 1-form - Global Conformal Parameterization
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Holomorphic 1-form

Holomorphic 1-form - Global Conformal Parameterization
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Algorithms

Topological Annulus

1 Compute an exact harmonic 1-form, and its conjugate
harmonic 1-form.

2 Combine the two harmonic 1-forms to a holomorphic
1-form ω on the annulus, such that Im(

∫
γ1

ω = 2π.

3 Choose a base point p. For any point q ∈ S, map it to

φ(q) = exp(
∫ q

p
ω).

This mapping maps the whole surface to a planar annulus
conformally.
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Algorithms

Topological Annulus

γ0

γ1

τ
τ

+τ
−
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Algorithms

Simply Connected Domains

By removing one point to convert it to a topological annulus.
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Algorithms

Multiply Connected Domains

Fill all the holes except two, map it to an annulus. Then we fill
these two circles, and open another two holes. Iterate this
procedure.

D0

D1

D2D3

p
q p q

(a) Original surface (b) Planar domain (c) Texture mapping

Zeng,Luo,Yau,Gu Quasi-Conformal Mapping



Algorithms

(1). D1 is removed. (2). Conformal mapping for S−D1. (3). D1

is glued back.
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Algorithms

(1). D2 is removed. (2). Conformal mapping for S−D2. (3). D2

is glued back followed by a Möbius transformation.
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Algorithms

(1). D3 is removed. (2). Conformal mapping for S−D3. (3). D3

is glued back followed by a Möbius transformation.
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Experimental Results
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Experimental Results

(a) µ = 0.0 (b) µ = 0.25 (c) µ = 0.25i
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Experimental Results

(a) µ = 0.0 (b) µ = 0.25 (c) µ = 0.25i
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Experimental Results

(a) µ = 0.25 (b) µ = 0.25i (c) µ = 0.25+0.25i
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Experimental Results

Table: Computational Time.

Figure #Vertex #Face #Bnd Iter Time (sec)
Fig. 1(e) 80593 160054 1 1 102
Fig. 6(a) 80593 160054 1 1 73
Fig. 6(b) 80593 160054 1 1 110
Fig. 6(c) 80593 160054 1 1 105
Fig. 7(a) 80724 160054 2 1 78
Fig. 7(b) 80724 160054 2 1 110
Fig. 7(c) 80724 160054 2 1 112
Fig. 9(c) 15160 29974 4 2 156
Fig. 9(a) 15160 29974 4 2 160
Fig. 9(b) 15160 29974 4 2 156
Fig. 9(c) 15160 29974 4 2 157
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Summary

Introduce a generic method for computing quasi-conformal
mappings by solving Beltrami equations.

Give algorithmic details for genus zero surfaces based on
holomorphic 1-forms

The method can be directly applied for surfaces with
arbitrary topologies
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Thanks

For more information, please email to gu@cs.sunysb.edu.

Thank you!
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